blob: 1b98ef993b04a199a1252cbecd55a88a0dd8a053 [file] [log] [blame]
use super::abi;
use crate::{
cmp,
ffi::CStr,
io::{self, ErrorKind, IoSlice, IoSliceMut},
mem,
net::{Shutdown, SocketAddr},
ptr, str,
sys_common::net::{getsockopt, setsockopt, sockaddr_to_addr},
sys_common::{AsInner, FromInner, IntoInner},
time::Duration,
};
use self::netc::{sockaddr, socklen_t, MSG_PEEK};
use libc::{c_int, c_void, size_t};
pub mod netc {
pub use super::super::abi::sockets::*;
}
pub type wrlen_t = size_t;
const READ_LIMIT: usize = libc::ssize_t::MAX as usize;
const fn max_iov() -> usize {
// Judging by the source code, it's unlimited, but specify a lower
// value just in case.
1024
}
/// A file descriptor.
#[rustc_layout_scalar_valid_range_start(0)]
// libstd/os/raw/mod.rs assures me that every libstd-supported platform has a
// 32-bit c_int. Below is -2, in two's complement, but that only works out
// because c_int is 32 bits.
#[rustc_layout_scalar_valid_range_end(0xFF_FF_FF_FE)]
struct FileDesc {
fd: c_int,
}
impl FileDesc {
#[inline]
fn new(fd: c_int) -> FileDesc {
assert_ne!(fd, -1i32);
// Safety: we just asserted that the value is in the valid range and
// isn't `-1` (the only value bigger than `0xFF_FF_FF_FE` unsigned)
unsafe { FileDesc { fd } }
}
#[inline]
fn raw(&self) -> c_int {
self.fd
}
/// Extracts the actual file descriptor without closing it.
#[inline]
fn into_raw(self) -> c_int {
let fd = self.fd;
mem::forget(self);
fd
}
fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
let ret = cvt(unsafe {
netc::read(self.fd, buf.as_mut_ptr() as *mut c_void, cmp::min(buf.len(), READ_LIMIT))
})?;
Ok(ret as usize)
}
fn read_vectored(&self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
let ret = cvt(unsafe {
netc::readv(
self.fd,
bufs.as_ptr() as *const netc::iovec,
cmp::min(bufs.len(), max_iov()) as c_int,
)
})?;
Ok(ret as usize)
}
#[inline]
fn is_read_vectored(&self) -> bool {
true
}
fn write(&self, buf: &[u8]) -> io::Result<usize> {
let ret = cvt(unsafe {
netc::write(self.fd, buf.as_ptr() as *const c_void, cmp::min(buf.len(), READ_LIMIT))
})?;
Ok(ret as usize)
}
fn write_vectored(&self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
let ret = cvt(unsafe {
netc::writev(
self.fd,
bufs.as_ptr() as *const netc::iovec,
cmp::min(bufs.len(), max_iov()) as c_int,
)
})?;
Ok(ret as usize)
}
#[inline]
fn is_write_vectored(&self) -> bool {
true
}
fn duplicate(&self) -> io::Result<FileDesc> {
cvt(unsafe { netc::dup(self.fd) }).map(Self::new)
}
}
impl AsInner<c_int> for FileDesc {
fn as_inner(&self) -> &c_int {
&self.fd
}
}
impl Drop for FileDesc {
fn drop(&mut self) {
unsafe { netc::close(self.fd) };
}
}
#[doc(hidden)]
pub trait IsMinusOne {
fn is_minus_one(&self) -> bool;
}
macro_rules! impl_is_minus_one {
($($t:ident)*) => ($(impl IsMinusOne for $t {
fn is_minus_one(&self) -> bool {
*self == -1
}
})*)
}
impl_is_minus_one! { i8 i16 i32 i64 isize }
pub fn cvt<T: IsMinusOne>(t: T) -> io::Result<T> {
if t.is_minus_one() { Err(last_error()) } else { Ok(t) }
}
/// A variant of `cvt` for `getaddrinfo` which return 0 for a success.
pub fn cvt_gai(err: c_int) -> io::Result<()> {
if err == 0 {
Ok(())
} else {
let msg: &dyn crate::fmt::Display = match err {
netc::EAI_NONAME => &"name or service not known",
netc::EAI_SERVICE => &"service not supported",
netc::EAI_FAIL => &"non-recoverable failure in name resolution",
netc::EAI_MEMORY => &"memory allocation failure",
netc::EAI_FAMILY => &"family not supported",
_ => &err,
};
Err(io::Error::new(
io::ErrorKind::Uncategorized,
&format!("failed to lookup address information: {msg}")[..],
))
}
}
/// Just to provide the same interface as sys/unix/net.rs
pub fn cvt_r<T, F>(mut f: F) -> io::Result<T>
where
T: IsMinusOne,
F: FnMut() -> T,
{
cvt(f())
}
/// Returns the last error from the network subsystem.
