blob: f758f88d0a37026b0c9da8ce6de9d95d8572203c [file] [log] [blame]
#[cfg(any(doc, target_os = "android", target_os = "linux"))]
use super::{recv_vectored_with_ancillary_from, send_vectored_with_ancillary_to, SocketAncillary};
use super::{sockaddr_un, SocketAddr};
#[cfg(any(doc, target_os = "android", target_os = "linux"))]
use crate::io::{IoSlice, IoSliceMut};
use crate::net::Shutdown;
use crate::os::unix::io::{AsFd, AsRawFd, BorrowedFd, FromRawFd, IntoRawFd, OwnedFd, RawFd};
use crate::path::Path;
use crate::sys::cvt;
use crate::sys::net::Socket;
use crate::sys_common::{AsInner, FromInner, IntoInner};
use crate::time::Duration;
use crate::{fmt, io};
#[cfg(any(
target_os = "linux",
target_os = "android",
target_os = "dragonfly",
target_os = "freebsd",
target_os = "openbsd",
target_os = "netbsd",
target_os = "haiku"
))]
use libc::MSG_NOSIGNAL;
#[cfg(not(any(
target_os = "linux",
target_os = "android",
target_os = "dragonfly",
target_os = "freebsd",
target_os = "openbsd",
target_os = "netbsd",
target_os = "haiku"
)))]
const MSG_NOSIGNAL: libc::c_int = 0x0;
/// A Unix datagram socket.
///
/// # Examples
///
/// ```no_run
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let socket = UnixDatagram::bind("/path/to/my/socket")?;
/// socket.send_to(b"hello world", "/path/to/other/socket")?;
/// let mut buf = [0; 100];
/// let (count, address) = socket.recv_from(&mut buf)?;
/// println!("socket {:?} sent {:?}", address, &buf[..count]);
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub struct UnixDatagram(Socket);
#[stable(feature = "unix_socket", since = "1.10.0")]
impl fmt::Debug for UnixDatagram {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut builder = fmt.debug_struct("UnixDatagram");
builder.field("fd", self.0.as_inner());
if let Ok(addr) = self.local_addr() {
builder.field("local", &addr);
}
if let Ok(addr) = self.peer_addr() {
builder.field("peer", &addr);
}
builder.finish()
}
}
impl UnixDatagram {
/// Creates a Unix datagram socket bound to the given path.
///
/// # Examples
///
/// ```no_run
/// use std::os::unix::net::UnixDatagram;
///
/// let sock = match UnixDatagram::bind("/path/to/the/socket") {
/// Ok(sock) => sock,
/// Err(e) => {
/// println!("Couldn't bind: {e:?}");
/// return
/// }
/// };
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn bind<P: AsRef<Path>>(path: P) -> io::Result<UnixDatagram> {
unsafe {
let socket = UnixDatagram::unbound()?;
let (addr, len) = sockaddr_un(path.as_ref())?;
cvt(libc::bind(socket.as_raw_fd(), &addr as *const _ as *const _, len as _))?;
Ok(socket)
}
}
/// Creates a Unix datagram socket bound to an address.
///
/// # Examples
///
/// ```no_run
/// #![feature(unix_socket_abstract)]
/// use std::os::unix::net::{UnixDatagram};
///
/// fn main() -> std::io::Result<()> {
/// let sock1 = UnixDatagram::bind("path/to/socket")?;
/// let addr = sock1.local_addr()?;
///
/// let sock2 = match UnixDatagram::bind_addr(&addr) {
/// Ok(sock) => sock,
/// Err(err) => {
/// println!("Couldn't bind: {err:?}");
/// return Err(err);
/// }
/// };
/// Ok(())
/// }
/// ```
#[unstable(feature = "unix_socket_abstract", issue = "85410")]
pub fn bind_addr(socket_addr: &SocketAddr) -> io::Result<UnixDatagram> {
unsafe {
let socket = UnixDatagram::unbound()?;
cvt(libc::bind(
socket.as_raw_fd(),
&socket_addr.addr as *const _ as *const _,
socket_addr.len as _,
))?;
Ok(socket)
}
}
/// Creates a Unix Datagram socket which is not bound to any address.
