blob: f29cd357d6bfd5218ab7489a3d40148b184d8231 [file] [log] [blame]
#[doc = include_str!("panic.md")]
#[macro_export]
#[rustc_builtin_macro(core_panic)]
#[allow_internal_unstable(edition_panic)]
#[stable(feature = "core", since = "1.6.0")]
#[rustc_diagnostic_item = "core_panic_macro"]
macro_rules! panic {
// Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021`
// depending on the edition of the caller.
($($arg:tt)*) => {
/* compiler built-in */
};
}
/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
///
/// On panic, this macro will print the values of the expressions with their
/// debug representations.
///
/// Like [`assert!`], this macro has a second form, where a custom
/// panic message can be provided.
///
/// # Examples
///
/// ```
/// let a = 3;
/// let b = 1 + 2;
/// assert_eq!(a, b);
///
/// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
/// ```
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "assert_eq_macro")]
#[allow_internal_unstable(core_panic)]
macro_rules! assert_eq {
($left:expr, $right:expr $(,)?) => {
match (&$left, &$right) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = $crate::panicking::AssertKind::Eq;
// The reborrows below are intentional. Without them, the stack slot for the
// borrow is initialized even before the values are compared, leading to a
// noticeable slow down.
$crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
}
}
}
};
($left:expr, $right:expr, $($arg:tt)+) => {
match (&$left, &$right) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = $crate::panicking::AssertKind::Eq;
// The reborrows below are intentional. Without them, the stack slot for the
// borrow is initialized even before the values are compared, leading to a
// noticeable slow down.
$crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
}
}
}
};
}
/// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
///
/// On panic, this macro will print the values of the expressions with their
/// debug representations.
///
/// Like [`assert!`], this macro has a second form, where a custom
/// panic message can be provided.
///
/// # Examples
///
/// ```
/// let a = 3;
/// let b = 2;
/// assert_ne!(a, b);
///
/// assert_ne!(a, b, "we are testing that the values are not equal");
/// ```
#[macro_export]
#[stable(feature = "assert_ne", since = "1.13.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "assert_ne_macro")]
#[allow_internal_unstable(core_panic)]
macro_rules! assert_ne {
($left:expr, $right:expr $(,)?) => {
match (&$left, &$right) {
(left_val, right_val) => {
if *left_val == *right_val {
let kind = $crate::panicking::AssertKind::Ne;
// The reborrows below are intentional. Without them, the stack slot for the
// borrow is initialized even before the values are compared, leading to a
// noticeable slow down.
$crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
}
}
}
};
($left:expr, $right:expr, $($arg:tt)+) => {
match (&($left), &($right)) {
(left_val, right_val) => {
if *left_val == *right_val {
let kind = $crate::panicking::AssertKind::Ne;
// The reborrows below are intentional. Without them, the stack slot for the
// borrow is initialized even before the values are compared, leading to a
// noticeable slow down.
$crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
}
}
}
};
}
/// Asserts that an expression matches any of the given patterns.
///
/// Like in a `match` expression, the pattern can be optionally followed by `if`
/// and a guard expression that has access to names bound by the pattern.
///
/// On panic, this macro will print the value of the expression with its
/// debug representation.
///
/// Like [`assert!`], this macro has a second form, where a custom
/// panic message can be provided.
///
/// # Examples
///
/// ```
/// #![feature(assert_matches)]
///
/// use std::assert_matches::assert_matches;
///
/// let a = 1u32.checked_add(2);
/// let b = 1u32.checked_sub(2);
/// assert_matches!(a, Some(_));
/// assert_matches!(b, None);
///
/// let c = Ok("abc".to_string());
/// assert_matches!(c, Ok(x) | Err(x) if x.len() < 100);
/// ```
#[unstable(feature = "assert_matches", issue = "82775")]
#[allow_internal_unstable(core_panic)]
#[rustc_macro_transparency = "semitransparent"]
pub macro assert_matches {
($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
match $left {
$( $pattern )|+ $( if $guard )? => {}
ref left_val => {
$crate::panicking::assert_matches_failed(
left_val,
$crate::stringify!($($pattern)|+ $(if $guard)?),
$crate::option::Option::None
);
}
}
},
($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => {
match $left {
$( $pattern )|+ $( if $guard )? => {}
ref left_val => {
$crate::panicking::assert_matches_failed(
left_val,
$crate::stringify!($($pattern)|+ $(if $guard)?),
$crate::option::Option::Some($crate::format_args!($($arg)+))
);
}
}
},
}
/// Asserts that a boolean expression is `true` at runtime.
///
/// This will invoke the [`panic!`] macro if the provided expression cannot be
/// evaluated to `true` at runtime.
///
/// Like [`assert!`], this macro also has a second version, where a custom panic
/// message can be provided.
///
/// # Uses
///
/// Unlike [`assert!`], `debug_assert!` statements are only enabled in non
/// optimized builds by default. An optimized build will not execute
/// `debug_assert!` statements unless `-C debug-assertions` is passed to the
/// compiler. This makes `debug_assert!` useful for checks that are too
/// expensive to be present in a release build but may be helpful during
/// development. The result of expanding `debug_assert!` is always type checked.
///
/// An unchecked assertion allows a program in an inconsistent state to keep
/// running, which might have unexpected consequences but does not introduce
/// unsafety as long as this only happens in safe code. The performance cost
/// of assertions, however, is not measurable in general. Replacing [`assert!`]
/// with `debug_assert!` is thus only encouraged after thorough profiling, and
/// more importantly, only in safe code!
