blob: d29ae35614c1c3b1976a0a789932ee4d280d65af [file] [log] [blame]
use crate::fmt;
use crate::hash::Hash;
/// An unbounded range (`..`).
///
/// `RangeFull` is primarily used as a [slicing index], its shorthand is `..`.
/// It cannot serve as an [`Iterator`] because it doesn't have a starting point.
///
/// # Examples
///
/// The `..` syntax is a `RangeFull`:
///
/// ```
/// assert_eq!((..), std::ops::RangeFull);
/// ```
///
/// It does not have an [`IntoIterator`] implementation, so you can't use it in
/// a `for` loop directly. This won't compile:
///
/// ```compile_fail,E0277
/// for i in .. {
/// // ...
/// }
/// ```
///
/// Used as a [slicing index], `RangeFull` produces the full array as a slice.
///
/// ```
/// let arr = [0, 1, 2, 3, 4];
/// assert_eq!(arr[ .. ], [0, 1, 2, 3, 4]); // This is the `RangeFull`
/// assert_eq!(arr[ .. 3], [0, 1, 2 ]);
/// assert_eq!(arr[ ..=3], [0, 1, 2, 3 ]);
/// assert_eq!(arr[1.. ], [ 1, 2, 3, 4]);
/// assert_eq!(arr[1.. 3], [ 1, 2 ]);
/// assert_eq!(arr[1..=3], [ 1, 2, 3 ]);
/// ```
///
/// [slicing index]: crate::slice::SliceIndex
#[lang = "RangeFull"]
#[doc(alias = "..")]
#[derive(Copy, Clone, Default, PartialEq, Eq, Hash)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct RangeFull;
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for RangeFull {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "..")
}
}
/// A (half-open) range bounded inclusively below and exclusively above
/// (`start..end`).
///
/// The range `start..end` contains all values with `start <= x < end`.
/// It is empty if `start >= end`.
///
/// # Examples
///
/// The `start..end` syntax is a `Range`:
///
/// ```
/// assert_eq!((3..5), std::ops::Range { start: 3, end: 5 });
/// assert_eq!(3 + 4 + 5, (3..6).sum());
/// ```
///
/// ```
/// let arr = [0, 1, 2, 3, 4];
/// assert_eq!(arr[ .. ], [0, 1, 2, 3, 4]);
/// assert_eq!(arr[ .. 3], [0, 1, 2 ]);
/// assert_eq!(arr[ ..=3], [0, 1, 2, 3 ]);
/// assert_eq!(arr[1.. ], [ 1, 2, 3, 4]);
/// assert_eq!(arr[1.. 3], [ 1, 2 ]); // This is a `Range`
/// assert_eq!(arr[1..=3], [ 1, 2, 3 ]);
/// ```
#[lang = "Range"]
#[doc(alias = "..")]
#[derive(Clone, Default, PartialEq, Eq, Hash)] // not Copy -- see #27186
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Range<Idx> {
/// The lower bound of the range (inclusive).
#[stable(feature = "rust1", since = "1.0.0")]
pub start: Idx,
/// The upper bound of the range (exclusive).
#[stable(feature = "rust1", since = "1.0.0")]
pub end: Idx,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<Idx: fmt::Debug> fmt::Debug for Range<Idx> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
self.start.fmt(fmt)?;
write!(fmt, "..")?;
self.end.fmt(fmt)?;
Ok(())
}
}
impl<Idx: PartialOrd<Idx>> Range<Idx> {
/// Returns `true` if `item` is contained in the range.
///
/// # Examples
///
/// ```
/// assert!(!(3..5).contains(&2));
/// assert!( (3..5).contains(&3));
/// assert!( (3..5).contains(&4));
/// assert!(!(3..5).contains(&5));
///
/// assert!(!(3..3).contains(&3));
/// assert!(!(3..2).contains(&3));
///
/// assert!( (0.0..1.0).contains(&0.5));
/// assert!(!(0.0..1.0).contains(&f32::NAN));
/// assert!(!(0.0..f32::NAN).contains(&0.5));
/// assert!(!(f32::NAN..1.0).contains(&0.5));
/// ```
#[stable(feature = "range_contains", since = "1.35.0")]
pub fn contains<U>(&self, item: &U) -> bool
where
Idx: PartialOrd<U>,
U: ?Sized + PartialOrd<Idx>,
{
<Self as RangeBounds<Idx>>::contains(self, item)
}
/// Returns `true` if the range contains no items.