///
/// # Examples
///
/// ```no_run
/// use std::os::unix::net::UnixDatagram;
///
/// let sock = match UnixDatagram::unbound() {
/// Ok(sock) => sock,
/// Err(e) => {
/// println!("Couldn't unbound: {e:?}");
/// return
/// }
/// };
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn unbound() -> io::Result<UnixDatagram> {
let inner = Socket::new_raw(libc::AF_UNIX, libc::SOCK_DGRAM)?;
Ok(UnixDatagram(inner))
}
/// Creates an unnamed pair of connected sockets.
///
/// Returns two `UnixDatagrams`s which are connected to each other.
///
/// # Examples
///
/// ```no_run
/// use std::os::unix::net::UnixDatagram;
///
/// let (sock1, sock2) = match UnixDatagram::pair() {
/// Ok((sock1, sock2)) => (sock1, sock2),
/// Err(e) => {
/// println!("Couldn't unbound: {e:?}");
/// return
/// }
/// };
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn pair() -> io::Result<(UnixDatagram, UnixDatagram)> {
let (i1, i2) = Socket::new_pair(libc::AF_UNIX, libc::SOCK_DGRAM)?;
Ok((UnixDatagram(i1), UnixDatagram(i2)))
}
/// Connects the socket to the specified path address.
///
/// The [`send`] method may be used to send data to the specified address.
/// [`recv`] and [`recv_from`] will only receive data from that address.
///
/// [`send`]: UnixDatagram::send
/// [`recv`]: UnixDatagram::recv
/// [`recv_from`]: UnixDatagram::recv_from
///
/// # Examples
///
/// ```no_run
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// match sock.connect("/path/to/the/socket") {
/// Ok(sock) => sock,
/// Err(e) => {
/// println!("Couldn't connect: {e:?}");
/// return Err(e)
/// }
/// };
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn connect<P: AsRef<Path>>(&self, path: P) -> io::Result<()> {
unsafe {
let (addr, len) = sockaddr_un(path.as_ref())?;
cvt(libc::connect(self.as_raw_fd(), &addr as *const _ as *const _, len))?;
}
Ok(())
}
/// Connects the socket to an address.
///
/// # Examples
///
/// ```no_run
/// #![feature(unix_socket_abstract)]
/// use std::os::unix::net::{UnixDatagram};
///
/// fn main() -> std::io::Result<()> {
/// let bound = UnixDatagram::bind("/path/to/socket")?;
/// let addr = bound.local_addr()?;
///
/// let sock = UnixDatagram::unbound()?;
/// match sock.connect_addr(&addr) {
/// Ok(sock) => sock,
/// Err(e) => {
/// println!("Couldn't connect: {e:?}");
/// return Err(e)
/// }
/// };
/// Ok(())
/// }
/// ```
#[unstable(feature = "unix_socket_abstract", issue = "85410")]
pub fn connect_addr(&self, socket_addr: &SocketAddr) -> io::Result<()> {
unsafe {
cvt(libc::connect(
self.as_raw_fd(),
&socket_addr.addr as *const _ as *const _,
socket_addr.len,
))?;
}
Ok(())
}
/// Creates a new independently owned handle to the underlying socket.
///
/// The returned `UnixDatagram` is a reference to the same socket that this
/// object references. Both handles can be used to accept incoming
/// connections and options set on one side will affect the other.
///
/// # Examples
///
/// ```no_run
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::bind("/path/to/the/socket")?;
/// let sock_copy = sock.try_clone().expect("try_clone failed");
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn try_clone(&self) -> io::Result<UnixDatagram> {
self.0.duplicate().map(UnixDatagram)
}
/// Returns the address of this socket.
///
/// # Examples
///
/// ```no_run
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::bind("/path/to/the/socket")?;
/// let addr = sock.local_addr().expect("Couldn't get local address");
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn local_addr(&self) -> io::Result<SocketAddr> {
SocketAddr::new(|addr, len| unsafe { libc::getsockname(self.as_raw_fd(), addr, len) })
}
/// Returns the address of this socket's peer.
///
/// The [`connect`] method will connect the socket to a peer.