fn last_error() -> io::Error {
io::Error::from_raw_os_error(unsafe { netc::SOLID_NET_GetLastError() })
}
pub(super) fn error_name(er: abi::ER) -> Option<&'static str> {
unsafe { CStr::from_ptr(netc::strerror(er)) }.to_str().ok()
}
pub(super) fn decode_error_kind(er: abi::ER) -> ErrorKind {
let errno = netc::SOLID_NET_ERR_BASE - er;
match errno as libc::c_int {
libc::ECONNREFUSED => ErrorKind::ConnectionRefused,
libc::ECONNRESET => ErrorKind::ConnectionReset,
libc::EPERM | libc::EACCES => ErrorKind::PermissionDenied,
libc::EPIPE => ErrorKind::BrokenPipe,
libc::ENOTCONN => ErrorKind::NotConnected,
libc::ECONNABORTED => ErrorKind::ConnectionAborted,
libc::EADDRNOTAVAIL => ErrorKind::AddrNotAvailable,
libc::EADDRINUSE => ErrorKind::AddrInUse,
libc::ENOENT => ErrorKind::NotFound,
libc::EINTR => ErrorKind::Interrupted,
libc::EINVAL => ErrorKind::InvalidInput,
libc::ETIMEDOUT => ErrorKind::TimedOut,
libc::EEXIST => ErrorKind::AlreadyExists,
libc::ENOSYS => ErrorKind::Unsupported,
libc::ENOMEM => ErrorKind::OutOfMemory,
libc::EAGAIN => ErrorKind::WouldBlock,
_ => ErrorKind::Uncategorized,
}
}
pub fn init() {}
pub struct Socket(FileDesc);
impl Socket {
pub fn new(addr: &SocketAddr, ty: c_int) -> io::Result<Socket> {
let fam = match *addr {
SocketAddr::V4(..) => netc::AF_INET,
SocketAddr::V6(..) => netc::AF_INET6,
};
Socket::new_raw(fam, ty)
}
pub fn new_raw(fam: c_int, ty: c_int) -> io::Result<Socket> {
unsafe {
let fd = cvt(netc::socket(fam, ty, 0))?;
let fd = FileDesc::new(fd);
let socket = Socket(fd);
Ok(socket)
}
}
pub fn connect_timeout(&self, addr: &SocketAddr, timeout: Duration) -> io::Result<()> {
self.set_nonblocking(true)?;
let r = unsafe {
let (addr, len) = addr.into_inner();
cvt(netc::connect(self.0.raw(), addr.as_ptr(), len))
};
self.set_nonblocking(false)?;
match r {
Ok(_) => return Ok(()),
// there's no ErrorKind for EINPROGRESS
Err(ref e) if e.raw_os_error() == Some(netc::EINPROGRESS) => {}
Err(e) => return Err(e),
}
if timeout.as_secs() == 0 && timeout.subsec_nanos() == 0 {
return Err(io::const_io_error!(
io::ErrorKind::InvalidInput,
"cannot set a 0 duration timeout",
));
}
let mut timeout =
netc::timeval { tv_sec: timeout.as_secs() as _, tv_usec: timeout.subsec_micros() as _ };
if timeout.tv_sec == 0 && timeout.tv_usec == 0 {
timeout.tv_usec = 1;
}
let fds = netc::fd_set { num_fds: 1, fds: [self.0.raw()] };
let mut writefds = fds;
let mut errorfds = fds;
let n = unsafe {
cvt(netc::select(
self.0.raw() + 1,
ptr::null_mut(),
&mut writefds,
&mut errorfds,
&mut timeout,
))?
};
match n {
0 => Err(io::const_io_error!(io::ErrorKind::TimedOut, "connection timed out")),
_ => {
let can_write = writefds.num_fds != 0;
if !can_write {
if let Some(e) = self.take_error()? {
return Err(e);
}
}
Ok(())
}
}
}
pub fn accept(&self, storage: *mut sockaddr, len: *mut socklen_t) -> io::Result<Socket> {
let fd = cvt_r(|| unsafe { netc::accept(self.0.raw(), storage, len) })?;
let fd = FileDesc::new(fd);
Ok(Socket(fd))
}
pub fn duplicate(&self) -> io::Result<Socket> {
self.0.duplicate().map(Socket)
}
fn recv_with_flags(&self, buf: &mut [u8], flags: c_int) -> io::Result<usize> {
let ret = cvt(unsafe {
netc::recv(self.0.raw(), buf.as_mut_ptr() as *mut c_void, buf.len(), flags)
})?;
Ok(ret as usize)
}
pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
self.recv_with_flags(buf, 0)
}
pub fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
self.recv_with_flags(buf, MSG_PEEK)
}
pub fn read_vectored(&self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
self.0.read_vectored(bufs)
}
#[inline]
pub fn is_read_vectored(&self) -> bool {
self.0.is_read_vectored()
}
fn recv_from_with_flags(
&self,
buf: &mut [u8],
flags: c_int,
) -> io::Result<(usize, SocketAddr)> {
let mut storage: netc::sockaddr_storage = unsafe { mem::zeroed() };
let mut addrlen = mem::size_of_val(&storage) as netc::socklen_t;
let n = cvt(unsafe {
netc::recvfrom(
self.0.raw(),
buf.as_mut_ptr() as *mut c_void,
buf.len(),
flags,
&mut storage as *mut _ as *mut _,
&mut addrlen,
)
})?;
Ok((n as usize, sockaddr_to_addr(&storage, addrlen as usize)?))
