blob: 71b14d0ae3f4c1b8ce4a206f998eca4ea60b25c8 [file] [log] [blame]
//! Almost direct (but slightly optimized) Rust translation of Figure 3 of "Printing
//! Floating-Point Numbers Quickly and Accurately"[^1].
//!
//! [^1]: Burger, R. G. and Dybvig, R. K. 1996. Printing floating-point numbers
//! quickly and accurately. SIGPLAN Not. 31, 5 (May. 1996), 108-116.
use crate::cmp::Ordering;
use crate::mem::MaybeUninit;
use crate::num::bignum::Big32x40 as Big;
use crate::num::bignum::Digit32 as Digit;
use crate::num::flt2dec::estimator::estimate_scaling_factor;
use crate::num::flt2dec::{round_up, Decoded, MAX_SIG_DIGITS};
static POW10: [Digit; 10] =
[1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000];
static TWOPOW10: [Digit; 10] =
[2, 20, 200, 2000, 20000, 200000, 2000000, 20000000, 200000000, 2000000000];
// precalculated arrays of `Digit`s for 10^(2^n)
static POW10TO16: [Digit; 2] = [0x6fc10000, 0x2386f2];
static POW10TO32: [Digit; 4] = [0, 0x85acef81, 0x2d6d415b, 0x4ee];
static POW10TO64: [Digit; 7] = [0, 0, 0xbf6a1f01, 0x6e38ed64, 0xdaa797ed, 0xe93ff9f4, 0x184f03];
static POW10TO128: [Digit; 14] = [
0, 0, 0, 0, 0x2e953e01, 0x3df9909, 0xf1538fd, 0x2374e42f, 0xd3cff5ec, 0xc404dc08, 0xbccdb0da,
0xa6337f19, 0xe91f2603, 0x24e,
];
static POW10TO256: [Digit; 27] = [
0, 0, 0, 0, 0, 0, 0, 0, 0x982e7c01, 0xbed3875b, 0xd8d99f72, 0x12152f87, 0x6bde50c6, 0xcf4a6e70,
0xd595d80f, 0x26b2716e, 0xadc666b0, 0x1d153624, 0x3c42d35a, 0x63ff540e, 0xcc5573c0, 0x65f9ef17,
0x55bc28f2, 0x80dcc7f7, 0xf46eeddc, 0x5fdcefce, 0x553f7,
];
#[doc(hidden)]
pub fn mul_pow10(x: &mut Big, n: usize) -> &mut Big {
debug_assert!(n < 512);
if n & 7 != 0 {
x.mul_small(POW10[n & 7]);
}
if n & 8 != 0 {
x.mul_small(POW10[8]);
}
if n & 16 != 0 {
x.mul_digits(&POW10TO16);
}
if n & 32 != 0 {
x.mul_digits(&POW10TO32);
}
if n & 64 != 0 {
x.mul_digits(&POW10TO64);
}
if n & 128 != 0 {
x.mul_digits(&POW10TO128);
}
if n & 256 != 0 {
x.mul_digits(&POW10TO256);
}
x
}
fn div_2pow10(x: &mut Big, mut n: usize) -> &mut Big {
let largest = POW10.len() - 1;
while n > largest {
x.div_rem_small(POW10[largest]);
n -= largest;
}
x.div_rem_small(TWOPOW10[n]);
x
}
// only usable when `x < 16 * scale`; `scaleN` should be `scale.mul_small(N)`
fn div_rem_upto_16<'a>(
x: &'a mut Big,
scale: &Big,
scale2: &Big,
scale4: &Big,
scale8: &Big,
) -> (u8, &'a mut Big) {
let mut d = 0;
if *x >= *scale8 {
x.sub(scale8);
d += 8;
}
if *x >= *scale4 {
x.sub(scale4);
d += 4;
}
if *x >= *scale2 {
x.sub(scale2);
d += 2;
}
if *x >= *scale {
x.sub(scale);
d += 1;
}
debug_assert!(*x < *scale);
(d, x)
}
/// The shortest mode implementation for Dragon.
pub fn format_shortest<'a>(
d: &Decoded,
buf: &'a mut [MaybeUninit<u8>],
) -> (/*digits*/ &'a [u8], /*exp*/ i16) {
// the number `v` to format is known to be:
// - equal to `mant * 2^exp`;
// - preceded by `(mant - 2 * minus) * 2^exp` in the original type; and
// - followed by `(mant + 2 * plus) * 2^exp` in the original type.