///
/// [`connect`]: UnixDatagram::connect
///
/// # Examples
///
/// ```no_run
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// sock.connect("/path/to/the/socket")?;
///
/// let addr = sock.peer_addr().expect("Couldn't get peer address");
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
SocketAddr::new(|addr, len| unsafe { libc::getpeername(self.as_raw_fd(), addr, len) })
}
fn recv_from_flags(
&self,
buf: &mut [u8],
flags: libc::c_int,
) -> io::Result<(usize, SocketAddr)> {
let mut count = 0;
let addr = SocketAddr::new(|addr, len| unsafe {
count = libc::recvfrom(
self.as_raw_fd(),
buf.as_mut_ptr() as *mut _,
buf.len(),
flags,
addr,
len,
);
if count > 0 {
1
} else if count == 0 {
0
} else {
-1
}
})?;
Ok((count as usize, addr))
}
/// Receives data from the socket.
///
/// On success, returns the number of bytes read and the address from
/// whence the data came.
///
/// # Examples
///
/// ```no_run
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// let mut buf = vec![0; 10];
/// let (size, sender) = sock.recv_from(buf.as_mut_slice())?;
/// println!("received {size} bytes from {sender:?}");
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.recv_from_flags(buf, 0)
}
/// Receives data from the socket.
///
/// On success, returns the number of bytes read.
///
/// # Examples
///
/// ```no_run
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::bind("/path/to/the/socket")?;
/// let mut buf = vec![0; 10];
/// sock.recv(buf.as_mut_slice()).expect("recv function failed");
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
self.0.read(buf)
}
/// Receives data and ancillary data from socket.
///
/// On success, returns the number of bytes read, if the data was truncated and the address from whence the msg came.
///
/// # Examples
///
#[cfg_attr(any(target_os = "android", target_os = "linux"), doc = "```no_run")]
#[cfg_attr(not(any(target_os = "android", target_os = "linux")), doc = "```ignore")]
/// #![feature(unix_socket_ancillary_data)]
/// use std::os::unix::net::{UnixDatagram, SocketAncillary, AncillaryData};
/// use std::io::IoSliceMut;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// let mut buf1 = [1; 8];
/// let mut buf2 = [2; 16];
/// let mut buf3 = [3; 8];
/// let mut bufs = &mut [
/// IoSliceMut::new(&mut buf1),
/// IoSliceMut::new(&mut buf2),
/// IoSliceMut::new(&mut buf3),
/// ][..];
/// let mut fds = [0; 8];
/// let mut ancillary_buffer = [0; 128];
/// let mut ancillary = SocketAncillary::new(&mut ancillary_buffer[..]);
/// let (size, _truncated, sender) = sock.recv_vectored_with_ancillary_from(bufs, &mut ancillary)?;
/// println!("received {size}");
/// for ancillary_result in ancillary.messages() {
/// if let AncillaryData::ScmRights(scm_rights) = ancillary_result.unwrap() {
/// for fd in scm_rights {
/// println!("receive file descriptor: {fd}");
/// }
/// }
/// }
/// Ok(())
/// }
/// ```
#[cfg(any(doc, target_os = "android", target_os = "linux"))]
#[unstable(feature = "unix_socket_ancillary_data", issue = "76915")]
pub fn recv_vectored_with_ancillary_from(
&self,
bufs: &mut [IoSliceMut<'_>],
ancillary: &mut SocketAncillary<'_>,
) -> io::Result<(usize, bool, SocketAddr)> {
let (count, truncated, addr) = recv_vectored_with_ancillary_from(&self.0, bufs, ancillary)?;
let addr = addr?;
Ok((count, truncated, addr))
}
/// Receives data and ancillary data from socket.
///
/// On success, returns the number of bytes read and if the data was truncated.
