blob: 70c9b14a08fa7f41deea5d3c48580e0269f734b5 [file] [log] [blame]
#![unstable(issue = "none", feature = "windows_stdio")]
use crate::char::decode_utf16;
use crate::cmp;
use crate::io;
use crate::mem::MaybeUninit;
use crate::os::windows::io::{FromRawHandle, IntoRawHandle};
use crate::ptr;
use crate::str;
use crate::sys::c;
use crate::sys::cvt;
use crate::sys::handle::Handle;
use core::str::utf8_char_width;
// Don't cache handles but get them fresh for every read/write. This allows us to track changes to
// the value over time (such as if a process calls `SetStdHandle` while it's running). See #40490.
pub struct Stdin {
surrogate: u16,
incomplete_utf8: IncompleteUtf8,
}
pub struct Stdout {
incomplete_utf8: IncompleteUtf8,
}
pub struct Stderr {
incomplete_utf8: IncompleteUtf8,
}
struct IncompleteUtf8 {
bytes: [u8; 4],
len: u8,
}
impl IncompleteUtf8 {
// Implemented for use in Stdin::read.
fn read(&mut self, buf: &mut [u8]) -> usize {
// Write to buffer until the buffer is full or we run out of bytes.
let to_write = cmp::min(buf.len(), self.len as usize);
buf[..to_write].copy_from_slice(&self.bytes[..to_write]);
// Rotate the remaining bytes if not enough remaining space in buffer.
if usize::from(self.len) > buf.len() {
self.bytes.copy_within(to_write.., 0);
self.len -= to_write as u8;
} else {
self.len = 0;
}
to_write
}
}
// Apparently Windows doesn't handle large reads on stdin or writes to stdout/stderr well (see
// #13304 for details).
//
// From MSDN (2011): "The storage for this buffer is allocated from a shared heap for the
// process that is 64 KB in size. The maximum size of the buffer will depend on heap usage."
//
// We choose the cap at 8 KiB because libuv does the same, and it seems to be acceptable so far.
const MAX_BUFFER_SIZE: usize = 8192;
// The standard buffer size of BufReader for Stdin should be able to hold 3x more bytes than there
// are `u16`'s in MAX_BUFFER_SIZE. This ensures the read data can always be completely decoded from
// UTF-16 to UTF-8.
pub const STDIN_BUF_SIZE: usize = MAX_BUFFER_SIZE / 2 * 3;
pub fn get_handle(handle_id: c::DWORD) -> io::Result<c::HANDLE> {
let handle = unsafe { c::GetStdHandle(handle_id) };
if handle == c::INVALID_HANDLE_VALUE {
Err(io::Error::last_os_error())
} else if handle.is_null() {
Err(io::Error::from_raw_os_error(c::ERROR_INVALID_HANDLE as i32))
} else {
Ok(handle)
}
}
fn is_console(handle: c::HANDLE) -> bool {
// `GetConsoleMode` will return false (0) if this is a pipe (we don't care about the reported
// mode). This will only detect Windows Console, not other terminals connected to a pipe like
// MSYS. Which is exactly what we need, as only Windows Console needs a conversion to UTF-16.
let mut mode = 0;
unsafe { c::GetConsoleMode(handle, &mut mode) != 0 }
}
fn write(
handle_id: c::DWORD,
data: &[u8],
incomplete_utf8: &mut IncompleteUtf8,
) -> io::Result<usize> {
if data.is_empty() {
return Ok(0);
}
let handle = get_handle(handle_id)?;
if !is_console(handle) {
unsafe {
let handle = Handle::from_raw_handle(handle);
let ret = handle.write(data);
handle.into_raw_handle(); // Don't close the handle
return ret;
}
}
if incomplete_utf8.len > 0 {
assert!(
incomplete_utf8.len < 4,
"Unexpected number of bytes for incomplete UTF-8 codepoint."