//
// obviously, `minus` and `plus` cannot be zero. (for infinities, we use out-of-range values.)
// also we assume that at least one digit is generated, i.e., `mant` cannot be zero too.
//
// this also means that any number between `low = (mant - minus) * 2^exp` and
// `high = (mant + plus) * 2^exp` will map to this exact floating point number,
// with bounds included when the original mantissa was even (i.e., `!mant_was_odd`).
assert!(d.mant > 0);
assert!(d.minus > 0);
assert!(d.plus > 0);
assert!(d.mant.checked_add(d.plus).is_some());
assert!(d.mant.checked_sub(d.minus).is_some());
assert!(buf.len() >= MAX_SIG_DIGITS);
// `a.cmp(&b) < rounding` is `if d.inclusive {a <= b} else {a < b}`
let rounding = if d.inclusive { Ordering::Greater } else { Ordering::Equal };
// estimate `k_0` from original inputs satisfying `10^(k_0-1) < high <= 10^(k_0+1)`.
// the tight bound `k` satisfying `10^(k-1) < high <= 10^k` is calculated later.
let mut k = estimate_scaling_factor(d.mant + d.plus, d.exp);
// convert `{mant, plus, minus} * 2^exp` into the fractional form so that:
// - `v = mant / scale`
// - `low = (mant - minus) / scale`
// - `high = (mant + plus) / scale`
let mut mant = Big::from_u64(d.mant);
let mut minus = Big::from_u64(d.minus);
let mut plus = Big::from_u64(d.plus);
let mut scale = Big::from_small(1);
if d.exp < 0 {
scale.mul_pow2(-d.exp as usize);
} else {
mant.mul_pow2(d.exp as usize);
minus.mul_pow2(d.exp as usize);
plus.mul_pow2(d.exp as usize);
}
// divide `mant` by `10^k`. now `scale / 10 < mant + plus <= scale * 10`.
if k >= 0 {
mul_pow10(&mut scale, k as usize);
} else {
mul_pow10(&mut mant, -k as usize);
mul_pow10(&mut minus, -k as usize);
mul_pow10(&mut plus, -k as usize);
}
// fixup when `mant + plus > scale` (or `>=`).
// we are not actually modifying `scale`, since we can skip the initial multiplication instead.
// now `scale < mant + plus <= scale * 10` and we are ready to generate digits.
//
// note that `d[0]` *can* be zero, when `scale - plus < mant < scale`.
// in this case rounding-up condition (`up` below) will be triggered immediately.
if scale.cmp(mant.clone().add(&plus)) < rounding {
// equivalent to scaling `scale` by 10
k += 1;
} else {
mant.mul_small(10);
minus.mul_small(10);
plus.mul_small(10);
}
// cache `(2, 4, 8) * scale` for digit generation.
let mut scale2 = scale.clone();
scale2.mul_pow2(1);
let mut scale4 = scale.clone();
scale4.mul_pow2(2);
let mut scale8 = scale.clone();
scale8.mul_pow2(3);
let mut down;
let mut up;
let mut i = 0;
loop {
// invariants, where `d[0..n-1]` are digits generated so far:
// - `v = mant / scale * 10^(k-n-1) + d[0..n-1] * 10^(k-n)`
// - `v - low = minus / scale * 10^(k-n-1)`
// - `high - v = plus / scale * 10^(k-n-1)`
// - `(mant + plus) / scale <= 10` (thus `mant / scale < 10`)
// where `d[i..j]` is a shorthand for `d[i] * 10^(j-i) + ... + d[j-1] * 10 + d[j]`.