///
/// # Examples
///
/// ```
/// // the panic message for these assertions is the stringified value of the
/// // expression given.
/// debug_assert!(true);
///
/// fn some_expensive_computation() -> bool { true } // a very simple function
/// debug_assert!(some_expensive_computation());
///
/// // assert with a custom message
/// let x = true;
/// debug_assert!(x, "x wasn't true!");
///
/// let a = 3; let b = 27;
/// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
/// ```
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_diagnostic_item = "debug_assert_macro"]
#[allow_internal_unstable(edition_panic)]
macro_rules! debug_assert {
($($arg:tt)*) => {
if $crate::cfg!(debug_assertions) {
$crate::assert!($($arg)*);
}
};
}
/// Asserts that two expressions are equal to each other.
///
/// On panic, this macro will print the values of the expressions with their
/// debug representations.
///
/// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non
/// optimized builds by default. An optimized build will not execute
/// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
/// compiler. This makes `debug_assert_eq!` useful for checks that are too
/// expensive to be present in a release build but may be helpful during
/// development. The result of expanding `debug_assert_eq!` is always type checked.
///
/// # Examples
///
/// ```
/// let a = 3;
/// let b = 1 + 2;
/// debug_assert_eq!(a, b);
/// ```
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "debug_assert_eq_macro")]
macro_rules! debug_assert_eq {
($($arg:tt)*) => {
if $crate::cfg!(debug_assertions) {
$crate::assert_eq!($($arg)*);
}
};
}
/// Asserts that two expressions are not equal to each other.
///
/// On panic, this macro will print the values of the expressions with their
/// debug representations.
///
/// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non
/// optimized builds by default. An optimized build will not execute
/// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the
/// compiler. This makes `debug_assert_ne!` useful for checks that are too
/// expensive to be present in a release build but may be helpful during
/// development. The result of expanding `debug_assert_ne!` is always type checked.
///
/// # Examples
///
/// ```
/// let a = 3;
/// let b = 2;
/// debug_assert_ne!(a, b);
/// ```
#[macro_export]
#[stable(feature = "assert_ne", since = "1.13.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "debug_assert_ne_macro")]
macro_rules! debug_assert_ne {
($($arg:tt)*) => {
if $crate::cfg!(debug_assertions) {
$crate::assert_ne!($($arg)*);
}
};
}
/// Asserts that an expression matches any of the given patterns.
///
/// Like in a `match` expression, the pattern can be optionally followed by `if`
/// and a guard expression that has access to names bound by the pattern.
///
/// On panic, this macro will print the value of the expression with its
/// debug representation.
///
/// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only
/// enabled in non optimized builds by default. An optimized build will not
/// execute `debug_assert_matches!` statements unless `-C debug-assertions` is
/// passed to the compiler. This makes `debug_assert_matches!` useful for
/// checks that are too expensive to be present in a release build but may be
/// helpful during development. The result of expanding `debug_assert_matches!`
/// is always type checked.
///
/// # Examples
///
/// ```
/// #![feature(assert_matches)]
///
/// use std::assert_matches::debug_assert_matches;
///
/// let a = 1u32.checked_add(2);
/// let b = 1u32.checked_sub(2);
/// debug_assert_matches!(a, Some(_));
/// debug_assert_matches!(b, None);
///
/// let c = Ok("abc".to_string());
/// debug_assert_matches!(c, Ok(x) | Err(x) if x.len() < 100);
/// ```
#[macro_export]
#[unstable(feature = "assert_matches", issue = "82775")]
#[allow_internal_unstable(assert_matches)]
#[rustc_macro_transparency = "semitransparent"]
pub macro debug_assert_matches($($arg:tt)*) {
if $crate::cfg!(debug_assertions) {
$crate::assert_matches::assert_matches!($($arg)*);
}
}
/// Returns whether the given expression matches any of the given patterns.
///
/// Like in a `match` expression, the pattern can be optionally followed by `if`
/// and a guard expression that has access to names bound by the pattern.
///
/// # Examples
///
/// ```
/// let foo = 'f';
/// assert!(matches!(foo, 'A'..='Z' | 'a'..='z'));
///
/// let bar = Some(4);
/// assert!(matches!(bar, Some(x) if x > 2));
/// ```
#[macro_export]
#[stable(feature = "matches_macro", since = "1.42.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "matches_macro")]
macro_rules! matches {
($expression:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
match $expression {
$( $pattern )|+ $( if $guard )? => true,
_ => false
}
};
}
/// Unwraps a result or propagates its error.
///
/// The [`?` operator][propagating-errors] was added to replace `try!`
/// and should be used instead. Furthermore, `try` is a reserved word
/// in Rust 2018, so if you must use it, you will need to use the
/// [raw-identifier syntax][ris]: `r#try`.
///
/// [propagating-errors]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
/// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html
///
/// `try!` matches the given [`Result`]. In case of the `Ok` variant, the
/// expression has the value of the wrapped value.
///
/// In case of the `Err` variant, it retrieves the inner error. `try!` then
/// performs conversion using `From`. This provides automatic conversion
/// between specialized errors and more general ones. The resulting
/// error is then immediately returned.
///
/// Because of the early return, `try!` can only be used in functions that
/// return [`Result`].