///
/// # Examples
///
#[cfg_attr(any(target_os = "android", target_os = "linux"), doc = "```no_run")]
#[cfg_attr(not(any(target_os = "android", target_os = "linux")), doc = "```ignore")]
/// #![feature(unix_socket_ancillary_data)]
/// use std::os::unix::net::{UnixDatagram, SocketAncillary, AncillaryData};
/// use std::io::IoSliceMut;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// let mut buf1 = [1; 8];
/// let mut buf2 = [2; 16];
/// let mut buf3 = [3; 8];
/// let mut bufs = &mut [
/// IoSliceMut::new(&mut buf1),
/// IoSliceMut::new(&mut buf2),
/// IoSliceMut::new(&mut buf3),
/// ][..];
/// let mut fds = [0; 8];
/// let mut ancillary_buffer = [0; 128];
/// let mut ancillary = SocketAncillary::new(&mut ancillary_buffer[..]);
/// let (size, _truncated) = sock.recv_vectored_with_ancillary(bufs, &mut ancillary)?;
/// println!("received {size}");
/// for ancillary_result in ancillary.messages() {
/// if let AncillaryData::ScmRights(scm_rights) = ancillary_result.unwrap() {
/// for fd in scm_rights {
/// println!("receive file descriptor: {fd}");
/// }
/// }
/// }
/// Ok(())
/// }
/// ```
#[cfg(any(doc, target_os = "android", target_os = "linux"))]
#[unstable(feature = "unix_socket_ancillary_data", issue = "76915")]
pub fn recv_vectored_with_ancillary(
&self,
bufs: &mut [IoSliceMut<'_>],
ancillary: &mut SocketAncillary<'_>,
) -> io::Result<(usize, bool)> {
let (count, truncated, addr) = recv_vectored_with_ancillary_from(&self.0, bufs, ancillary)?;
addr?;
Ok((count, truncated))
}
/// Sends data on the socket to the specified address.
///
/// On success, returns the number of bytes written.
///
/// # Examples
///
/// ```no_run
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// sock.send_to(b"omelette au fromage", "/some/sock").expect("send_to function failed");
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn send_to<P: AsRef<Path>>(&self, buf: &[u8], path: P) -> io::Result<usize> {
unsafe {
let (addr, len) = sockaddr_un(path.as_ref())?;
let count = cvt(libc::sendto(
self.as_raw_fd(),
buf.as_ptr() as *const _,
buf.len(),
MSG_NOSIGNAL,
&addr as *const _ as *const _,
len,
))?;
Ok(count as usize)
}
}
/// Sends data on the socket to the specified [SocketAddr].
///
/// On success, returns the number of bytes written.
///
/// [SocketAddr]: crate::os::unix::net::SocketAddr
///
/// # Examples
///
/// ```no_run
/// #![feature(unix_socket_abstract)]
/// use std::os::unix::net::{UnixDatagram};
///
/// fn main() -> std::io::Result<()> {
/// let bound = UnixDatagram::bind("/path/to/socket")?;
/// let addr = bound.local_addr()?;
///
/// let sock = UnixDatagram::unbound()?;
/// sock.send_to_addr(b"bacon egg and cheese", &addr).expect("send_to_addr function failed");
/// Ok(())
/// }
/// ```
#[unstable(feature = "unix_socket_abstract", issue = "85410")]
pub fn send_to_addr(&self, buf: &[u8], socket_addr: &SocketAddr) -> io::Result<usize> {
unsafe {
let count = cvt(libc::sendto(
self.as_raw_fd(),
buf.as_ptr() as *const _,
buf.len(),
MSG_NOSIGNAL,
&socket_addr.addr as *const _ as *const _,
socket_addr.len,
))?;
Ok(count as usize)
}
}
/// Sends data on the socket to the socket's peer.
///
/// The peer address may be set by the `connect` method, and this method
/// will return an error if the socket has not already been connected.
///
/// On success, returns the number of bytes written.
///
/// # Examples
///
/// ```no_run
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// sock.connect("/some/sock").expect("Couldn't connect");
/// sock.send(b"omelette au fromage").expect("send_to function failed");
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn send(&self, buf: &[u8]) -> io::Result<usize> {
self.0.write(buf)
}
/// Sends data and ancillary data on the socket to the specified address.
///
/// On success, returns the number of bytes written.