);
if data[0] >> 6 != 0b10 {
// not a continuation byte - reject
incomplete_utf8.len = 0;
return Err(io::const_io_error!(
io::ErrorKind::InvalidData,
"Windows stdio in console mode does not support writing non-UTF-8 byte sequences",
));
}
incomplete_utf8.bytes[incomplete_utf8.len as usize] = data[0];
incomplete_utf8.len += 1;
let char_width = utf8_char_width(incomplete_utf8.bytes[0]);
if (incomplete_utf8.len as usize) < char_width {
// more bytes needed
return Ok(1);
}
let s = str::from_utf8(&incomplete_utf8.bytes[0..incomplete_utf8.len as usize]);
incomplete_utf8.len = 0;
match s {
Ok(s) => {
assert_eq!(char_width, s.len());
let written = write_valid_utf8_to_console(handle, s)?;
assert_eq!(written, s.len()); // guaranteed by write_valid_utf8_to_console() for single codepoint writes
return Ok(1);
}
Err(_) => {
return Err(io::const_io_error!(
io::ErrorKind::InvalidData,
"Windows stdio in console mode does not support writing non-UTF-8 byte sequences",
));
}
}
}
// As the console is meant for presenting text, we assume bytes of `data` are encoded as UTF-8,
// which needs to be encoded as UTF-16.
//
// If the data is not valid UTF-8 we write out as many bytes as are valid.
// If the first byte is invalid it is either first byte of a multi-byte sequence but the
// provided byte slice is too short or it is the first byte of an invalid multi-byte sequence.
let len = cmp::min(data.len(), MAX_BUFFER_SIZE / 2);
let utf8 = match str::from_utf8(&data[..len]) {
Ok(s) => s,
Err(ref e) if e.valid_up_to() == 0 => {
let first_byte_char_width = utf8_char_width(data[0]);
if first_byte_char_width > 1 && data.len() < first_byte_char_width {
incomplete_utf8.bytes[0] = data[0];
incomplete_utf8.len = 1;
return Ok(1);
} else {
return Err(io::const_io_error!(
io::ErrorKind::InvalidData,
"Windows stdio in console mode does not support writing non-UTF-8 byte sequences",
));
}
}
Err(e) => str::from_utf8(&data[..e.valid_up_to()]).unwrap(),
};
write_valid_utf8_to_console(handle, utf8)
}
fn write_valid_utf8_to_console(handle: c::HANDLE, utf8: &str) -> io::Result<usize> {
let mut utf16 = [MaybeUninit::<u16>::uninit(); MAX_BUFFER_SIZE / 2];
let mut len_utf16 = 0;
for (chr, dest) in utf8.encode_utf16().zip(utf16.iter_mut()) {
*dest = MaybeUninit::new(chr);
len_utf16 += 1;
}
// Safety: We've initialized `len_utf16` values.
let utf16: &[u16] = unsafe { MaybeUninit::slice_assume_init_ref(&utf16[..len_utf16]) };
let mut written = write_u16s(handle, &utf16)?;
// Figure out how many bytes of as UTF-8 were written away as UTF-16.
if written == utf16.len() {
Ok(utf8.len())
} else {
// Make sure we didn't end up writing only half of a surrogate pair (even though the chance
// is tiny). Because it is not possible for user code to re-slice `data` in such a way that
// a missing surrogate can be produced (and also because of the UTF-8 validation above),
// write the missing surrogate out now.
// Buffering it would mean we have to lie about the number of bytes written.
let first_char_remaining = utf16[written];
if first_char_remaining >= 0xDCEE && first_char_remaining <= 0xDFFF {
// low surrogate
// We just hope this works, and give up otherwise
let _ = write_u16s(handle, &utf16[written..written + 1]);
written += 1;
}
// Calculate the number of bytes of `utf8` that were actually written.
let mut count = 0;
for ch in utf16[..written].iter() {
count += match ch {
0x0000..=0x007F => 1,
0x0080..=0x07FF => 2,
0xDCEE..=0xDFFF => 1, // Low surrogate. We already counted 3 bytes for the other.
