blob: 052fd34d0b6b7492ca91e0cee82a0c03bef3ea2f [file] [log] [blame]
//! Free functions to create `&[T]` and `&mut [T]`.
use crate::array;
use crate::intrinsics::{
assert_unsafe_precondition, is_aligned_and_not_null, is_valid_allocation_size,
};
use crate::ops::Range;
use crate::ptr;
/// Forms a slice from a pointer and a length.
///
/// The `len` argument is the number of **elements**, not the number of bytes.
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// * `data` must be [valid] for reads for `len * mem::size_of::<T>()` many bytes,
/// and it must be properly aligned. This means in particular:
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects. See [below](#incorrect-usage)
/// for an example incorrectly not taking this into account.
/// * `data` must be non-null and aligned even for zero-length slices. One
/// reason for this is that enum layout optimizations may rely on references
/// (including slices of any length) being aligned and non-null to distinguish
/// them from other data. You can obtain a pointer that is usable as `data`
/// for zero-length slices using [`NonNull::dangling()`].
///
/// * `data` must point to `len` consecutive properly initialized values of type `T`.
///
/// * The memory referenced by the returned slice must not be mutated for the duration
/// of lifetime `'a`, except inside an `UnsafeCell`.
///
/// * The total size `len * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// # Caveat
///
/// The lifetime for the returned slice is inferred from its usage. To
/// prevent accidental misuse, it's suggested to tie the lifetime to whichever
/// source lifetime is safe in the context, such as by providing a helper
/// function taking the lifetime of a host value for the slice, or by explicit
/// annotation.
///
/// # Examples
///
/// ```
/// use std::slice;
///
/// // manifest a slice for a single element
/// let x = 42;
/// let ptr = &x as *const _;
/// let slice = unsafe { slice::from_raw_parts(ptr, 1) };
/// assert_eq!(slice[0], 42);
/// ```
///
/// ### Incorrect usage
///
/// The following `join_slices` function is **unsound** ⚠️
///
/// ```rust,no_run
/// use std::slice;
///
/// fn join_slices<'a, T>(fst: &'a [T], snd: &'a [T]) -> &'a [T] {
/// let fst_end = fst.as_ptr().wrapping_add(fst.len());
/// let snd_start = snd.as_ptr();
/// assert_eq!(fst_end, snd_start, "Slices must be contiguous!");
/// unsafe {
/// // The assertion above ensures `fst` and `snd` are contiguous, but they might
/// // still be contained within _different allocated objects_, in which case
/// // creating this slice is undefined behavior.
/// slice::from_raw_parts(fst.as_ptr(), fst.len() + snd.len())
/// }
/// }
///
/// fn main() {
/// // `a` and `b` are different allocated objects...
/// let a = 42;
/// let b = 27;
/// // ... which may nevertheless be laid out contiguously in memory: | a | b |
/// let _ = join_slices(slice::from_ref(&a), slice::from_ref(&b)); // UB
/// }
/// ```
///
/// [valid]: ptr#safety
/// [`NonNull::dangling()`]: ptr::NonNull::dangling
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_slice_from_raw_parts", since = "1.64.0")]
#[must_use]
pub const unsafe fn from_raw_parts<'a, T>(data: *const T, len: usize) -> &'a [T] {
// SAFETY: the caller must uphold the safety contract for `from_raw_parts`.
unsafe {
assert_unsafe_precondition!(
"slice::from_raw_parts requires the pointer to be aligned and non-null, and the total size of the slice not to exceed `isize::MAX`",
[T](data: *const T, len: usize) => is_aligned_and_not_null(data)
&& is_valid_allocation_size::<T>(len)
);
&*ptr::slice_from_raw_parts(data, len)
}
}
/// Performs the same functionality as [`from_raw_parts`], except that a
/// mutable slice is returned.
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// * `data` must be [valid] for both reads and writes for `len * mem::size_of::<T>()` many bytes,
/// and it must be properly aligned. This means in particular:
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects.
/// * `data` must be non-null and aligned even for zero-length slices. One
/// reason for this is that enum layout optimizations may rely on references
/// (including slices of any length) being aligned and non-null to distinguish
/// them from other data. You can obtain a pointer that is usable as `data`
/// for zero-length slices using [`NonNull::dangling()`].
///
/// * `data` must point to `len` consecutive properly initialized values of type `T`.
///
/// * The memory referenced by the returned slice must not be accessed through any other pointer
/// (not derived from the return value) for the duration of lifetime `'a`.
/// Both read and write accesses are forbidden.
///
/// * The total size `len * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// [valid]: ptr#safety
/// [`NonNull::dangling()`]: ptr::NonNull::dangling
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_slice_from_raw_parts_mut", issue = "67456")]
#[must_use]
pub const unsafe fn from_raw_parts_mut<'a, T>(data: *mut T, len: usize) -> &'a mut [T] {
// SAFETY: the caller must uphold the safety contract for `from_raw_parts_mut`.
unsafe {
assert_unsafe_precondition!(
"slice::from_raw_parts_mut requires the pointer to be aligned and non-null, and the total size of the slice not to exceed `isize::MAX`",
[T](data: *mut T, len: usize) => is_aligned_and_not_null(data)
&& is_valid_allocation_size::<T>(len)
);
&mut *ptr::slice_from_raw_parts_mut(data, len)
}
}
/// Converts a reference to T into a slice of length 1 (without copying).
