blob: dbc346522275f7148d5043f27595df4333849f79 [file] [log] [blame]
use core::{fmt, str};
cfg_if::cfg_if! {
if #[cfg(feature = "std")] {
use std::path::Path;
use std::prelude::v1::*;
}
}
use super::backtrace::Frame;
use super::types::BytesOrWideString;
use core::ffi::c_void;
use rustc_demangle::{try_demangle, Demangle};
/// Resolve an address to a symbol, passing the symbol to the specified
/// closure.
///
/// This function will look up the given address in areas such as the local
/// symbol table, dynamic symbol table, or DWARF debug info (depending on the
/// activated implementation) to find symbols to yield.
///
/// The closure may not be called if resolution could not be performed, and it
/// also may be called more than once in the case of inlined functions.
///
/// Symbols yielded represent the execution at the specified `addr`, returning
/// file/line pairs for that address (if available).
///
/// Note that if you have a `Frame` then it's recommended to use the
/// `resolve_frame` function instead of this one.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
///
/// # Panics
///
/// This function strives to never panic, but if the `cb` provided panics then
/// some platforms will force a double panic to abort the process. Some
/// platforms use a C library which internally uses callbacks which cannot be
/// unwound through, so panicking from `cb` may trigger a process abort.
///
/// # Example
///
/// ```
/// extern crate backtrace;
///
/// fn main() {
/// backtrace::trace(|frame| {
/// let ip = frame.ip();
///
/// backtrace::resolve(ip, |symbol| {
/// // ...
/// });
///
/// false // only look at the top frame
/// });
/// }
/// ```
#[cfg(feature = "std")]
pub fn resolve<F: FnMut(&Symbol)>(addr: *mut c_void, cb: F) {
let _guard = crate::lock::lock();
unsafe { resolve_unsynchronized(addr, cb) }
}
/// Resolve a previously capture frame to a symbol, passing the symbol to the
/// specified closure.
///
/// This function performs the same function as `resolve` except that it takes a
/// `Frame` as an argument instead of an address. This can allow some platform
/// implementations of backtracing to provide more accurate symbol information
/// or information about inline frames for example. It's recommended to use this
/// if you can.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
///
/// # Panics
///
/// This function strives to never panic, but if the `cb` provided panics then
/// some platforms will force a double panic to abort the process. Some
/// platforms use a C library which internally uses callbacks which cannot be
/// unwound through, so panicking from `cb` may trigger a process abort.
///
/// # Example
///
/// ```
/// extern crate backtrace;
///
/// fn main() {
/// backtrace::trace(|frame| {
/// backtrace::resolve_frame(frame, |symbol| {
/// // ...
/// });
///
/// false // only look at the top frame
/// });
/// }
/// ```
#[cfg(feature = "std")]
pub fn resolve_frame<F: FnMut(&Symbol)>(frame: &Frame, cb: F) {
let _guard = crate::lock::lock();
unsafe { resolve_frame_unsynchronized(frame, cb) }
}
pub enum ResolveWhat<'a> {
Address(*mut c_void),
Frame(&'a Frame),
}
impl<'a> ResolveWhat<'a> {
#[allow(dead_code)]
fn address_or_ip(&self) -> *mut c_void {
match self {
ResolveWhat::Address(a) => adjust_ip(*a),
ResolveWhat::Frame(f) => adjust_ip(f.ip()),
}
}
}
// IP values from stack frames are typically (always?) the instruction
// *after* the call that's the actual stack trace. Symbolizing this on
// causes the filename/line number to be one ahead and perhaps into
// the void if it's near the end of the function.
//
// This appears to basically always be the case on all platforms, so we always
// subtract one from a resolved ip to resolve it to the previous call
// instruction instead of the instruction being returned to.
//
// Ideally we would not do this. Ideally we would require callers of the
// `resolve` APIs here to manually do the -1 and account that they want location
// information for the *previous* instruction, not the current. Ideally we'd
// also expose on `Frame` if we are indeed the address of the next instruction
// or the current.
//
// For now though this is a pretty niche concern so we just internally always
// subtract one. Consumers should keep working and getting pretty good results,
// so we should be good enough.
fn adjust_ip(a: *mut c_void) -> *mut c_void {
if a.is_null() {
a
} else {
(a as usize - 1) as *mut c_void
}
}
/// Same as `resolve`, only unsafe as it's unsynchronized.
///
/// This function does not have synchronization guarantees but is available when
/// the `std` feature of this crate isn't compiled in. See the `resolve`
/// function for more documentation and examples.