// generate one digit: `d[n] = floor(mant / scale) < 10`.
let (d, _) = div_rem_upto_16(&mut mant, &scale, &scale2, &scale4, &scale8);
debug_assert!(d < 10);
buf[i] = MaybeUninit::new(b'0' + d);
i += 1;
// this is a simplified description of the modified Dragon algorithm.
// many intermediate derivations and completeness arguments are omitted for convenience.
//
// start with modified invariants, as we've updated `n`:
// - `v = mant / scale * 10^(k-n) + d[0..n-1] * 10^(k-n)`
// - `v - low = minus / scale * 10^(k-n)`
// - `high - v = plus / scale * 10^(k-n)`
//
// assume that `d[0..n-1]` is the shortest representation between `low` and `high`,
// i.e., `d[0..n-1]` satisfies both of the following but `d[0..n-2]` doesn't:
// - `low < d[0..n-1] * 10^(k-n) < high` (bijectivity: digits round to `v`); and
// - `abs(v / 10^(k-n) - d[0..n-1]) <= 1/2` (the last digit is correct).
//
// the second condition simplifies to `2 * mant <= scale`.
// solving invariants in terms of `mant`, `low` and `high` yields
// a simpler version of the first condition: `-plus < mant < minus`.
// since `-plus < 0 <= mant`, we have the correct shortest representation
// when `mant < minus` and `2 * mant <= scale`.
// (the former becomes `mant <= minus` when the original mantissa is even.)
//
// when the second doesn't hold (`2 * mant > scale`), we need to increase the last digit.
// this is enough for restoring that condition: we already know that
// the digit generation guarantees `0 <= v / 10^(k-n) - d[0..n-1] < 1`.
// in this case, the first condition becomes `-plus < mant - scale < minus`.
// since `mant < scale` after the generation, we have `scale < mant + plus`.
// (again, this becomes `scale <= mant + plus` when the original mantissa is even.)
//
// in short:
// - stop and round `down` (keep digits as is) when `mant < minus` (or `<=`).
// - stop and round `up` (increase the last digit) when `scale < mant + plus` (or `<=`).
// - keep generating otherwise.
down = mant.cmp(&minus) < rounding;
up = scale.cmp(mant.clone().add(&plus)) < rounding;
if down || up {
break;
} // we have the shortest representation, proceed to the rounding
// restore the invariants.
// this makes the algorithm always terminating: `minus` and `plus` always increases,
// but `mant` is clipped modulo `scale` and `scale` is fixed.
mant.mul_small(10);
minus.mul_small(10);
plus.mul_small(10);
}
// rounding up happens when
// i) only the rounding-up condition was triggered, or
// ii) both conditions were triggered and tie breaking prefers rounding up.
if up && (!down || *mant.mul_pow2(1) >= scale) {
// if rounding up changes the length, the exponent should also change.
// it seems that this condition is very hard to satisfy (possibly impossible),
// but we are just being safe and consistent here.
// SAFETY: we initialized that memory above.
if let Some(c) = round_up(unsafe { MaybeUninit::slice_assume_init_mut(&mut buf[..i]) }) {
buf[i] = MaybeUninit::new(c);
i += 1;
k += 1;
}
}
// SAFETY: we initialized that memory above.
(unsafe { MaybeUninit::slice_assume_init_ref(&buf[..i]) }, k)
}
/// The exact and fixed mode implementation for Dragon.
pub fn format_exact<'a>(
d: &Decoded,
buf: &'a mut [MaybeUninit<u8>],
limit: i16,
) -> (/*digits*/ &'a [u8], /*exp*/ i16) {
assert!(d.mant > 0);
assert!(d.minus > 0);
assert!(d.plus > 0);
assert!(d.mant.checked_add(d.plus).is_some());
assert!(d.mant.checked_sub(d.minus).is_some());
// estimate `k_0` from original inputs satisfying `10^(k_0-1) < v <= 10^(k_0+1)`.
let mut k = estimate_scaling_factor(d.mant, d.exp);
// `v = mant / scale`.
let mut mant = Big::from_u64(d.mant);
let mut scale = Big::from_small(1);
if d.exp < 0 {
scale.mul_pow2(-d.exp as usize);
} else {
mant.mul_pow2(d.exp as usize);
}
// divide `mant` by `10^k`. now `scale / 10 < mant <= scale * 10`.
if k >= 0 {
mul_pow10(&mut scale, k as usize);
} else {
mul_pow10(&mut mant, -k as usize);
}
// fixup when `mant + plus >= scale`, where `plus / scale = 10^-buf.len() / 2`.