#[stable(feature = "from_ref", since = "1.28.0")]
#[rustc_const_stable(feature = "const_slice_from_ref_shared", since = "1.63.0")]
#[must_use]
pub const fn from_ref<T>(s: &T) -> &[T] {
array::from_ref(s)
}
/// Converts a reference to T into a slice of length 1 (without copying).
#[stable(feature = "from_ref", since = "1.28.0")]
#[rustc_const_unstable(feature = "const_slice_from_ref", issue = "90206")]
#[must_use]
pub const fn from_mut<T>(s: &mut T) -> &mut [T] {
array::from_mut(s)
}
/// Forms a slice from a pointer range.
///
/// This function is useful for interacting with foreign interfaces which
/// use two pointers to refer to a range of elements in memory, as is
/// common in C++.
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// * The `start` pointer of the range must be a [valid] and properly aligned pointer
/// to the first element of a slice.
///
/// * The `end` pointer must be a [valid] and properly aligned pointer to *one past*
/// the last element, such that the offset from the end to the start pointer is
/// the length of the slice.
///
/// * The range must contain `N` consecutive properly initialized values of type `T`:
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects.
///
/// * The memory referenced by the returned slice must not be mutated for the duration
/// of lifetime `'a`, except inside an `UnsafeCell`.
///
/// * The total length of the range must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// Note that a range created from [`slice::as_ptr_range`] fulfills these requirements.
///
/// # Panics
///
/// This function panics if `T` is a Zero-Sized Type (“ZST”).
///
/// # Caveat
///
/// The lifetime for the returned slice is inferred from its usage. To
/// prevent accidental misuse, it's suggested to tie the lifetime to whichever
/// source lifetime is safe in the context, such as by providing a helper
/// function taking the lifetime of a host value for the slice, or by explicit
/// annotation.
///
/// # Examples
///
/// ```
/// #![feature(slice_from_ptr_range)]
///
/// use core::slice;
///
/// let x = [1, 2, 3];
/// let range = x.as_ptr_range();
///
/// unsafe {
/// assert_eq!(slice::from_ptr_range(range), &x);
/// }
/// ```
///
/// [valid]: ptr#safety
#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
#[rustc_const_unstable(feature = "const_slice_from_ptr_range", issue = "89792")]
pub const unsafe fn from_ptr_range<'a, T>(range: Range<*const T>) -> &'a [T] {
// SAFETY: the caller must uphold the safety contract for `from_ptr_range`.
unsafe { from_raw_parts(range.start, range.end.sub_ptr(range.start)) }
}
/// Forms a mutable slice from a pointer range.
///
/// This is the same functionality as [`from_ptr_range`], except that a
/// mutable slice is returned.
///
/// This function is useful for interacting with foreign interfaces which
/// use two pointers to refer to a range of elements in memory, as is
/// common in C++.
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// * The `start` pointer of the range must be a [valid] and properly aligned pointer
/// to the first element of a slice.
///
/// * The `end` pointer must be a [valid] and properly aligned pointer to *one past*
/// the last element, such that the offset from the end to the start pointer is
/// the length of the slice.
///
/// * The range must contain `N` consecutive properly initialized values of type `T`:
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects.
///
/// * The memory referenced by the returned slice must not be accessed through any other pointer
/// (not derived from the return value) for the duration of lifetime `'a`.
/// Both read and write accesses are forbidden.
///
/// * The total length of the range must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// Note that a range created from [`slice::as_mut_ptr_range`] fulfills these requirements.
///
/// # Panics
///
/// This function panics if `T` is a Zero-Sized Type (“ZST”).
///
/// # Caveat
///
/// The lifetime for the returned slice is inferred from its usage. To
/// prevent accidental misuse, it's suggested to tie the lifetime to whichever
/// source lifetime is safe in the context, such as by providing a helper
/// function taking the lifetime of a host value for the slice, or by explicit
/// annotation.
///
/// # Examples
///
/// ```
/// #![feature(slice_from_ptr_range)]
///
/// use core::slice;
///
/// let mut x = [1, 2, 3];
/// let range = x.as_mut_ptr_range();
///
/// unsafe {
/// assert_eq!(slice::from_mut_ptr_range(range), &mut [1, 2, 3]);
/// }
/// ```
///
/// [valid]: ptr#safety
#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
#[rustc_const_unstable(feature = "const_slice_from_mut_ptr_range", issue = "89792")]
pub const unsafe fn from_mut_ptr_range<'a, T>(range: Range<*mut T>) -> &'a mut [T] {
// SAFETY: the caller must uphold the safety contract for `from_mut_ptr_range`.
unsafe { from_raw_parts_mut(range.start, range.end.sub_ptr(range.start)) }
}