///
/// # Examples
///
/// ```
/// use std::io;
/// use std::fs::File;
/// use std::io::prelude::*;
///
/// enum MyError {
/// FileWriteError
/// }
///
/// impl From<io::Error> for MyError {
/// fn from(e: io::Error) -> MyError {
/// MyError::FileWriteError
/// }
/// }
///
/// // The preferred method of quick returning Errors
/// fn write_to_file_question() -> Result<(), MyError> {
/// let mut file = File::create("my_best_friends.txt")?;
/// file.write_all(b"This is a list of my best friends.")?;
/// Ok(())
/// }
///
/// // The previous method of quick returning Errors
/// fn write_to_file_using_try() -> Result<(), MyError> {
/// let mut file = r#try!(File::create("my_best_friends.txt"));
/// r#try!(file.write_all(b"This is a list of my best friends."));
/// Ok(())
/// }
///
/// // This is equivalent to:
/// fn write_to_file_using_match() -> Result<(), MyError> {
/// let mut file = r#try!(File::create("my_best_friends.txt"));
/// match file.write_all(b"This is a list of my best friends.") {
/// Ok(v) => v,
/// Err(e) => return Err(From::from(e)),
/// }
/// Ok(())
/// }
/// ```
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "1.39.0", note = "use the `?` operator instead")]
#[doc(alias = "?")]
macro_rules! r#try {
($expr:expr $(,)?) => {
match $expr {
$crate::result::Result::Ok(val) => val,
$crate::result::Result::Err(err) => {
return $crate::result::Result::Err($crate::convert::From::from(err));
}
}
};
}
/// Writes formatted data into a buffer.
///
/// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be
/// formatted according to the specified format string and the result will be passed to the writer.
/// The writer may be any value with a `write_fmt` method; generally this comes from an
/// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro
/// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an
/// [`io::Result`].
///
/// See [`std::fmt`] for more information on the format string syntax.
///
/// [`std::fmt`]: ../std/fmt/index.html
/// [`fmt::Write`]: crate::fmt::Write
/// [`io::Write`]: ../std/io/trait.Write.html
/// [`fmt::Result`]: crate::fmt::Result
/// [`io::Result`]: ../std/io/type.Result.html
///
/// # Examples
///
/// ```
/// use std::io::Write;
///
/// fn main() -> std::io::Result<()> {
/// let mut w = Vec::new();
/// write!(&mut w, "test")?;
/// write!(&mut w, "formatted {}", "arguments")?;
///
/// assert_eq!(w, b"testformatted arguments");
/// Ok(())
/// }
/// ```
///
/// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
/// implementing either, as objects do not typically implement both. However, the module must
/// avoid conflict between the trait names, such as by importing them as `_` or otherwise renaming
/// them:
///
/// ```
/// use std::fmt::Write as _;
/// use std::io::Write as _;
///
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut s = String::new();
/// let mut v = Vec::new();
///
/// write!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
/// write!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
/// assert_eq!(v, b"s = \"abc 123\"");
/// Ok(())
/// }
/// ```
///
/// If you also need the trait names themselves, such as to implement one or both on your types,
/// import the containing module and then name them with a prefix:
///
/// ```
/// # #![allow(unused_imports)]
/// use std::fmt::{self, Write as _};
/// use std::io::{self, Write as _};
///
/// struct Example;
///
/// impl fmt::Write for Example {
/// fn write_str(&mut self, _s: &str) -> core::fmt::Result {
/// unimplemented!();
/// }
/// }
/// ```
///
/// Note: This macro can be used in `no_std` setups as well.
/// In a `no_std` setup you are responsible for the implementation details of the components.
///
/// ```no_run
/// # extern crate core;
/// use core::fmt::Write;
///
/// struct Example;
///
/// impl Write for Example {
/// fn write_str(&mut self, _s: &str) -> core::fmt::Result {
/// unimplemented!();
/// }
/// }
///
/// let mut m = Example{};
/// write!(&mut m, "Hello World").expect("Not written");
/// ```
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "write_macro")]
macro_rules! write {
($dst:expr, $($arg:tt)*) => {
$dst.write_fmt($crate::format_args!($($arg)*))
};
}
/// Write formatted data into a buffer, with a newline appended.
///
/// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
/// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
///
/// For more information, see [`write!`]. For information on the format string syntax, see
/// [`std::fmt`].
///
/// [`std::fmt`]: ../std/fmt/index.html
///
/// # Examples
///
/// ```
/// use std::io::{Write, Result};
///
/// fn main() -> Result<()> {
/// let mut w = Vec::new();
/// writeln!(&mut w)?;
/// writeln!(&mut w, "test")?;
/// writeln!(&mut w, "formatted {}", "arguments")?;
///
/// assert_eq!(&w[..], "\ntest\nformatted arguments\n".as_bytes());
/// Ok(())
/// }
/// ```
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "writeln_macro")]
#[allow_internal_unstable(format_args_nl)]
macro_rules! writeln {
($dst:expr $(,)?) => {
$crate::write!($dst, "\n")
};
($dst:expr, $($arg:tt)*) => {
$dst.write_fmt($crate::format_args_nl!($($arg)*))
};
}
/// Indicates unreachable code.
///
/// This is useful any time that the compiler can't determine that some code is unreachable. For
/// example:
///
/// * Match arms with guard conditions.
/// * Loops that dynamically terminate.
/// * Iterators that dynamically terminate.
///
/// If the determination that the code is unreachable proves incorrect, the
/// program immediately terminates with a [`panic!`].
///
/// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which
/// will cause undefined behavior if the code is reached.
///
/// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked
///
/// # Panics
///
/// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a
/// fixed, specific message.
///
/// Like `panic!`, this macro has a second form for displaying custom values.