///
/// # Examples
///
/// ```
/// assert!(!(3..5).is_empty());
/// assert!( (3..3).is_empty());
/// assert!( (3..2).is_empty());
/// ```
///
/// The range is empty if either side is incomparable:
///
/// ```
/// assert!(!(3.0..5.0).is_empty());
/// assert!( (3.0..f32::NAN).is_empty());
/// assert!( (f32::NAN..5.0).is_empty());
/// ```
#[stable(feature = "range_is_empty", since = "1.47.0")]
pub fn is_empty(&self) -> bool {
!(self.start < self.end)
}
}
/// A range only bounded inclusively below (`start..`).
///
/// The `RangeFrom` `start..` contains all values with `x >= start`.
///
/// *Note*: Overflow in the [`Iterator`] implementation (when the contained
/// data type reaches its numerical limit) is allowed to panic, wrap, or
/// saturate. This behavior is defined by the implementation of the [`Step`]
/// trait. For primitive integers, this follows the normal rules, and respects
/// the overflow checks profile (panic in debug, wrap in release). Note also
/// that overflow happens earlier than you might assume: the overflow happens
/// in the call to `next` that yields the maximum value, as the range must be
/// set to a state to yield the next value.
///
/// [`Step`]: crate::iter::Step
///
/// # Examples
///
/// The `start..` syntax is a `RangeFrom`:
///
/// ```
/// assert_eq!((2..), std::ops::RangeFrom { start: 2 });
/// assert_eq!(2 + 3 + 4, (2..).take(3).sum());
/// ```
///
/// ```
/// let arr = [0, 1, 2, 3, 4];
/// assert_eq!(arr[ .. ], [0, 1, 2, 3, 4]);
/// assert_eq!(arr[ .. 3], [0, 1, 2 ]);
/// assert_eq!(arr[ ..=3], [0, 1, 2, 3 ]);
/// assert_eq!(arr[1.. ], [ 1, 2, 3, 4]); // This is a `RangeFrom`
/// assert_eq!(arr[1.. 3], [ 1, 2 ]);
/// assert_eq!(arr[1..=3], [ 1, 2, 3 ]);
/// ```
#[lang = "RangeFrom"]
#[doc(alias = "..")]
#[derive(Clone, PartialEq, Eq, Hash)] // not Copy -- see #27186
#[stable(feature = "rust1", since = "1.0.0")]
pub struct RangeFrom<Idx> {
/// The lower bound of the range (inclusive).
#[stable(feature = "rust1", since = "1.0.0")]
pub start: Idx,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<Idx: fmt::Debug> fmt::Debug for RangeFrom<Idx> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
self.start.fmt(fmt)?;
write!(fmt, "..")?;
Ok(())
}
}
impl<Idx: PartialOrd<Idx>> RangeFrom<Idx> {
/// Returns `true` if `item` is contained in the range.
///
/// # Examples
///
/// ```
/// assert!(!(3..).contains(&2));
/// assert!( (3..).contains(&3));
/// assert!( (3..).contains(&1_000_000_000));
///
/// assert!( (0.0..).contains(&0.5));
/// assert!(!(0.0..).contains(&f32::NAN));
/// assert!(!(f32::NAN..).contains(&0.5));
/// ```
#[stable(feature = "range_contains", since = "1.35.0")]
pub fn contains<U>(&self, item: &U) -> bool
where
Idx: PartialOrd<U>,
U: ?Sized + PartialOrd<Idx>,
{
<Self as RangeBounds<Idx>>::contains(self, item)
}
}
/// A range only bounded exclusively above (`..end`).
///
/// The `RangeTo` `..end` contains all values with `x < end`.
/// It cannot serve as an [`Iterator`] because it doesn't have a starting point.
///
/// # Examples
///
/// The `..end` syntax is a `RangeTo`:
///
/// ```
/// assert_eq!((..5), std::ops::RangeTo { end: 5 });
/// ```
///
/// It does not have an [`IntoIterator`] implementation, so you can't use it in
/// a `for` loop directly. This won't compile:
///
/// ```compile_fail,E0277
/// // error[E0277]: the trait bound `std::ops::RangeTo<{integer}>:
/// // std::iter::Iterator` is not satisfied
/// for i in ..5 {
/// // ...
