blob: 2acef432f2063a7978d7163f60e80a0b8f4d4460 [file] [log] [blame]
//! Operations related to UTF-8 validation.
use crate::mem;
use super::Utf8Error;
/// Returns the initial codepoint accumulator for the first byte.
/// The first byte is special, only want bottom 5 bits for width 2, 4 bits
/// for width 3, and 3 bits for width 4.
#[inline]
const fn utf8_first_byte(byte: u8, width: u32) -> u32 {
(byte & (0x7F >> width)) as u32
}
/// Returns the value of `ch` updated with continuation byte `byte`.
#[inline]
const fn utf8_acc_cont_byte(ch: u32, byte: u8) -> u32 {
(ch << 6) | (byte & CONT_MASK) as u32
}
/// Checks whether the byte is a UTF-8 continuation byte (i.e., starts with the
/// bits `10`).
#[inline]
pub(super) const fn utf8_is_cont_byte(byte: u8) -> bool {
(byte as i8) < -64
}
/// Reads the next code point out of a byte iterator (assuming a
/// UTF-8-like encoding).
///
/// # Safety
///
/// `bytes` must produce a valid UTF-8-like (UTF-8 or WTF-8) string
#[unstable(feature = "str_internals", issue = "none")]
#[inline]
pub unsafe fn next_code_point<'a, I: Iterator<Item = &'a u8>>(bytes: &mut I) -> Option<u32> {
// Decode UTF-8
let x = *bytes.next()?;
if x < 128 {
return Some(x as u32);
}
// Multibyte case follows
// Decode from a byte combination out of: [[[x y] z] w]
// NOTE: Performance is sensitive to the exact formulation here
let init = utf8_first_byte(x, 2);
// SAFETY: `bytes` produces an UTF-8-like string,
// so the iterator must produce a value here.
let y = unsafe { *bytes.next().unwrap_unchecked() };
let mut ch = utf8_acc_cont_byte(init, y);
if x >= 0xE0 {
// [[x y z] w] case
// 5th bit in 0xE0 .. 0xEF is always clear, so `init` is still valid
// SAFETY: `bytes` produces an UTF-8-like string,
// so the iterator must produce a value here.
let z = unsafe { *bytes.next().unwrap_unchecked() };
let y_z = utf8_acc_cont_byte((y & CONT_MASK) as u32, z);
ch = init << 12 | y_z;
if x >= 0xF0 {
// [x y z w] case
// use only the lower 3 bits of `init`
// SAFETY: `bytes` produces an UTF-8-like string,
// so the iterator must produce a value here.
let w = unsafe { *bytes.next().unwrap_unchecked() };
ch = (init & 7) << 18 | utf8_acc_cont_byte(y_z, w);
}
}
Some(ch)
}
/// Reads the last code point out of a byte iterator (assuming a
/// UTF-8-like encoding).
///
/// # Safety
///
/// `bytes` must produce a valid UTF-8-like (UTF-8 or WTF-8) string
#[inline]
pub(super) unsafe fn next_code_point_reverse<'a, I>(bytes: &mut I) -> Option<u32>
where
I: DoubleEndedIterator<Item = &'a u8>,
{
// Decode UTF-8
let w = match *bytes.next_back()? {
next_byte if next_byte < 128 => return Some(next_byte as u32),
back_byte => back_byte,
};
// Multibyte case follows
// Decode from a byte combination out of: [x [y [z w]]]
let mut ch;
// SAFETY: `bytes` produces an UTF-8-like string,
// so the iterator must produce a value here.
let z = unsafe { *bytes.next_back().unwrap_unchecked() };
ch = utf8_first_byte(z, 2);
if utf8_is_cont_byte(z) {
// SAFETY: `bytes` produces an UTF-8-like string,
// so the iterator must produce a value here.
let y = unsafe { *bytes.next_back().unwrap_unchecked() };
ch = utf8_first_byte(y, 3);
if utf8_is_cont_byte(y) {
// SAFETY: `bytes` produces an UTF-8-like string,
// so the iterator must produce a value here.
let x = unsafe { *bytes.next_back().unwrap_unchecked() };
ch = utf8_first_byte(x, 4);
ch = utf8_acc_cont_byte(ch, y);
}
ch = utf8_acc_cont_byte(ch, z);
}
ch = utf8_acc_cont_byte(ch, w);
Some(ch)
}
const NONASCII_MASK: usize = usize::repeat_u8(0x80);
/// Returns `true` if any byte in the word `x` is nonascii (>= 128).
#[inline]
const fn contains_nonascii(x: usize) -> bool {
(x & NONASCII_MASK) != 0
}
/// Walks through `v` checking that it's a valid UTF-8 sequence,
/// returning `Ok(())` in that case, or, if it is invalid, `Err(err)`.