///
/// # Examples
///
#[cfg_attr(any(target_os = "android", target_os = "linux"), doc = "```no_run")]
#[cfg_attr(not(any(target_os = "android", target_os = "linux")), doc = "```ignore")]
/// #![feature(unix_socket_ancillary_data)]
/// use std::os::unix::net::{UnixDatagram, SocketAncillary};
/// use std::io::IoSlice;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// let buf1 = [1; 8];
/// let buf2 = [2; 16];
/// let buf3 = [3; 8];
/// let bufs = &[
/// IoSlice::new(&buf1),
/// IoSlice::new(&buf2),
/// IoSlice::new(&buf3),
/// ][..];
/// let fds = [0, 1, 2];
/// let mut ancillary_buffer = [0; 128];
/// let mut ancillary = SocketAncillary::new(&mut ancillary_buffer[..]);
/// ancillary.add_fds(&fds[..]);
/// sock.send_vectored_with_ancillary_to(bufs, &mut ancillary, "/some/sock")
/// .expect("send_vectored_with_ancillary_to function failed");
/// Ok(())
/// }
/// ```
#[cfg(any(doc, target_os = "android", target_os = "linux"))]
#[unstable(feature = "unix_socket_ancillary_data", issue = "76915")]
pub fn send_vectored_with_ancillary_to<P: AsRef<Path>>(
&self,
bufs: &[IoSlice<'_>],
ancillary: &mut SocketAncillary<'_>,
path: P,
) -> io::Result<usize> {
send_vectored_with_ancillary_to(&self.0, Some(path.as_ref()), bufs, ancillary)
}
/// Sends data and ancillary data on the socket.
///
/// On success, returns the number of bytes written.
///
/// # Examples
///
#[cfg_attr(any(target_os = "android", target_os = "linux"), doc = "```no_run")]
#[cfg_attr(not(any(target_os = "android", target_os = "linux")), doc = "```ignore")]
/// #![feature(unix_socket_ancillary_data)]
/// use std::os::unix::net::{UnixDatagram, SocketAncillary};
/// use std::io::IoSlice;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// let buf1 = [1; 8];
/// let buf2 = [2; 16];
/// let buf3 = [3; 8];
/// let bufs = &[
/// IoSlice::new(&buf1),
/// IoSlice::new(&buf2),
/// IoSlice::new(&buf3),
/// ][..];
/// let fds = [0, 1, 2];
/// let mut ancillary_buffer = [0; 128];
/// let mut ancillary = SocketAncillary::new(&mut ancillary_buffer[..]);
/// ancillary.add_fds(&fds[..]);
/// sock.send_vectored_with_ancillary(bufs, &mut ancillary)
/// .expect("send_vectored_with_ancillary function failed");
/// Ok(())
/// }
/// ```
#[cfg(any(doc, target_os = "android", target_os = "linux"))]
#[unstable(feature = "unix_socket_ancillary_data", issue = "76915")]
pub fn send_vectored_with_ancillary(
&self,
bufs: &[IoSlice<'_>],
ancillary: &mut SocketAncillary<'_>,
) -> io::Result<usize> {
send_vectored_with_ancillary_to(&self.0, None, bufs, ancillary)
}
/// Sets the read timeout for the socket.
///
/// If the provided value is [`None`], then [`recv`] and [`recv_from`] calls will
/// block indefinitely. An [`Err`] is returned if the zero [`Duration`]
/// is passed to this method.
///
/// [`recv`]: UnixDatagram::recv
/// [`recv_from`]: UnixDatagram::recv_from
///
/// # Examples
///
/// ```
/// use std::os::unix::net::UnixDatagram;
/// use std::time::Duration;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// sock.set_read_timeout(Some(Duration::new(1, 0)))
/// .expect("set_read_timeout function failed");
/// Ok(())
/// }
/// ```
///
/// An [`Err`] is returned if the zero [`Duration`] is passed to this
/// method:
///
/// ```no_run
/// use std::io;
/// use std::os::unix::net::UnixDatagram;
/// use std::time::Duration;
///
/// fn main() -> std::io::Result<()> {
/// let socket = UnixDatagram::unbound()?;
/// let result = socket.set_read_timeout(Some(Duration::new(0, 0)));
/// let err = result.unwrap_err();
/// assert_eq!(err.kind(), io::ErrorKind::InvalidInput);
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn set_read_timeout(&self, timeout: Option<Duration>) -> io::Result<()> {
self.0.set_timeout(timeout, libc::SO_RCVTIMEO)
}
/// Sets the write timeout for the socket.
///
/// If the provided value is [`None`], then [`send`] and [`send_to`] calls will
/// block indefinitely. An [`Err`] is returned if the zero [`Duration`] is passed to this
/// method.