/// }
/// ```
///
/// When used as a [slicing index], `RangeTo` produces a slice of all array
/// elements before the index indicated by `end`.
///
/// ```
/// let arr = [0, 1, 2, 3, 4];
/// assert_eq!(arr[ .. ], [0, 1, 2, 3, 4]);
/// assert_eq!(arr[ .. 3], [0, 1, 2 ]); // This is a `RangeTo`
/// assert_eq!(arr[ ..=3], [0, 1, 2, 3 ]);
/// assert_eq!(arr[1.. ], [ 1, 2, 3, 4]);
/// assert_eq!(arr[1.. 3], [ 1, 2 ]);
/// assert_eq!(arr[1..=3], [ 1, 2, 3 ]);
/// ```
///
/// [slicing index]: crate::slice::SliceIndex
#[lang = "RangeTo"]
#[doc(alias = "..")]
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct RangeTo<Idx> {
/// The upper bound of the range (exclusive).
#[stable(feature = "rust1", since = "1.0.0")]
pub end: Idx,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<Idx: fmt::Debug> fmt::Debug for RangeTo<Idx> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "..")?;
self.end.fmt(fmt)?;
Ok(())
}
}
impl<Idx: PartialOrd<Idx>> RangeTo<Idx> {
/// Returns `true` if `item` is contained in the range.
///
/// # Examples
///
/// ```
/// assert!( (..5).contains(&-1_000_000_000));
/// assert!( (..5).contains(&4));
/// assert!(!(..5).contains(&5));
///
/// assert!( (..1.0).contains(&0.5));
/// assert!(!(..1.0).contains(&f32::NAN));
/// assert!(!(..f32::NAN).contains(&0.5));
/// ```
#[stable(feature = "range_contains", since = "1.35.0")]
pub fn contains<U>(&self, item: &U) -> bool
where
Idx: PartialOrd<U>,
U: ?Sized + PartialOrd<Idx>,
{
<Self as RangeBounds<Idx>>::contains(self, item)
}
}
/// A range bounded inclusively below and above (`start..=end`).
///
/// The `RangeInclusive` `start..=end` contains all values with `x >= start`
/// and `x <= end`. It is empty unless `start <= end`.
///
/// This iterator is [fused], but the specific values of `start` and `end` after
/// iteration has finished are **unspecified** other than that [`.is_empty()`]
/// will return `true` once no more values will be produced.
///
/// [fused]: crate::iter::FusedIterator
/// [`.is_empty()`]: RangeInclusive::is_empty
///
/// # Examples
///
/// The `start..=end` syntax is a `RangeInclusive`:
///
/// ```
/// assert_eq!((3..=5), std::ops::RangeInclusive::new(3, 5));
/// assert_eq!(3 + 4 + 5, (3..=5).sum());
/// ```
///
/// ```
/// let arr = [0, 1, 2, 3, 4];
/// assert_eq!(arr[ .. ], [0, 1, 2, 3, 4]);
/// assert_eq!(arr[ .. 3], [0, 1, 2 ]);
/// assert_eq!(arr[ ..=3], [0, 1, 2, 3 ]);
/// assert_eq!(arr[1.. ], [ 1, 2, 3, 4]);
/// assert_eq!(arr[1.. 3], [ 1, 2 ]);
/// assert_eq!(arr[1..=3], [ 1, 2, 3 ]); // This is a `RangeInclusive`
/// ```
#[lang = "RangeInclusive"]
#[doc(alias = "..=")]
#[derive(Clone, PartialEq, Eq, Hash)] // not Copy -- see #27186
#[stable(feature = "inclusive_range", since = "1.26.0")]
pub struct RangeInclusive<Idx> {
// Note that the fields here are not public to allow changing the
// representation in the future; in particular, while we could plausibly
// expose start/end, modifying them without changing (future/current)
// private fields may lead to incorrect behavior, so we don't want to
// support that mode.
pub(crate) start: Idx,
pub(crate) end: Idx,
// This field is:
// - `false` upon construction
// - `false` when iteration has yielded an element and the iterator is not exhausted
// - `true` when iteration has been used to exhaust the iterator
//
// This is required to support PartialEq and Hash without a PartialOrd bound or specialization.
pub(crate) exhausted: bool,
}
impl<Idx> RangeInclusive<Idx> {
/// Creates a new inclusive range. Equivalent to writing `start..=end`.