///
/// # Examples
///
/// Match arms:
///
/// ```
/// # #[allow(dead_code)]
/// fn foo(x: Option<i32>) {
/// match x {
/// Some(n) if n >= 0 => println!("Some(Non-negative)"),
/// Some(n) if n < 0 => println!("Some(Negative)"),
/// Some(_) => unreachable!(), // compile error if commented out
/// None => println!("None")
/// }
/// }
/// ```
///
/// Iterators:
///
/// ```
/// # #[allow(dead_code)]
/// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
/// for i in 0.. {
/// if 3*i < i { panic!("u32 overflow"); }
/// if x < 3*i { return i-1; }
/// }
/// unreachable!("The loop should always return");
/// }
/// ```
#[macro_export]
#[rustc_builtin_macro(unreachable)]
#[allow_internal_unstable(edition_panic)]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "unreachable_macro")]
macro_rules! unreachable {
// Expands to either `$crate::panic::unreachable_2015` or `$crate::panic::unreachable_2021`
// depending on the edition of the caller.
($($arg:tt)*) => {
/* compiler built-in */
};
}
/// Indicates unimplemented code by panicking with a message of "not implemented".
///
/// This allows your code to type-check, which is useful if you are prototyping or
/// implementing a trait that requires multiple methods which you don't plan to use all of.
///
/// The difference between `unimplemented!` and [`todo!`] is that while `todo!`
/// conveys an intent of implementing the functionality later and the message is "not yet
/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
/// Also some IDEs will mark `todo!`s.
///
/// # Panics
///
/// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a
/// fixed, specific message.
///
/// Like `panic!`, this macro has a second form for displaying custom values.
///
/// [`todo!`]: crate::todo
///
/// # Examples
///
/// Say we have a trait `Foo`:
///
/// ```
/// trait Foo {
/// fn bar(&self) -> u8;
/// fn baz(&self);
/// fn qux(&self) -> Result<u64, ()>;
/// }
/// ```
///
/// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense
/// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined
/// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions
/// to allow our code to compile.
///
/// We still want to have our program stop running if the unimplemented methods are
/// reached.
///
/// ```
/// # trait Foo {
/// # fn bar(&self) -> u8;
/// # fn baz(&self);
/// # fn qux(&self) -> Result<u64, ()>;
/// # }
/// struct MyStruct;
///
/// impl Foo for MyStruct {
/// fn bar(&self) -> u8 {
/// 1 + 1
/// }
///
/// fn baz(&self) {
/// // It makes no sense to `baz` a `MyStruct`, so we have no logic here
/// // at all.
/// // This will display "thread 'main' panicked at 'not implemented'".
/// unimplemented!();
/// }
///
/// fn qux(&self) -> Result<u64, ()> {
/// // We have some logic here,
/// // We can add a message to unimplemented! to display our omission.
/// // This will display:
/// // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'".
/// unimplemented!("MyStruct isn't quxable");
/// }
/// }
///
/// fn main() {
/// let s = MyStruct;
/// s.bar();
/// }
/// ```
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "unimplemented_macro")]
#[allow_internal_unstable(core_panic)]
macro_rules! unimplemented {
() => {
$crate::panicking::panic("not implemented")
};
($($arg:tt)+) => {
$crate::panic!("not implemented: {}", $crate::format_args!($($arg)+))
};
}
/// Indicates unfinished code.
///
/// This can be useful if you are prototyping and are just looking to have your
/// code typecheck.
///
/// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys
/// an intent of implementing the functionality later and the message is "not yet
/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
/// Also some IDEs will mark `todo!`s.
///
/// # Panics
///
/// This will always [`panic!`].
///
/// # Examples
///
/// Here's an example of some in-progress code. We have a trait `Foo`:
///
/// ```
/// trait Foo {
/// fn bar(&self);
/// fn baz(&self);
/// }
/// ```
///
/// We want to implement `Foo` on one of our types, but we also want to work on
/// just `bar()` first. In order for our code to compile, we need to implement
/// `baz()`, so we can use `todo!`:
///
/// ```
/// # trait Foo {
/// # fn bar(&self);
/// # fn baz(&self);
/// # }
/// struct MyStruct;
///
/// impl Foo for MyStruct {
/// fn bar(&self) {
/// // implementation goes here
/// }
///
/// fn baz(&self) {
/// // let's not worry about implementing baz() for now
/// todo!();
/// }
/// }
///
/// fn main() {
/// let s = MyStruct;
/// s.bar();
///
/// // we aren't even using baz(), so this is fine.
/// }
/// ```
#[macro_export]
#[stable(feature = "todo_macro", since = "1.40.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "todo_macro")]
#[allow_internal_unstable(core_panic)]
macro_rules! todo {
() => {
$crate::panicking::panic("not yet implemented")
};
($($arg:tt)+) => {
$crate::panic!("not yet implemented: {}", $crate::format_args!($($arg)+))
};
}
/// Definitions of built-in macros.
///
/// Most of the macro properties (stability, visibility, etc.) are taken from the source code here,
/// with exception of expansion functions transforming macro inputs into outputs,
/// those functions are provided by the compiler.
pub(crate) mod builtin {
/// Causes compilation to fail with the given error message when encountered.
///
/// This macro should be used when a crate uses a conditional compilation strategy to provide
/// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`],
/// but emits an error during *compilation* rather than at *runtime*.
///
/// # Examples
///
/// Two such examples are macros and `#[cfg]` environments.
///
/// Emit a better compiler error if a macro is passed invalid values. Without the final branch,
/// the compiler would still emit an error, but the error's message would not mention the two
/// valid values.