///
/// [`send`]: UnixDatagram::send
/// [`send_to`]: UnixDatagram::send_to
///
/// # Examples
///
/// ```
/// use std::os::unix::net::UnixDatagram;
/// use std::time::Duration;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// sock.set_write_timeout(Some(Duration::new(1, 0)))
/// .expect("set_write_timeout function failed");
/// Ok(())
/// }
/// ```
///
/// An [`Err`] is returned if the zero [`Duration`] is passed to this
/// method:
///
/// ```no_run
/// use std::io;
/// use std::os::unix::net::UnixDatagram;
/// use std::time::Duration;
///
/// fn main() -> std::io::Result<()> {
/// let socket = UnixDatagram::unbound()?;
/// let result = socket.set_write_timeout(Some(Duration::new(0, 0)));
/// let err = result.unwrap_err();
/// assert_eq!(err.kind(), io::ErrorKind::InvalidInput);
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn set_write_timeout(&self, timeout: Option<Duration>) -> io::Result<()> {
self.0.set_timeout(timeout, libc::SO_SNDTIMEO)
}
/// Returns the read timeout of this socket.
///
/// # Examples
///
/// ```
/// use std::os::unix::net::UnixDatagram;
/// use std::time::Duration;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// sock.set_read_timeout(Some(Duration::new(1, 0)))
/// .expect("set_read_timeout function failed");
/// assert_eq!(sock.read_timeout()?, Some(Duration::new(1, 0)));
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn read_timeout(&self) -> io::Result<Option<Duration>> {
self.0.timeout(libc::SO_RCVTIMEO)
}
/// Returns the write timeout of this socket.
///
/// # Examples
///
/// ```
/// use std::os::unix::net::UnixDatagram;
/// use std::time::Duration;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// sock.set_write_timeout(Some(Duration::new(1, 0)))
/// .expect("set_write_timeout function failed");
/// assert_eq!(sock.write_timeout()?, Some(Duration::new(1, 0)));
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn write_timeout(&self) -> io::Result<Option<Duration>> {
self.0.timeout(libc::SO_SNDTIMEO)
}
/// Moves the socket into or out of nonblocking mode.
///
/// # Examples
///
/// ```
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// sock.set_nonblocking(true).expect("set_nonblocking function failed");
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> {
self.0.set_nonblocking(nonblocking)
}
/// Moves the socket to pass unix credentials as control message in [`SocketAncillary`].
///
/// Set the socket option `SO_PASSCRED`.
///
/// # Examples
///
#[cfg_attr(any(target_os = "android", target_os = "linux"), doc = "```no_run")]
#[cfg_attr(not(any(target_os = "android", target_os = "linux")), doc = "```ignore")]
/// #![feature(unix_socket_ancillary_data)]
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// sock.set_passcred(true).expect("set_passcred function failed");
/// Ok(())
/// }
/// ```
#[cfg(any(doc, target_os = "android", target_os = "linux", target_os = "netbsd",))]
#[unstable(feature = "unix_socket_ancillary_data", issue = "76915")]
pub fn set_passcred(&self, passcred: bool) -> io::Result<()> {
self.0.set_passcred(passcred)
}
/// Get the current value of the socket for passing unix credentials in [`SocketAncillary`].
/// This value can be change by [`set_passcred`].
///
/// Get the socket option `SO_PASSCRED`.
///
/// [`set_passcred`]: UnixDatagram::set_passcred
#[cfg(any(doc, target_os = "android", target_os = "linux", target_os = "netbsd",))]
#[unstable(feature = "unix_socket_ancillary_data", issue = "76915")]
pub fn passcred(&self) -> io::Result<bool> {
self.0.passcred()
}
/// Set the id of the socket for network filtering purpose
///
#[cfg_attr(
any(target_os = "linux", target_os = "freebsd", target_os = "openbsd"),
doc = "```no_run"
)]
#[cfg_attr(
not(any(target_os = "linux", target_os = "freebsd", target_os = "openbsd")),
doc = "```ignore"
)]
/// #![feature(unix_set_mark)]
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// sock.set_mark(32)?;
/// Ok(())
/// }
/// ```
#[cfg(any(doc, target_os = "linux", target_os = "freebsd", target_os = "openbsd",))]
#[unstable(feature = "unix_set_mark", issue = "96467")]
pub fn set_mark(&self, mark: u32) -> io::Result<()> {
self.0.set_mark(mark)
}
/// Returns the value of the `SO_ERROR` option.
///
/// # Examples
///
/// ```no_run
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// if let Ok(Some(err)) = sock.take_error() {
/// println!("Got error: {err:?}");
/// }
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn take_error(&self) -> io::Result<Option<io::Error>> {
self.0.take_error()
}
/// Shut down the read, write, or both halves of this connection.