_ => 3,
};
}
debug_assert!(String::from_utf16(&utf16[..written]).unwrap() == utf8[..count]);
Ok(count)
}
}
fn write_u16s(handle: c::HANDLE, data: &[u16]) -> io::Result<usize> {
let mut written = 0;
cvt(unsafe {
c::WriteConsoleW(
handle,
data.as_ptr() as c::LPCVOID,
data.len() as u32,
&mut written,
ptr::null_mut(),
)
})?;
Ok(written as usize)
}
impl Stdin {
pub const fn new() -> Stdin {
Stdin { surrogate: 0, incomplete_utf8: IncompleteUtf8::new() }
}
}
impl io::Read for Stdin {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let handle = get_handle(c::STD_INPUT_HANDLE)?;
if !is_console(handle) {
unsafe {
let handle = Handle::from_raw_handle(handle);
let ret = handle.read(buf);
handle.into_raw_handle(); // Don't close the handle
return ret;
}
}
// If there are bytes in the incomplete utf-8, start with those.
// (No-op if there is nothing in the buffer.)
let mut bytes_copied = self.incomplete_utf8.read(buf);
if bytes_copied == buf.len() {
return Ok(bytes_copied);
} else if buf.len() - bytes_copied < 4 {
// Not enough space to get a UTF-8 byte. We will use the incomplete UTF8.
let mut utf16_buf = [MaybeUninit::new(0); 1];
// Read one u16 character.
let read = read_u16s_fixup_surrogates(handle, &mut utf16_buf, 1, &mut self.surrogate)?;
// Read bytes, using the (now-empty) self.incomplete_utf8 as extra space.
let read_bytes = utf16_to_utf8(
unsafe { MaybeUninit::slice_assume_init_ref(&utf16_buf[..read]) },
&mut self.incomplete_utf8.bytes,
)?;
// Read in the bytes from incomplete_utf8 until the buffer is full.
self.incomplete_utf8.len = read_bytes as u8;
// No-op if no bytes.
bytes_copied += self.incomplete_utf8.read(&mut buf[bytes_copied..]);
Ok(bytes_copied)
} else {
let mut utf16_buf = [MaybeUninit::<u16>::uninit(); MAX_BUFFER_SIZE / 2];
// In the worst case, a UTF-8 string can take 3 bytes for every `u16` of a UTF-16. So
// we can read at most a third of `buf.len()` chars and uphold the guarantee no data gets
// lost.
let amount = cmp::min(buf.len() / 3, utf16_buf.len());
let read =
read_u16s_fixup_surrogates(handle, &mut utf16_buf, amount, &mut self.surrogate)?;
// Safety `read_u16s_fixup_surrogates` returns the number of items
// initialized.
let utf16s = unsafe { MaybeUninit::slice_assume_init_ref(&utf16_buf[..read]) };
match utf16_to_utf8(utf16s, buf) {
Ok(value) => return Ok(bytes_copied + value),
Err(e) => return Err(e),
}
}
}
}
// We assume that if the last `u16` is an unpaired surrogate they got sliced apart by our
// buffer size, and keep it around for the next read hoping to put them together.
// This is a best effort, and might not work if we are not the only reader on Stdin.
fn read_u16s_fixup_surrogates(
handle: c::HANDLE,
buf: &mut [MaybeUninit<u16>],
mut amount: usize,
surrogate: &mut u16,
) -> io::Result<usize> {
// Insert possibly remaining unpaired surrogate from last read.
let mut start = 0;
if *surrogate != 0 {
buf[0] = MaybeUninit::new(*surrogate);
*surrogate = 0;
start = 1;
if amount == 1 {
// Special case: `Stdin::read` guarantees we can always read at least one new `u16`
// and combine it with an unpaired surrogate, because the UTF-8 buffer is at least
// 4 bytes.