///
/// # Examples
///
/// ```
/// use std::ops::RangeInclusive;
///
/// assert_eq!(3..=5, RangeInclusive::new(3, 5));
/// ```
#[lang = "range_inclusive_new"]
#[stable(feature = "inclusive_range_methods", since = "1.27.0")]
#[inline]
#[rustc_promotable]
#[rustc_const_stable(feature = "const_range_new", since = "1.32.0")]
pub const fn new(start: Idx, end: Idx) -> Self {
Self { start, end, exhausted: false }
}
/// Returns the lower bound of the range (inclusive).
///
/// When using an inclusive range for iteration, the values of `start()` and
/// [`end()`] are unspecified after the iteration ended. To determine
/// whether the inclusive range is empty, use the [`is_empty()`] method
/// instead of comparing `start() > end()`.
///
/// Note: the value returned by this method is unspecified after the range
/// has been iterated to exhaustion.
///
/// [`end()`]: RangeInclusive::end
/// [`is_empty()`]: RangeInclusive::is_empty
///
/// # Examples
///
/// ```
/// assert_eq!((3..=5).start(), &3);
/// ```
#[stable(feature = "inclusive_range_methods", since = "1.27.0")]
#[rustc_const_stable(feature = "const_inclusive_range_methods", since = "1.32.0")]
#[inline]
pub const fn start(&self) -> &Idx {
&self.start
}
/// Returns the upper bound of the range (inclusive).
///
/// When using an inclusive range for iteration, the values of [`start()`]
/// and `end()` are unspecified after the iteration ended. To determine
/// whether the inclusive range is empty, use the [`is_empty()`] method
/// instead of comparing `start() > end()`.
///
/// Note: the value returned by this method is unspecified after the range
/// has been iterated to exhaustion.
///
/// [`start()`]: RangeInclusive::start
/// [`is_empty()`]: RangeInclusive::is_empty
///
/// # Examples
///
/// ```
/// assert_eq!((3..=5).end(), &5);
/// ```
#[stable(feature = "inclusive_range_methods", since = "1.27.0")]
#[rustc_const_stable(feature = "const_inclusive_range_methods", since = "1.32.0")]
#[inline]
pub const fn end(&self) -> &Idx {
&self.end
}
/// Destructures the `RangeInclusive` into (lower bound, upper (inclusive) bound).
///
/// Note: the value returned by this method is unspecified after the range
/// has been iterated to exhaustion.
///
/// # Examples
///
/// ```
/// assert_eq!((3..=5).into_inner(), (3, 5));
/// ```
#[stable(feature = "inclusive_range_methods", since = "1.27.0")]
#[inline]
pub fn into_inner(self) -> (Idx, Idx) {
(self.start, self.end)
}
}
impl RangeInclusive<usize> {
/// Converts to an exclusive `Range` for `SliceIndex` implementations.
/// The caller is responsible for dealing with `end == usize::MAX`.
#[inline]
pub(crate) const fn into_slice_range(self) -> Range<usize> {
// If we're not exhausted, we want to simply slice `start..end + 1`.
// If we are exhausted, then slicing with `end + 1..end + 1` gives us an
// empty range that is still subject to bounds-checks for that endpoint.
let exclusive_end = self.end + 1;
let start = if self.exhausted { exclusive_end } else { self.start };
start..exclusive_end
}
}
#[stable(feature = "inclusive_range", since = "1.26.0")]
impl<Idx: fmt::Debug> fmt::Debug for RangeInclusive<Idx> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
self.start.fmt(fmt)?;
write!(fmt, "..=")?;
self.end.fmt(fmt)?;
if self.exhausted {
write!(fmt, " (exhausted)")?;
}
Ok(())
}
}
impl<Idx: PartialOrd<Idx>> RangeInclusive<Idx> {
/// Returns `true` if `item` is contained in the range.