///
/// This function will cause all pending and future I/O calls on the
/// specified portions to immediately return with an appropriate value
/// (see the documentation of [`Shutdown`]).
///
/// ```no_run
/// use std::os::unix::net::UnixDatagram;
/// use std::net::Shutdown;
///
/// fn main() -> std::io::Result<()> {
/// let sock = UnixDatagram::unbound()?;
/// sock.shutdown(Shutdown::Both).expect("shutdown function failed");
/// Ok(())
/// }
/// ```
#[stable(feature = "unix_socket", since = "1.10.0")]
pub fn shutdown(&self, how: Shutdown) -> io::Result<()> {
self.0.shutdown(how)
}
/// Receives data on the socket from the remote address to which it is
/// connected, without removing that data from the queue. On success,
/// returns the number of bytes peeked.
///
/// Successive calls return the same data. This is accomplished by passing
/// `MSG_PEEK` as a flag to the underlying `recv` system call.
///
/// # Examples
///
/// ```no_run
/// #![feature(unix_socket_peek)]
///
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let socket = UnixDatagram::bind("/tmp/sock")?;
/// let mut buf = [0; 10];
/// let len = socket.peek(&mut buf).expect("peek failed");
/// Ok(())
/// }
/// ```
#[unstable(feature = "unix_socket_peek", issue = "76923")]
pub fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
self.0.peek(buf)
}
/// Receives a single datagram message on the socket, without removing it from the
/// queue. On success, returns the number of bytes read and the origin.
///
/// The function must be called with valid byte array `buf` of sufficient size to
/// hold the message bytes. If a message is too long to fit in the supplied buffer,
/// excess bytes may be discarded.
///
/// Successive calls return the same data. This is accomplished by passing
/// `MSG_PEEK` as a flag to the underlying `recvfrom` system call.
///
/// Do not use this function to implement busy waiting, instead use `libc::poll` to
/// synchronize IO events on one or more sockets.
///
/// # Examples
///
/// ```no_run
/// #![feature(unix_socket_peek)]
///
/// use std::os::unix::net::UnixDatagram;
///
/// fn main() -> std::io::Result<()> {
/// let socket = UnixDatagram::bind("/tmp/sock")?;
/// let mut buf = [0; 10];
/// let (len, addr) = socket.peek_from(&mut buf).expect("peek failed");
/// Ok(())
/// }
/// ```
#[unstable(feature = "unix_socket_peek", issue = "76923")]
pub fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.recv_from_flags(buf, libc::MSG_PEEK)
}
}
#[stable(feature = "unix_socket", since = "1.10.0")]
impl AsRawFd for UnixDatagram {
#[inline]
fn as_raw_fd(&self) -> RawFd {
self.0.as_inner().as_raw_fd()
}
}
#[stable(feature = "unix_socket", since = "1.10.0")]
impl FromRawFd for UnixDatagram {
#[inline]
unsafe fn from_raw_fd(fd: RawFd) -> UnixDatagram {
UnixDatagram(Socket::from_inner(FromInner::from_inner(OwnedFd::from_raw_fd(fd))))
}
}
#[stable(feature = "unix_socket", since = "1.10.0")]
impl IntoRawFd for UnixDatagram {
#[inline]
fn into_raw_fd(self) -> RawFd {
self.0.into_inner().into_inner().into_raw_fd()
}
}
#[stable(feature = "io_safety", since = "1.63.0")]
impl AsFd for UnixDatagram {
#[inline]
fn as_fd(&self) -> BorrowedFd<'_> {
self.0.as_inner().as_fd()
}
}
#[stable(feature = "io_safety", since = "1.63.0")]
impl From<UnixDatagram> for OwnedFd {
#[inline]
fn from(unix_datagram: UnixDatagram) -> OwnedFd {
unsafe { OwnedFd::from_raw_fd(unix_datagram.into_raw_fd()) }
}
}
#[stable(feature = "io_safety", since = "1.63.0")]
impl From<OwnedFd> for UnixDatagram {
#[inline]
fn from(owned: OwnedFd) -> Self {
unsafe { Self::from_raw_fd(owned.into_raw_fd()) }
}
}