// in order to keep the fixed-size bignum, we actually use `mant + floor(plus) >= scale`.
// we are not actually modifying `scale`, since we can skip the initial multiplication instead.
// again with the shortest algorithm, `d[0]` can be zero but will be eventually rounded up.
if *div_2pow10(&mut scale.clone(), buf.len()).add(&mant) >= scale {
// equivalent to scaling `scale` by 10
k += 1;
} else {
mant.mul_small(10);
}
// if we are working with the last-digit limitation, we need to shorten the buffer
// before the actual rendering in order to avoid double rounding.
// note that we have to enlarge the buffer again when rounding up happens!
let mut len = if k < limit {
// oops, we cannot even produce *one* digit.
// this is possible when, say, we've got something like 9.5 and it's being rounded to 10.
// we return an empty buffer, with an exception of the later rounding-up case
// which occurs when `k == limit` and has to produce exactly one digit.
0
} else if ((k as i32 - limit as i32) as usize) < buf.len() {
(k - limit) as usize
} else {
buf.len()
};
if len > 0 {
// cache `(2, 4, 8) * scale` for digit generation.
// (this can be expensive, so do not calculate them when the buffer is empty.)
let mut scale2 = scale.clone();
scale2.mul_pow2(1);
let mut scale4 = scale.clone();
scale4.mul_pow2(2);
let mut scale8 = scale.clone();
scale8.mul_pow2(3);
for i in 0..len {
if mant.is_zero() {
// following digits are all zeroes, we stop here
// do *not* try to perform rounding! rather, fill remaining digits.
for c in &mut buf[i..len] {
*c = MaybeUninit::new(b'0');
}
// SAFETY: we initialized that memory above.
return (unsafe { MaybeUninit::slice_assume_init_ref(&buf[..len]) }, k);
}
let mut d = 0;
if mant >= scale8 {
mant.sub(&scale8);
d += 8;
}
if mant >= scale4 {
mant.sub(&scale4);
d += 4;
}
if mant >= scale2 {
mant.sub(&scale2);
d += 2;
}
if mant >= scale {
mant.sub(&scale);
d += 1;
}
debug_assert!(mant < scale);
debug_assert!(d < 10);
buf[i] = MaybeUninit::new(b'0' + d);
mant.mul_small(10);
}
}
// rounding up if we stop in the middle of digits
// if the following digits are exactly 5000..., check the prior digit and try to
// round to even (i.e., avoid rounding up when the prior digit is even).
let order = mant.cmp(scale.mul_small(5));
if order == Ordering::Greater
|| (order == Ordering::Equal
// SAFETY: `buf[len-1]` is initialized.
&& len > 0 && unsafe { buf[len - 1].assume_init() } & 1 == 1)
{
// if rounding up changes the length, the exponent should also change.
// but we've been requested a fixed number of digits, so do not alter the buffer...
// SAFETY: we initialized that memory above.
if let Some(c) = round_up(unsafe { MaybeUninit::slice_assume_init_mut(&mut buf[..len]) }) {
// ...unless we've been requested the fixed precision instead.
// we also need to check that, if the original buffer was empty,
// the additional digit can only be added when `k == limit` (edge case).
k += 1;
if k > limit && len < buf.len() {
buf[len] = MaybeUninit::new(c);
len += 1;
}
}
}
// SAFETY: we initialized that memory above.
(unsafe { MaybeUninit::slice_assume_init_ref(&buf[..len]) }, k)
}