///
/// # Examples
///
/// ```
/// assert!(!(3..=5).contains(&2));
/// assert!( (3..=5).contains(&3));
/// assert!( (3..=5).contains(&4));
/// assert!( (3..=5).contains(&5));
/// assert!(!(3..=5).contains(&6));
///
/// assert!( (3..=3).contains(&3));
/// assert!(!(3..=2).contains(&3));
///
/// assert!( (0.0..=1.0).contains(&1.0));
/// assert!(!(0.0..=1.0).contains(&f32::NAN));
/// assert!(!(0.0..=f32::NAN).contains(&0.0));
/// assert!(!(f32::NAN..=1.0).contains(&1.0));
/// ```
///
/// This method always returns `false` after iteration has finished:
///
/// ```
/// let mut r = 3..=5;
/// assert!(r.contains(&3) && r.contains(&5));
/// for _ in r.by_ref() {}
/// // Precise field values are unspecified here
/// assert!(!r.contains(&3) && !r.contains(&5));
/// ```
#[stable(feature = "range_contains", since = "1.35.0")]
pub fn contains<U>(&self, item: &U) -> bool
where
Idx: PartialOrd<U>,
U: ?Sized + PartialOrd<Idx>,
{
<Self as RangeBounds<Idx>>::contains(self, item)
}
/// Returns `true` if the range contains no items.
///
/// # Examples
///
/// ```
/// assert!(!(3..=5).is_empty());
/// assert!(!(3..=3).is_empty());
/// assert!( (3..=2).is_empty());
/// ```
///
/// The range is empty if either side is incomparable:
///
/// ```
/// assert!(!(3.0..=5.0).is_empty());
/// assert!( (3.0..=f32::NAN).is_empty());
/// assert!( (f32::NAN..=5.0).is_empty());
/// ```
///
/// This method returns `true` after iteration has finished:
///
/// ```
/// let mut r = 3..=5;
/// for _ in r.by_ref() {}
/// // Precise field values are unspecified here
/// assert!(r.is_empty());
/// ```
#[stable(feature = "range_is_empty", since = "1.47.0")]
#[inline]
pub fn is_empty(&self) -> bool {
self.exhausted || !(self.start <= self.end)
}
}
/// A range only bounded inclusively above (`..=end`).
///
/// The `RangeToInclusive` `..=end` contains all values with `x <= end`.
/// It cannot serve as an [`Iterator`] because it doesn't have a starting point.
///
/// # Examples
///
/// The `..=end` syntax is a `RangeToInclusive`:
///
/// ```
/// assert_eq!((..=5), std::ops::RangeToInclusive{ end: 5 });
/// ```
///
/// It does not have an [`IntoIterator`] implementation, so you can't use it in a
/// `for` loop directly. This won't compile:
///
/// ```compile_fail,E0277
/// // error[E0277]: the trait bound `std::ops::RangeToInclusive<{integer}>:
/// // std::iter::Iterator` is not satisfied
/// for i in ..=5 {
/// // ...
/// }
/// ```
///
/// When used as a [slicing index], `RangeToInclusive` produces a slice of all
/// array elements up to and including the index indicated by `end`.
///
/// ```
/// let arr = [0, 1, 2, 3, 4];
/// assert_eq!(arr[ .. ], [0, 1, 2, 3, 4]);
/// assert_eq!(arr[ .. 3], [0, 1, 2 ]);
/// assert_eq!(arr[ ..=3], [0, 1, 2, 3 ]); // This is a `RangeToInclusive`
/// assert_eq!(arr[1.. ], [ 1, 2, 3, 4]);
/// assert_eq!(arr[1.. 3], [ 1, 2 ]);
/// assert_eq!(arr[1..=3], [ 1, 2, 3 ]);
/// ```
///
/// [slicing index]: crate::slice::SliceIndex
#[lang = "RangeToInclusive"]
#[doc(alias = "..=")]
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
#[stable(feature = "inclusive_range", since = "1.26.0")]
pub struct RangeToInclusive<Idx> {
/// The upper bound of the range (inclusive)
#[stable(feature = "inclusive_range", since = "1.26.0")]
pub end: Idx,
}
#[stable(feature = "inclusive_range", since = "1.26.0")]
impl<Idx: fmt::Debug> fmt::Debug for RangeToInclusive<Idx> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "..=")?;
self.end.fmt(fmt)?;
Ok(())
}
}
impl<Idx: PartialOrd<Idx>> RangeToInclusive<Idx> {
/// Returns `true` if `item` is contained in the range.