///
/// ```compile_fail
/// macro_rules! give_me_foo_or_bar {
/// (foo) => {};
/// (bar) => {};
/// ($x:ident) => {
/// compile_error!("This macro only accepts `foo` or `bar`");
/// }
/// }
///
/// give_me_foo_or_bar!(neither);
/// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`"
/// ```
///
/// Emit a compiler error if one of a number of features isn't available.
///
/// ```compile_fail
/// #[cfg(not(any(feature = "foo", feature = "bar")))]
/// compile_error!("Either feature \"foo\" or \"bar\" must be enabled for this crate.");
/// ```
#[stable(feature = "compile_error_macro", since = "1.20.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! compile_error {
($msg:expr $(,)?) => {{ /* compiler built-in */ }};
}
/// Constructs parameters for the other string-formatting macros.
///
/// This macro functions by taking a formatting string literal containing
/// `{}` for each additional argument passed. `format_args!` prepares the
/// additional parameters to ensure the output can be interpreted as a string
/// and canonicalizes the arguments into a single type. Any value that implements
/// the [`Display`] trait can be passed to `format_args!`, as can any
/// [`Debug`] implementation be passed to a `{:?}` within the formatting string.
///
/// This macro produces a value of type [`fmt::Arguments`]. This value can be
/// passed to the macros within [`std::fmt`] for performing useful redirection.
/// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are
/// proxied through this one. `format_args!`, unlike its derived macros, avoids
/// heap allocations.
///
/// You can use the [`fmt::Arguments`] value that `format_args!` returns
/// in `Debug` and `Display` contexts as seen below. The example also shows
/// that `Debug` and `Display` format to the same thing: the interpolated
/// format string in `format_args!`.
///
/// ```rust
/// let debug = format!("{:?}", format_args!("{} foo {:?}", 1, 2));
/// let display = format!("{}", format_args!("{} foo {:?}", 1, 2));
/// assert_eq!("1 foo 2", display);
/// assert_eq!(display, debug);
/// ```
///
/// For more information, see the documentation in [`std::fmt`].
///
/// [`Display`]: crate::fmt::Display
/// [`Debug`]: crate::fmt::Debug
/// [`fmt::Arguments`]: crate::fmt::Arguments
/// [`std::fmt`]: ../std/fmt/index.html
/// [`format!`]: ../std/macro.format.html
/// [`println!`]: ../std/macro.println.html
///
/// # Examples
///
/// ```
/// use std::fmt;
///
/// let s = fmt::format(format_args!("hello {}", "world"));
/// assert_eq!(s, format!("hello {}", "world"));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "format_args_macro")]
#[allow_internal_unsafe]
#[allow_internal_unstable(fmt_internals)]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! format_args {
($fmt:expr) => {{ /* compiler built-in */ }};
($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
}
/// Same as [`format_args`], but can be used in some const contexts.
///
/// This macro is used by the panic macros for the `const_panic` feature.
///
/// This macro will be removed once `format_args` is allowed in const contexts.
#[unstable(feature = "const_format_args", issue = "none")]
#[allow_internal_unstable(fmt_internals, const_fmt_arguments_new)]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! const_format_args {
($fmt:expr) => {{ /* compiler built-in */ }};
($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
}
/// Same as [`format_args`], but adds a newline in the end.
#[unstable(
feature = "format_args_nl",
issue = "none",
reason = "`format_args_nl` is only for internal \
language use and is subject to change"
)]
#[allow_internal_unstable(fmt_internals)]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! format_args_nl {
($fmt:expr) => {{ /* compiler built-in */ }};
($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
}
/// Inspects an environment variable at compile time.
///
/// This macro will expand to the value of the named environment variable at
/// compile time, yielding an expression of type `&'static str`. Use
/// [`std::env::var`] instead if you want to read the value at runtime.
///
/// [`std::env::var`]: ../std/env/fn.var.html
///
/// If the environment variable is not defined, then a compilation error
/// will be emitted. To not emit a compile error, use the [`option_env!`]
/// macro instead.
///
/// # Examples
///
/// ```
/// let path: &'static str = env!("PATH");
/// println!("the $PATH variable at the time of compiling was: {path}");
/// ```
///
/// You can customize the error message by passing a string as the second
/// parameter:
///
/// ```compile_fail
/// let doc: &'static str = env!("documentation", "what's that?!");
/// ```
///
/// If the `documentation` environment variable is not defined, you'll get
/// the following error:
///
/// ```text
/// error: what's that?!
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! env {
($name:expr $(,)?) => {{ /* compiler built-in */ }};
($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }};
}
/// Optionally inspects an environment variable at compile time.
///
/// If the named environment variable is present at compile time, this will
/// expand into an expression of type `Option<&'static str>` whose value is
/// `Some` of the value of the environment variable. If the environment
/// variable is not present, then this will expand to `None`. See
/// [`Option<T>`][Option] for more information on this type. Use
/// [`std::env::var`] instead if you want to read the value at runtime.
///
/// [`std::env::var`]: ../std/env/fn.var.html
///
/// A compile time error is never emitted when using this macro regardless
/// of whether the environment variable is present or not.
///
/// # Examples
///
/// ```
/// let key: Option<&'static str> = option_env!("SECRET_KEY");
/// println!("the secret key might be: {key:?}");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! option_env {
($name:expr $(,)?) => {{ /* compiler built-in */ }};
}
/// Concatenates identifiers into one identifier.