///
/// # Panics
///
/// See information on `resolve` for caveats on `cb` panicking.
pub unsafe fn resolve_unsynchronized<F>(addr: *mut c_void, mut cb: F)
where
F: FnMut(&Symbol),
{
imp::resolve(ResolveWhat::Address(addr), &mut cb)
}
/// Same as `resolve_frame`, only unsafe as it's unsynchronized.
///
/// This function does not have synchronization guarantees but is available
/// when the `std` feature of this crate isn't compiled in. See the
/// `resolve_frame` function for more documentation and examples.
///
/// # Panics
///
/// See information on `resolve_frame` for caveats on `cb` panicking.
pub unsafe fn resolve_frame_unsynchronized<F>(frame: &Frame, mut cb: F)
where
F: FnMut(&Symbol),
{
imp::resolve(ResolveWhat::Frame(frame), &mut cb)
}
/// A trait representing the resolution of a symbol in a file.
///
/// This trait is yielded as a trait object to the closure given to the
/// `backtrace::resolve` function, and it is virtually dispatched as it's
/// unknown which implementation is behind it.
///
/// A symbol can give contextual information about a function, for example the
/// name, filename, line number, precise address, etc. Not all information is
/// always available in a symbol, however, so all methods return an `Option`.
pub struct Symbol {
// TODO: this lifetime bound needs to be persisted eventually to `Symbol`,
// but that's currently a breaking change. For now this is safe since
// `Symbol` is only ever handed out by reference and can't be cloned.
inner: imp::Symbol<'static>,
}
impl Symbol {
/// Returns the name of this function.
///
/// The returned structure can be used to query various properties about the
/// symbol name:
///
/// * The `Display` implementation will print out the demangled symbol.
/// * The raw `str` value of the symbol can be accessed (if it's valid
/// utf-8).
/// * The raw bytes for the symbol name can be accessed.
pub fn name(&self) -> Option<SymbolName<'_>> {
self.inner.name()
}
/// Returns the starting address of this function.
pub fn addr(&self) -> Option<*mut c_void> {
self.inner.addr().map(|p| p as *mut _)
}
/// Returns the raw filename as a slice. This is mainly useful for `no_std`
/// environments.
pub fn filename_raw(&self) -> Option<BytesOrWideString<'_>> {
self.inner.filename_raw()
}
/// Returns the column number for where this symbol is currently executing.
///
/// Only gimli currently provides a value here and even then only if `filename`
/// returns `Some`, and so it is then consequently subject to similar caveats.
pub fn colno(&self) -> Option<u32> {
self.inner.colno()
}
/// Returns the line number for where this symbol is currently executing.
///
/// This return value is typically `Some` if `filename` returns `Some`, and
/// is consequently subject to similar caveats.
pub fn lineno(&self) -> Option<u32> {
self.inner.lineno()
}
/// Returns the file name where this function was defined.
///
/// This is currently only available when libbacktrace or gimli is being
/// used (e.g. unix platforms other) and when a binary is compiled with
/// debuginfo. If neither of these conditions is met then this will likely
/// return `None`.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
#[cfg(feature = "std")]
#[allow(unreachable_code)]
pub fn filename(&self) -> Option<&Path> {
self.inner.filename()
}
}
impl fmt::Debug for Symbol {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut d = f.debug_struct("Symbol");
if let Some(name) = self.name() {
d.field("name", &name);
}
if let Some(addr) = self.addr() {
d.field("addr", &addr);
}
#[cfg(feature = "std")]
{
if let Some(filename) = self.filename() {
d.field("filename", &filename);
}
}
if let Some(lineno) = self.lineno() {
d.field("lineno", &lineno);
}
d.finish()
}
}
cfg_if::cfg_if! {
if #[cfg(feature = "cpp_demangle")] {
// Maybe a parsed C++ symbol, if parsing the mangled symbol as Rust
// failed.
struct OptionCppSymbol<'a>(Option<::cpp_demangle::BorrowedSymbol<'a>>);
impl<'a> OptionCppSymbol<'a> {
fn parse(input: &'a [u8]) -> OptionCppSymbol<'a> {
OptionCppSymbol(::cpp_demangle::BorrowedSymbol::new(input).ok())
}
fn none() -> OptionCppSymbol<'a> {
OptionCppSymbol(None)
}
}
} else {
use core::marker::PhantomData;
// Make sure to keep this zero-sized, so that the `cpp_demangle` feature
// has no cost when disabled.
struct OptionCppSymbol<'a>(PhantomData<&'a ()>);
impl<'a> OptionCppSymbol<'a> {
fn parse(_: &'a [u8]) -> OptionCppSymbol<'a> {
OptionCppSymbol(PhantomData)
}
fn none() -> OptionCppSymbol<'a> {
OptionCppSymbol(PhantomData)
}
}
}
}
/// A wrapper around a symbol name to provide ergonomic accessors to the
/// demangled name, the raw bytes, the raw string, etc.