///
/// # Examples
///
/// ```
/// assert!( (..=5).contains(&-1_000_000_000));
/// assert!( (..=5).contains(&5));
/// assert!(!(..=5).contains(&6));
///
/// assert!( (..=1.0).contains(&1.0));
/// assert!(!(..=1.0).contains(&f32::NAN));
/// assert!(!(..=f32::NAN).contains(&0.5));
/// ```
#[stable(feature = "range_contains", since = "1.35.0")]
pub fn contains<U>(&self, item: &U) -> bool
where
Idx: PartialOrd<U>,
U: ?Sized + PartialOrd<Idx>,
{
<Self as RangeBounds<Idx>>::contains(self, item)
}
}
// RangeToInclusive<Idx> cannot impl From<RangeTo<Idx>>
// because underflow would be possible with (..0).into()
/// An endpoint of a range of keys.
///
/// # Examples
///
/// `Bound`s are range endpoints:
///
/// ```
/// use std::ops::Bound::*;
/// use std::ops::RangeBounds;
///
/// assert_eq!((..100).start_bound(), Unbounded);
/// assert_eq!((1..12).start_bound(), Included(&1));
/// assert_eq!((1..12).end_bound(), Excluded(&12));
/// ```
///
/// Using a tuple of `Bound`s as an argument to [`BTreeMap::range`].
/// Note that in most cases, it's better to use range syntax (`1..5`) instead.
///
/// ```
/// use std::collections::BTreeMap;
/// use std::ops::Bound::{Excluded, Included, Unbounded};
///
/// let mut map = BTreeMap::new();
/// map.insert(3, "a");
/// map.insert(5, "b");
/// map.insert(8, "c");
///
/// for (key, value) in map.range((Excluded(3), Included(8))) {
/// println!("{key}: {value}");
/// }
///
/// assert_eq!(Some((&3, &"a")), map.range((Unbounded, Included(5))).next());
/// ```
///
/// [`BTreeMap::range`]: ../../std/collections/btree_map/struct.BTreeMap.html#method.range
#[stable(feature = "collections_bound", since = "1.17.0")]
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
pub enum Bound<T> {
/// An inclusive bound.
#[stable(feature = "collections_bound", since = "1.17.0")]
Included(#[stable(feature = "collections_bound", since = "1.17.0")] T),
/// An exclusive bound.
#[stable(feature = "collections_bound", since = "1.17.0")]
Excluded(#[stable(feature = "collections_bound", since = "1.17.0")] T),
/// An infinite endpoint. Indicates that there is no bound in this direction.
#[stable(feature = "collections_bound", since = "1.17.0")]
Unbounded,
}
impl<T> Bound<T> {
/// Converts from `&Bound<T>` to `Bound<&T>`.
#[inline]
#[stable(feature = "bound_as_ref_shared", since = "1.65.0")]
pub fn as_ref(&self) -> Bound<&T> {
match *self {
Included(ref x) => Included(x),
Excluded(ref x) => Excluded(x),
Unbounded => Unbounded,
}
}
/// Converts from `&mut Bound<T>` to `Bound<&mut T>`.
#[inline]
#[unstable(feature = "bound_as_ref", issue = "80996")]
pub fn as_mut(&mut self) -> Bound<&mut T> {
match *self {
Included(ref mut x) => Included(x),
Excluded(ref mut x) => Excluded(x),
Unbounded => Unbounded,
}
}
/// Maps a `Bound<T>` to a `Bound<U>` by applying a function to the contained value (including
/// both `Included` and `Excluded`), returning a `Bound` of the same kind.
///
/// # Examples
///
/// ```
/// #![feature(bound_map)]
/// use std::ops::Bound::*;
///
/// let bound_string = Included("Hello, World!");
///
/// assert_eq!(bound_string.map(|s| s.len()), Included(13));
/// ```
///
/// ```
/// #![feature(bound_map)]
/// use std::ops::Bound;
/// use Bound::*;
///
/// let unbounded_string: Bound<String> = Unbounded;
///
/// assert_eq!(unbounded_string.map(|s| s.len()), Unbounded);
/// ```
#[inline]
#[unstable(feature = "bound_map", issue = "86026")]
pub fn map<U, F: FnOnce(T) -> U>(self, f: F) -> Bound<U> {
match self {
Unbounded => Unbounded,
Included(x) => Included(f(x)),
Excluded(x) => Excluded(f(x)),
}
}
}
impl<T: Clone> Bound<&T> {
/// Map a `Bound<&T>` to a `Bound<T>` by cloning the contents of the bound.