///
/// This macro takes any number of comma-separated identifiers, and
/// concatenates them all into one, yielding an expression which is a new
/// identifier. Note that hygiene makes it such that this macro cannot
/// capture local variables. Also, as a general rule, macros are only
/// allowed in item, statement or expression position. That means while
/// you may use this macro for referring to existing variables, functions or
/// modules etc, you cannot define a new one with it.
///
/// # Examples
///
/// ```
/// #![feature(concat_idents)]
///
/// # fn main() {
/// fn foobar() -> u32 { 23 }
///
/// let f = concat_idents!(foo, bar);
/// println!("{}", f());
///
/// // fn concat_idents!(new, fun, name) { } // not usable in this way!
/// # }
/// ```
#[unstable(
feature = "concat_idents",
issue = "29599",
reason = "`concat_idents` is not stable enough for use and is subject to change"
)]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! concat_idents {
($($e:ident),+ $(,)?) => {{ /* compiler built-in */ }};
}
/// Concatenates literals into a byte slice.
///
/// This macro takes any number of comma-separated literals, and concatenates them all into
/// one, yielding an expression of type `&[u8; _]`, which represents all of the literals
/// concatenated left-to-right. The literals passed can be any combination of:
///
/// - byte literals (`b'r'`)
/// - byte strings (`b"Rust"`)
/// - arrays of bytes/numbers (`[b'A', 66, b'C']`)
///
/// # Examples
///
/// ```
/// #![feature(concat_bytes)]
///
/// # fn main() {
/// let s: &[u8; 6] = concat_bytes!(b'A', b"BC", [68, b'E', 70]);
/// assert_eq!(s, b"ABCDEF");
/// # }
/// ```
#[unstable(feature = "concat_bytes", issue = "87555")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! concat_bytes {
($($e:literal),+ $(,)?) => {{ /* compiler built-in */ }};
}
/// Concatenates literals into a static string slice.
///
/// This macro takes any number of comma-separated literals, yielding an
/// expression of type `&'static str` which represents all of the literals
/// concatenated left-to-right.
///
/// Integer and floating point literals are stringified in order to be
/// concatenated.
///
/// # Examples
///
/// ```
/// let s = concat!("test", 10, 'b', true);
/// assert_eq!(s, "test10btrue");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! concat {
($($e:expr),* $(,)?) => {{ /* compiler built-in */ }};
}
/// Expands to the line number on which it was invoked.
///
/// With [`column!`] and [`file!`], these macros provide debugging information for
/// developers about the location within the source.
///
/// The expanded expression has type `u32` and is 1-based, so the first line
/// in each file evaluates to 1, the second to 2, etc. This is consistent
/// with error messages by common compilers or popular editors.
/// The returned line is *not necessarily* the line of the `line!` invocation itself,
/// but rather the first macro invocation leading up to the invocation
/// of the `line!` macro.
///
/// # Examples
///
/// ```
/// let current_line = line!();
/// println!("defined on line: {current_line}");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! line {
() => {
/* compiler built-in */
};
}
/// Expands to the column number at which it was invoked.
///
/// With [`line!`] and [`file!`], these macros provide debugging information for
/// developers about the location within the source.
///
/// The expanded expression has type `u32` and is 1-based, so the first column
/// in each line evaluates to 1, the second to 2, etc. This is consistent
/// with error messages by common compilers or popular editors.
/// The returned column is *not necessarily* the line of the `column!` invocation itself,
/// but rather the first macro invocation leading up to the invocation
/// of the `column!` macro.
///
/// # Examples
///
/// ```
/// let current_col = column!();
/// println!("defined on column: {current_col}");
/// ```
///
/// `column!` counts Unicode code points, not bytes or graphemes. As a result, the first two
/// invocations return the same value, but the third does not.
///
/// ```
/// let a = ("foobar", column!()).1;
/// let b = ("人之初性本善", column!()).1;
/// let c = ("f̅o̅o̅b̅a̅r̅", column!()).1; // Uses combining overline (U+0305)
///
/// assert_eq!(a, b);
/// assert_ne!(b, c);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! column {
() => {
/* compiler built-in */
};
}
/// Expands to the file name in which it was invoked.
///
/// With [`line!`] and [`column!`], these macros provide debugging information for
/// developers about the location within the source.
///
/// The expanded expression has type `&'static str`, and the returned file
/// is not the invocation of the `file!` macro itself, but rather the
/// first macro invocation leading up to the invocation of the `file!`
/// macro.
///
/// # Examples
///
/// ```
/// let this_file = file!();
/// println!("defined in file: {this_file}");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! file {
() => {
/* compiler built-in */
};
}
/// Stringifies its arguments.
///
/// This macro will yield an expression of type `&'static str` which is the
/// stringification of all the tokens passed to the macro. No restrictions
/// are placed on the syntax of the macro invocation itself.
///
/// Note that the expanded results of the input tokens may change in the
/// future. You should be careful if you rely on the output.
///
/// # Examples
///
/// ```
/// let one_plus_one = stringify!(1 + 1);
/// assert_eq!(one_plus_one, "1 + 1");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! stringify {
($($t:tt)*) => {
/* compiler built-in */
};
}
/// Includes a UTF-8 encoded file as a string.
///
/// The file is located relative to the current file (similarly to how
/// modules are found). The provided path is interpreted in a platform-specific
/// way at compile time. So, for instance, an invocation with a Windows path
/// containing backslashes `\` would not compile correctly on Unix.
///
/// This macro will yield an expression of type `&'static str` which is the
/// contents of the file.