#[inline(always)]
#[rustc_const_unstable(feature = "str_internals", issue = "none")]
pub(super) const fn run_utf8_validation(v: &[u8]) -> Result<(), Utf8Error> {
let mut index = 0;
let len = v.len();
let usize_bytes = mem::size_of::<usize>();
let ascii_block_size = 2 * usize_bytes;
let blocks_end = if len >= ascii_block_size { len - ascii_block_size + 1 } else { 0 };
let align = v.as_ptr().align_offset(usize_bytes);
while index < len {
let old_offset = index;
macro_rules! err {
($error_len: expr) => {
return Err(Utf8Error { valid_up_to: old_offset, error_len: $error_len })
};
}
macro_rules! next {
() => {{
index += 1;
// we needed data, but there was none: error!
if index >= len {
err!(None)
}
v[index]
}};
}
let first = v[index];
if first >= 128 {
let w = utf8_char_width(first);
// 2-byte encoding is for codepoints \u{0080} to \u{07ff}
// first C2 80 last DF BF
// 3-byte encoding is for codepoints \u{0800} to \u{ffff}
// first E0 A0 80 last EF BF BF
// excluding surrogates codepoints \u{d800} to \u{dfff}
// ED A0 80 to ED BF BF
// 4-byte encoding is for codepoints \u{1000}0 to \u{10ff}ff
// first F0 90 80 80 last F4 8F BF BF
//
// Use the UTF-8 syntax from the RFC
//
// https://tools.ietf.org/html/rfc3629
// UTF8-1 = %x00-7F
// UTF8-2 = %xC2-DF UTF8-tail
// UTF8-3 = %xE0 %xA0-BF UTF8-tail / %xE1-EC 2( UTF8-tail ) /
// %xED %x80-9F UTF8-tail / %xEE-EF 2( UTF8-tail )
// UTF8-4 = %xF0 %x90-BF 2( UTF8-tail ) / %xF1-F3 3( UTF8-tail ) /
// %xF4 %x80-8F 2( UTF8-tail )
match w {
2 => {
if next!() as i8 >= -64 {
err!(Some(1))
}
}
3 => {
match (first, next!()) {
(0xE0, 0xA0..=0xBF)
| (0xE1..=0xEC, 0x80..=0xBF)
| (0xED, 0x80..=0x9F)
| (0xEE..=0xEF, 0x80..=0xBF) => {}
_ => err!(Some(1)),
}
if next!() as i8 >= -64 {
err!(Some(2))
}
}
4 => {
match (first, next!()) {
(0xF0, 0x90..=0xBF) | (0xF1..=0xF3, 0x80..=0xBF) | (0xF4, 0x80..=0x8F) => {}
_ => err!(Some(1)),
}
if next!() as i8 >= -64 {
err!(Some(2))
}
if next!() as i8 >= -64 {
err!(Some(3))
}
}
_ => err!(Some(1)),
}
index += 1;
} else {
// Ascii case, try to skip forward quickly.
// When the pointer is aligned, read 2 words of data per iteration
// until we find a word containing a non-ascii byte.
if align != usize::MAX && align.wrapping_sub(index) % usize_bytes == 0 {
let ptr = v.as_ptr();
while index < blocks_end {
// SAFETY: since `align - index` and `ascii_block_size` are
// multiples of `usize_bytes`, `block = ptr.add(index)` is
// always aligned with a `usize` so it's safe to dereference
// both `block` and `block.add(1)`.
unsafe {
let block = ptr.add(index) as *const usize;
// break if there is a nonascii byte
let zu = contains_nonascii(*block);
let zv = contains_nonascii(*block.add(1));
if zu || zv {
break;
}
}
index += ascii_block_size;
}
// step from the point where the wordwise loop stopped
while index < len && v[index] < 128 {
index += 1;
}
} else {
index += 1;
}
}
}
Ok(())
}
// https://tools.ietf.org/html/rfc3629
const UTF8_CHAR_WIDTH: &[u8; 256] = &[
// 1 2 3 4 5 6 7 8 9 A B C D E F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 8
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 9
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // B
0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // D
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // E
4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // F
];
/// Given a first byte, determines how many bytes are in this UTF-8 character.
#[unstable(feature = "str_internals", issue = "none")]
#[must_use]
#[inline]
pub const fn utf8_char_width(b: u8) -> usize {
UTF8_CHAR_WIDTH[b as usize] as usize
}
/// Mask of the value bits of a continuation byte.
const CONT_MASK: u8 = 0b0011_1111;