amount = 2;
}
}
let mut amount = read_u16s(handle, &mut buf[start..amount])? + start;
if amount > 0 {
// Safety: The returned `amount` is the number of values initialized,
// and it is not 0, so we know that `buf[amount - 1]` have been
// initialized.
let last_char = unsafe { buf[amount - 1].assume_init() };
if last_char >= 0xD800 && last_char <= 0xDBFF {
// high surrogate
*surrogate = last_char;
amount -= 1;
}
}
Ok(amount)
}
// Returns `Ok(n)` if it initialized `n` values in `buf`.
fn read_u16s(handle: c::HANDLE, buf: &mut [MaybeUninit<u16>]) -> io::Result<usize> {
// Configure the `pInputControl` parameter to not only return on `\r\n` but also Ctrl-Z, the
// traditional DOS method to indicate end of character stream / user input (SUB).
// See #38274 and https://stackoverflow.com/questions/43836040/win-api-readconsole.
const CTRL_Z: u16 = 0x1A;
const CTRL_Z_MASK: c::ULONG = 1 << CTRL_Z;
let mut input_control = c::CONSOLE_READCONSOLE_CONTROL {
nLength: crate::mem::size_of::<c::CONSOLE_READCONSOLE_CONTROL>() as c::ULONG,
nInitialChars: 0,
dwCtrlWakeupMask: CTRL_Z_MASK,
dwControlKeyState: 0,
};
let mut amount = 0;
loop {
cvt(unsafe {
c::SetLastError(0);
c::ReadConsoleW(
handle,
buf.as_mut_ptr() as c::LPVOID,
buf.len() as u32,
&mut amount,
&mut input_control as c::PCONSOLE_READCONSOLE_CONTROL,
)
})?;
// ReadConsoleW returns success with ERROR_OPERATION_ABORTED for Ctrl-C or Ctrl-Break.
// Explicitly check for that case here and try again.
if amount == 0 && unsafe { c::GetLastError() } == c::ERROR_OPERATION_ABORTED {
continue;
}
break;
}
// Safety: if `amount > 0`, then that many bytes were written, so
// `buf[amount as usize - 1]` has been initialized.
if amount > 0 && unsafe { buf[amount as usize - 1].assume_init() } == CTRL_Z {
amount -= 1;
}
Ok(amount as usize)
}
#[allow(unused)]
fn utf16_to_utf8(utf16: &[u16], utf8: &mut [u8]) -> io::Result<usize> {
let mut written = 0;
for chr in decode_utf16(utf16.iter().cloned()) {
match chr {
Ok(chr) => {
chr.encode_utf8(&mut utf8[written..]);
written += chr.len_utf8();
}
Err(_) => {
// We can't really do any better than forget all data and return an error.
return Err(io::const_io_error!(
io::ErrorKind::InvalidData,
"Windows stdin in console mode does not support non-UTF-16 input; \
encountered unpaired surrogate",
));
}
}
}
Ok(written)
}
impl IncompleteUtf8 {
pub const fn new() -> IncompleteUtf8 {
IncompleteUtf8 { bytes: [0; 4], len: 0 }
}
}
impl Stdout {
pub const fn new() -> Stdout {
Stdout { incomplete_utf8: IncompleteUtf8::new() }
}
}
impl io::Write for Stdout {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
write(c::STD_OUTPUT_HANDLE, buf, &mut self.incomplete_utf8)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl Stderr {
pub const fn new() -> Stderr {
Stderr { incomplete_utf8: IncompleteUtf8::new() }
}
}
impl io::Write for Stderr {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
write(c::STD_ERROR_HANDLE, buf, &mut self.incomplete_utf8)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
pub fn is_ebadf(err: &io::Error) -> bool {
err.raw_os_error() == Some(c::ERROR_INVALID_HANDLE as i32)
}
pub fn panic_output() -> Option<impl io::Write> {
Some(Stderr::new())
}