///
/// # Examples
///
/// ```
/// use std::ops::Bound::*;
/// use std::ops::RangeBounds;
///
/// assert_eq!((1..12).start_bound(), Included(&1));
/// assert_eq!((1..12).start_bound().cloned(), Included(1));
/// ```
#[must_use = "`self` will be dropped if the result is not used"]
#[stable(feature = "bound_cloned", since = "1.55.0")]
pub fn cloned(self) -> Bound<T> {
match self {
Bound::Unbounded => Bound::Unbounded,
Bound::Included(x) => Bound::Included(x.clone()),
Bound::Excluded(x) => Bound::Excluded(x.clone()),
}
}
}
/// `RangeBounds` is implemented by Rust's built-in range types, produced
/// by range syntax like `..`, `a..`, `..b`, `..=c`, `d..e`, or `f..=g`.
#[stable(feature = "collections_range", since = "1.28.0")]
pub trait RangeBounds<T: ?Sized> {
/// Start index bound.
///
/// Returns the start value as a `Bound`.
///
/// # Examples
///
/// ```
/// # fn main() {
/// use std::ops::Bound::*;
/// use std::ops::RangeBounds;
///
/// assert_eq!((..10).start_bound(), Unbounded);
/// assert_eq!((3..10).start_bound(), Included(&3));
/// # }
/// ```
#[stable(feature = "collections_range", since = "1.28.0")]
fn start_bound(&self) -> Bound<&T>;
/// End index bound.
///
/// Returns the end value as a `Bound`.
///
/// # Examples
///
/// ```
/// # fn main() {
/// use std::ops::Bound::*;
/// use std::ops::RangeBounds;
///
/// assert_eq!((3..).end_bound(), Unbounded);
/// assert_eq!((3..10).end_bound(), Excluded(&10));
/// # }
/// ```
#[stable(feature = "collections_range", since = "1.28.0")]
fn end_bound(&self) -> Bound<&T>;
/// Returns `true` if `item` is contained in the range.
///
/// # Examples
///
/// ```
/// assert!( (3..5).contains(&4));
/// assert!(!(3..5).contains(&2));
///
/// assert!( (0.0..1.0).contains(&0.5));
/// assert!(!(0.0..1.0).contains(&f32::NAN));
/// assert!(!(0.0..f32::NAN).contains(&0.5));
/// assert!(!(f32::NAN..1.0).contains(&0.5));
#[stable(feature = "range_contains", since = "1.35.0")]
fn contains<U>(&self, item: &U) -> bool
where
T: PartialOrd<U>,
U: ?Sized + PartialOrd<T>,
{
(match self.start_bound() {
Included(start) => start <= item,
Excluded(start) => start < item,
Unbounded => true,
}) && (match self.end_bound() {
Included(end) => item <= end,
Excluded(end) => item < end,
Unbounded => true,
})
}
}
use self::Bound::{Excluded, Included, Unbounded};
#[stable(feature = "collections_range", since = "1.28.0")]
impl<T: ?Sized> RangeBounds<T> for RangeFull {
fn start_bound(&self) -> Bound<&T> {
Unbounded
}
fn end_bound(&self) -> Bound<&T> {
Unbounded
}
}
#[stable(feature = "collections_range", since = "1.28.0")]
impl<T> RangeBounds<T> for RangeFrom<T> {
fn start_bound(&self) -> Bound<&T> {
Included(&self.start)
}
fn end_bound(&self) -> Bound<&T> {
Unbounded
}
}
#[stable(feature = "collections_range", since = "1.28.0")]
impl<T> RangeBounds<T> for RangeTo<T> {
fn start_bound(&self) -> Bound<&T> {
Unbounded
}
fn end_bound(&self) -> Bound<&T> {
Excluded(&self.end)
}
}
#[stable(feature = "collections_range", since = "1.28.0")]
impl<T> RangeBounds<T> for Range<T> {
fn start_bound(&self) -> Bound<&T> {
Included(&self.start)
}
fn end_bound(&self) -> Bound<&T> {
Excluded(&self.end)
}
}
#[stable(feature = "collections_range", since = "1.28.0")]
impl<T> RangeBounds<T> for RangeInclusive<T> {
fn start_bound(&self) -> Bound<&T> {
Included(&self.start)
}
fn end_bound(&self) -> Bound<&T> {
if self.exhausted {
// When the iterator is exhausted, we usually have start == end,
// but we want the range to appear empty, containing nothing.