}
pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.recv_from_with_flags(buf, 0)
}
pub fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.recv_from_with_flags(buf, MSG_PEEK)
}
pub fn write(&self, buf: &[u8]) -> io::Result<usize> {
self.0.write(buf)
}
pub fn write_vectored(&self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
self.0.write_vectored(bufs)
}
#[inline]
pub fn is_write_vectored(&self) -> bool {
self.0.is_write_vectored()
}
pub fn set_timeout(&self, dur: Option<Duration>, kind: c_int) -> io::Result<()> {
let timeout = match dur {
Some(dur) => {
if dur.as_secs() == 0 && dur.subsec_nanos() == 0 {
return Err(io::const_io_error!(
io::ErrorKind::InvalidInput,
"cannot set a 0 duration timeout",
));
}
let secs = if dur.as_secs() > netc::c_long::MAX as u64 {
netc::c_long::MAX
} else {
dur.as_secs() as netc::c_long
};
let mut timeout = netc::timeval { tv_sec: secs, tv_usec: dur.subsec_micros() as _ };
if timeout.tv_sec == 0 && timeout.tv_usec == 0 {
timeout.tv_usec = 1;
}
timeout
}
None => netc::timeval { tv_sec: 0, tv_usec: 0 },
};
setsockopt(self, netc::SOL_SOCKET, kind, timeout)
}
pub fn timeout(&self, kind: c_int) -> io::Result<Option<Duration>> {
let raw: netc::timeval = getsockopt(self, netc::SOL_SOCKET, kind)?;
if raw.tv_sec == 0 && raw.tv_usec == 0 {
Ok(None)
} else {
let sec = raw.tv_sec as u64;
let nsec = (raw.tv_usec as u32) * 1000;
Ok(Some(Duration::new(sec, nsec)))
}
}
pub fn shutdown(&self, how: Shutdown) -> io::Result<()> {
let how = match how {
Shutdown::Write => netc::SHUT_WR,
Shutdown::Read => netc::SHUT_RD,
Shutdown::Both => netc::SHUT_RDWR,
};
cvt(unsafe { netc::shutdown(self.0.raw(), how) })?;
Ok(())
}
pub fn set_linger(&self, linger: Option<Duration>) -> io::Result<()> {
let linger = netc::linger {
l_onoff: linger.is_some() as netc::c_int,
l_linger: linger.unwrap_or_default().as_secs() as netc::c_int,
};
setsockopt(self, netc::SOL_SOCKET, netc::SO_LINGER, linger)
}
pub fn linger(&self) -> io::Result<Option<Duration>> {
let val: netc::linger = getsockopt(self, netc::SOL_SOCKET, netc::SO_LINGER)?;
Ok((val.l_onoff != 0).then(|| Duration::from_secs(val.l_linger as u64)))
}
pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> {
setsockopt(self, netc::IPPROTO_TCP, netc::TCP_NODELAY, nodelay as c_int)
}
pub fn nodelay(&self) -> io::Result<bool> {
let raw: c_int = getsockopt(self, netc::IPPROTO_TCP, netc::TCP_NODELAY)?;
Ok(raw != 0)
}
pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> {
let mut nonblocking = nonblocking as c_int;
cvt(unsafe {
netc::ioctl(*self.as_inner(), netc::FIONBIO, (&mut nonblocking) as *mut c_int as _)
})
.map(drop)
}
pub fn take_error(&self) -> io::Result<Option<io::Error>> {
let raw: c_int = getsockopt(self, netc::SOL_SOCKET, netc::SO_ERROR)?;
if raw == 0 { Ok(None) } else { Ok(Some(io::Error::from_raw_os_error(raw as i32))) }
}
// This method is used by sys_common code to abstract over targets.
pub fn as_raw(&self) -> c_int {
*self.as_inner()
}
}
impl AsInner<c_int> for Socket {
fn as_inner(&self) -> &c_int {
self.0.as_inner()
}
}
impl FromInner<c_int> for Socket {
fn from_inner(fd: c_int) -> Socket {
Socket(FileDesc::new(fd))
}
}
impl IntoInner<c_int> for Socket {
fn into_inner(self) -> c_int {
self.0.into_raw()
}
}