// Allow dead code for when the `cpp_demangle` feature is not enabled.
#[allow(dead_code)]
pub struct SymbolName<'a> {
bytes: &'a [u8],
demangled: Option<Demangle<'a>>,
cpp_demangled: OptionCppSymbol<'a>,
}
impl<'a> SymbolName<'a> {
/// Creates a new symbol name from the raw underlying bytes.
pub fn new(bytes: &'a [u8]) -> SymbolName<'a> {
let str_bytes = str::from_utf8(bytes).ok();
let demangled = str_bytes.and_then(|s| try_demangle(s).ok());
let cpp = if demangled.is_none() {
OptionCppSymbol::parse(bytes)
} else {
OptionCppSymbol::none()
};
SymbolName {
bytes: bytes,
demangled: demangled,
cpp_demangled: cpp,
}
}
/// Returns the raw (mangled) symbol name as a `str` if the symbol is valid utf-8.
///
/// Use the `Display` implementation if you want the demangled version.
pub fn as_str(&self) -> Option<&'a str> {
self.demangled
.as_ref()
.map(|s| s.as_str())
.or_else(|| str::from_utf8(self.bytes).ok())
}
/// Returns the raw symbol name as a list of bytes
pub fn as_bytes(&self) -> &'a [u8] {
self.bytes
}
}
fn format_symbol_name(
fmt: fn(&str, &mut fmt::Formatter<'_>) -> fmt::Result,
mut bytes: &[u8],
f: &mut fmt::Formatter<'_>,
) -> fmt::Result {
while bytes.len() > 0 {
match str::from_utf8(bytes) {
Ok(name) => {
fmt(name, f)?;
break;
}
Err(err) => {
fmt("\u{FFFD}", f)?;
match err.error_len() {
Some(len) => bytes = &bytes[err.valid_up_to() + len..],
None => break,
}
}
}
}
Ok(())
}
cfg_if::cfg_if! {
if #[cfg(feature = "cpp_demangle")] {
impl<'a> fmt::Display for SymbolName<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(ref s) = self.demangled {
s.fmt(f)
} else if let Some(ref cpp) = self.cpp_demangled.0 {
cpp.fmt(f)
} else {
format_symbol_name(fmt::Display::fmt, self.bytes, f)
}
}
}
} else {
impl<'a> fmt::Display for SymbolName<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(ref s) = self.demangled {
s.fmt(f)
} else {
format_symbol_name(fmt::Display::fmt, self.bytes, f)
}
}
}
}
}
cfg_if::cfg_if! {
if #[cfg(all(feature = "std", feature = "cpp_demangle"))] {
impl<'a> fmt::Debug for SymbolName<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use std::fmt::Write;
if let Some(ref s) = self.demangled {
return s.fmt(f)
}
// This may to print if the demangled symbol isn't actually
// valid, so handle the error here gracefully by not propagating
// it outwards.
if let Some(ref cpp) = self.cpp_demangled.0 {
let mut s = String::new();
if write!(s, "{}", cpp).is_ok() {
return s.fmt(f)
}
}
format_symbol_name(fmt::Debug::fmt, self.bytes, f)
}
}
} else {
impl<'a> fmt::Debug for SymbolName<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(ref s) = self.demangled {
s.fmt(f)
} else {
format_symbol_name(fmt::Debug::fmt, self.bytes, f)
}
}
}
}
}
/// Attempt to reclaim that cached memory used to symbolicate addresses.
///
/// This method will attempt to release any global data structures that have
/// otherwise been cached globally or in the thread which typically represent
/// parsed DWARF information or similar.
///
/// # Caveats
///
/// While this function is always available it doesn't actually do anything on
/// most implementations. Libraries like dbghelp or libbacktrace do not provide
/// facilities to deallocate state and manage the allocated memory. For now the
/// `gimli-symbolize` feature of this crate is the only feature where this
/// function has any effect.
#[cfg(feature = "std")]
pub fn clear_symbol_cache() {
let _guard = crate::lock::lock();
unsafe {
imp::clear_symbol_cache();
}
}
cfg_if::cfg_if! {
if #[cfg(miri)] {
mod miri;
use miri as imp;
} else if #[cfg(all(windows, target_env = "msvc", not(target_vendor = "uwp")))] {
mod dbghelp;
use dbghelp as imp;
} else if #[cfg(all(
any(unix, windows),
not(target_vendor = "uwp"),
not(target_os = "emscripten"),
any(not(backtrace_in_libstd), feature = "backtrace"),
))] {
mod gimli;
use gimli as imp;
} else {
mod noop;
use noop as imp;
}
}