Excluded(&self.end)
} else {
Included(&self.end)
}
}
}
#[stable(feature = "collections_range", since = "1.28.0")]
impl<T> RangeBounds<T> for RangeToInclusive<T> {
fn start_bound(&self) -> Bound<&T> {
Unbounded
}
fn end_bound(&self) -> Bound<&T> {
Included(&self.end)
}
}
#[stable(feature = "collections_range", since = "1.28.0")]
impl<T> RangeBounds<T> for (Bound<T>, Bound<T>) {
fn start_bound(&self) -> Bound<&T> {
match *self {
(Included(ref start), _) => Included(start),
(Excluded(ref start), _) => Excluded(start),
(Unbounded, _) => Unbounded,
}
}
fn end_bound(&self) -> Bound<&T> {
match *self {
(_, Included(ref end)) => Included(end),
(_, Excluded(ref end)) => Excluded(end),
(_, Unbounded) => Unbounded,
}
}
}
#[stable(feature = "collections_range", since = "1.28.0")]
impl<'a, T: ?Sized + 'a> RangeBounds<T> for (Bound<&'a T>, Bound<&'a T>) {
fn start_bound(&self) -> Bound<&T> {
self.0
}
fn end_bound(&self) -> Bound<&T> {
self.1
}
}
#[stable(feature = "collections_range", since = "1.28.0")]
impl<T> RangeBounds<T> for RangeFrom<&T> {
fn start_bound(&self) -> Bound<&T> {
Included(self.start)
}
fn end_bound(&self) -> Bound<&T> {
Unbounded
}
}
#[stable(feature = "collections_range", since = "1.28.0")]
impl<T> RangeBounds<T> for RangeTo<&T> {
fn start_bound(&self) -> Bound<&T> {
Unbounded
}
fn end_bound(&self) -> Bound<&T> {
Excluded(self.end)
}
}
#[stable(feature = "collections_range", since = "1.28.0")]
impl<T> RangeBounds<T> for Range<&T> {
fn start_bound(&self) -> Bound<&T> {
Included(self.start)
}
fn end_bound(&self) -> Bound<&T> {
Excluded(self.end)
}
}
#[stable(feature = "collections_range", since = "1.28.0")]
impl<T> RangeBounds<T> for RangeInclusive<&T> {
fn start_bound(&self) -> Bound<&T> {
Included(self.start)
}
fn end_bound(&self) -> Bound<&T> {
Included(self.end)
}
}
#[stable(feature = "collections_range", since = "1.28.0")]
impl<T> RangeBounds<T> for RangeToInclusive<&T> {
fn start_bound(&self) -> Bound<&T> {
Unbounded
}
fn end_bound(&self) -> Bound<&T> {
Included(self.end)
}
}
/// `OneSidedRange` is implemented for built-in range types that are unbounded
/// on one side. For example, `a..`, `..b` and `..=c` implement `OneSidedRange`,
/// but `..`, `d..e`, and `f..=g` do not.
///
/// Types that implement `OneSidedRange<T>` must return `Bound::Unbounded`
/// from one of `RangeBounds::start_bound` or `RangeBounds::end_bound`.
#[unstable(feature = "one_sided_range", issue = "69780")]
pub trait OneSidedRange<T: ?Sized>: RangeBounds<T> {}
#[unstable(feature = "one_sided_range", issue = "69780")]
impl<T> OneSidedRange<T> for RangeTo<T> where Self: RangeBounds<T> {}
#[unstable(feature = "one_sided_range", issue = "69780")]
impl<T> OneSidedRange<T> for RangeFrom<T> where Self: RangeBounds<T> {}
#[unstable(feature = "one_sided_range", issue = "69780")]
impl<T> OneSidedRange<T> for RangeToInclusive<T> where Self: RangeBounds<T> {}