///
/// # Examples
///
/// Assume there are two files in the same directory with the following
/// contents:
///
/// File 'spanish.in':
///
/// ```text
/// adiós
/// ```
///
/// File 'main.rs':
///
/// ```ignore (cannot-doctest-external-file-dependency)
/// fn main() {
/// let my_str = include_str!("spanish.in");
/// assert_eq!(my_str, "adiós\n");
/// print!("{my_str}");
/// }
/// ```
///
/// Compiling 'main.rs' and running the resulting binary will print "adiós".
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
#[cfg_attr(not(test), rustc_diagnostic_item = "include_str_macro")]
macro_rules! include_str {
($file:expr $(,)?) => {{ /* compiler built-in */ }};
}
/// Includes a file as a reference to a byte array.
///
/// The file is located relative to the current file (similarly to how
/// modules are found). The provided path is interpreted in a platform-specific
/// way at compile time. So, for instance, an invocation with a Windows path
/// containing backslashes `\` would not compile correctly on Unix.
///
/// This macro will yield an expression of type `&'static [u8; N]` which is
/// the contents of the file.
///
/// # Examples
///
/// Assume there are two files in the same directory with the following
/// contents:
///
/// File 'spanish.in':
///
/// ```text
/// adiós
/// ```
///
/// File 'main.rs':
///
/// ```ignore (cannot-doctest-external-file-dependency)
/// fn main() {
/// let bytes = include_bytes!("spanish.in");
/// assert_eq!(bytes, b"adi\xc3\xb3s\n");
/// print!("{}", String::from_utf8_lossy(bytes));
/// }
/// ```
///
/// Compiling 'main.rs' and running the resulting binary will print "adiós".
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
#[cfg_attr(not(test), rustc_diagnostic_item = "include_bytes_macro")]
macro_rules! include_bytes {
($file:expr $(,)?) => {{ /* compiler built-in */ }};
}
/// Expands to a string that represents the current module path.
///
/// The current module path can be thought of as the hierarchy of modules
/// leading back up to the crate root. The first component of the path
/// returned is the name of the crate currently being compiled.
///
/// # Examples
///
/// ```
/// mod test {
/// pub fn foo() {
/// assert!(module_path!().ends_with("test"));
/// }
/// }
///
/// test::foo();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! module_path {
() => {
/* compiler built-in */
};
}
/// Evaluates boolean combinations of configuration flags at compile-time.
///
/// In addition to the `#[cfg]` attribute, this macro is provided to allow
/// boolean expression evaluation of configuration flags. This frequently
/// leads to less duplicated code.
///
/// The syntax given to this macro is the same syntax as the [`cfg`]
/// attribute.
///
/// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For
/// example, all blocks in an if/else expression need to be valid when `cfg!` is used for
/// the condition, regardless of what `cfg!` is evaluating.
///
/// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute
///
/// # Examples
///
/// ```
/// let my_directory = if cfg!(windows) {
/// "windows-specific-directory"
/// } else {
/// "unix-directory"
/// };
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! cfg {
($($cfg:tt)*) => {
/* compiler built-in */
};
}
/// Parses a file as an expression or an item according to the context.
///
/// The file is located relative to the current file (similarly to how
/// modules are found). The provided path is interpreted in a platform-specific
/// way at compile time. So, for instance, an invocation with a Windows path
/// containing backslashes `\` would not compile correctly on Unix.
///
/// Using this macro is often a bad idea, because if the file is
/// parsed as an expression, it is going to be placed in the
/// surrounding code unhygienically. This could result in variables
/// or functions being different from what the file expected if
/// there are variables or functions that have the same name in
/// the current file.
///
/// # Examples
///
/// Assume there are two files in the same directory with the following
/// contents:
///
/// File 'monkeys.in':
///
/// ```ignore (only-for-syntax-highlight)
/// ['🙈', '🙊', '🙉']
/// .iter()
/// .cycle()
/// .take(6)
/// .collect::<String>()
/// ```
///
/// File 'main.rs':
///
/// ```ignore (cannot-doctest-external-file-dependency)
/// fn main() {
/// let my_string = include!("monkeys.in");
/// assert_eq!("🙈🙊🙉🙈🙊🙉", my_string);
/// println!("{my_string}");
/// }
/// ```
///
/// Compiling 'main.rs' and running the resulting binary will print
/// "🙈🙊🙉🙈🙊🙉".
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! include {
($file:expr $(,)?) => {{ /* compiler built-in */ }};
}
/// Asserts that a boolean expression is `true` at runtime.
///
/// This will invoke the [`panic!`] macro if the provided expression cannot be
/// evaluated to `true` at runtime.
///
/// # Uses
///
/// Assertions are always checked in both debug and release builds, and cannot
/// be disabled. See [`debug_assert!`] for assertions that are not enabled in
/// release builds by default.
///
/// Unsafe code may rely on `assert!` to enforce run-time invariants that, if
/// violated could lead to unsafety.
///
/// Other use-cases of `assert!` include testing and enforcing run-time
/// invariants in safe code (whose violation cannot result in unsafety).
///
/// # Custom Messages
///
/// This macro has a second form, where a custom panic message can
/// be provided with or without arguments for formatting. See [`std::fmt`]
/// for syntax for this form. Expressions used as format arguments will only
/// be evaluated if the assertion fails.
///
/// [`std::fmt`]: ../std/fmt/index.html
///
/// # Examples
///
/// ```
/// // the panic message for these assertions is the stringified value of the
/// // expression given.
/// assert!(true);
///
/// fn some_computation() -> bool { true } // a very simple function
///
/// assert!(some_computation());
///
/// // assert with a custom message
/// let x = true;
/// assert!(x, "x wasn't true!");
///
/// let a = 3; let b = 27;
/// assert!(a + b == 30, "a = {}, b = {}", a, b);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
#[macro_export]
#[rustc_diagnostic_item = "assert_macro"]
#[allow_internal_unstable(core_panic, edition_panic)]
macro_rules! assert {
($cond:expr $(,)?) => {{ /* compiler built-in */ }};
($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }};
}
/// Prints passed tokens into the standard output.
#[unstable(
feature = "log_syntax",
issue = "29598",
reason = "`log_syntax!` is not stable enough for use and is subject to change"
)]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! log_syntax {
($($arg:tt)*) => {
/* compiler built-in */
};
}
/// Enables or disables tracing functionality used for debugging other macros.
#[unstable(
feature = "trace_macros",
issue = "29598",
reason = "`trace_macros` is not stable enough for use and is subject to change"
)]
#[rustc_builtin_macro]
#[macro_export]
macro_rules! trace_macros {
(true) => {{ /* compiler built-in */ }};
(false) => {{ /* compiler built-in */ }};
}
/// Attribute macro used to apply derive macros.
///
/// See [the reference] for more info.
///
/// [the reference]: ../../../reference/attributes/derive.html
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_builtin_macro]
pub macro derive($item:item) {
/* compiler built-in */
}
/// Attribute macro used to apply derive macros for implementing traits
/// in a const context.
///
/// See [the reference] for more info.
///
/// [the reference]: ../../../reference/attributes/derive.html
#[unstable(feature = "derive_const", issue = "none")]
#[rustc_builtin_macro]
#[cfg(not(bootstrap))]
pub macro derive_const($item:item) {
/* compiler built-in */
}
/// Attribute macro applied to a function to turn it into a unit test.
///
/// See [the reference] for more info.
///
/// [the reference]: ../../../reference/attributes/testing.html#the-test-attribute
#[stable(feature = "rust1", since = "1.0.0")]
#[allow_internal_unstable(test, rustc_attrs)]
#[rustc_builtin_macro]
pub macro test($item:item) {
/* compiler built-in */
}
/// Attribute macro applied to a function to turn it into a benchmark test.
#[unstable(
feature = "test",
issue = "50297",
soft,
reason = "`bench` is a part of custom test frameworks which are unstable"
)]
#[allow_internal_unstable(test, rustc_attrs)]
#[rustc_builtin_macro]
pub macro bench($item:item) {
/* compiler built-in */
}
/// An implementation detail of the `#[test]` and `#[bench]` macros.
#[unstable(
feature = "custom_test_frameworks",
issue = "50297",
reason = "custom test frameworks are an unstable feature"
)]
#[allow_internal_unstable(test, rustc_attrs)]
#[rustc_builtin_macro]
pub macro test_case($item:item) {
/* compiler built-in */
}
/// Attribute macro applied to a static to register it as a global allocator.
///
/// See also [`std::alloc::GlobalAlloc`](../../../std/alloc/trait.GlobalAlloc.html).
#[stable(feature = "global_allocator", since = "1.28.0")]
#[allow_internal_unstable(rustc_attrs)]
#[rustc_builtin_macro]
pub macro global_allocator($item:item) {
/* compiler built-in */
}
/// Attribute macro applied to a function to register it as a handler for allocation failure.
///
/// See also [`std::alloc::handle_alloc_error`](../../../std/alloc/fn.handle_alloc_error.html).
#[cfg(not(bootstrap))]
#[unstable(feature = "alloc_error_handler", issue = "51540")]
#[allow_internal_unstable(rustc_attrs)]
#[rustc_builtin_macro]
pub macro alloc_error_handler($item:item) {
/* compiler built-in */
}
/// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise.
#[unstable(
feature = "cfg_accessible",
issue = "64797",
reason = "`cfg_accessible` is not fully implemented"
)]
#[rustc_builtin_macro]
pub macro cfg_accessible($item:item) {
/* compiler built-in */
}
/// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to.
#[unstable(
feature = "cfg_eval",
issue = "82679",
reason = "`cfg_eval` is a recently implemented feature"
)]
#[rustc_builtin_macro]
pub macro cfg_eval($($tt:tt)*) {
/* compiler built-in */
}
/// Unstable placeholder for type ascription.
#[rustc_builtin_macro]
#[unstable(
feature = "type_ascription",
issue = "23416",
reason = "placeholder syntax for type ascription"
)]
#[cfg(not(bootstrap))]
pub macro type_ascribe($expr:expr, $ty:ty) {
/* compiler built-in */
}
/// Unstable implementation detail of the `rustc` compiler, do not use.
#[rustc_builtin_macro]
#[stable(feature = "rust1", since = "1.0.0")]
#[allow_internal_unstable(core_intrinsics, libstd_sys_internals, rt)]
#[deprecated(since = "1.52.0", note = "rustc-serialize is deprecated and no longer supported")]
#[doc(hidden)] // While technically stable, using it is unstable, and deprecated. Hide it.
pub macro RustcDecodable($item:item) {
/* compiler built-in */
}
/// Unstable implementation detail of the `rustc` compiler, do not use.
#[rustc_builtin_macro]
#[stable(feature = "rust1", since = "1.0.0")]
#[allow_internal_unstable(core_intrinsics, rt)]
#[deprecated(since = "1.52.0", note = "rustc-serialize is deprecated and no longer supported")]
#[doc(hidden)] // While technically stable, using it is unstable, and deprecated. Hide it.
pub macro RustcEncodable($item:item) {
/* compiler built-in */
}
}