blob: 31e9b34fb9efdf1739cebdd4b100977fb5269af8 [file] [log] [blame]
#![unstable(feature = "process_internals", issue = "none")]
#[cfg(test)]
mod tests;
use crate::cmp;
use crate::collections::BTreeMap;
use crate::env;
use crate::env::consts::{EXE_EXTENSION, EXE_SUFFIX};
use crate::ffi::{OsStr, OsString};
use crate::fmt;
use crate::io::{self, Error, ErrorKind};
use crate::mem;
use crate::num::NonZeroI32;
use crate::os::windows::ffi::{OsStrExt, OsStringExt};
use crate::os::windows::io::{AsHandle, AsRawHandle, BorrowedHandle, FromRawHandle, IntoRawHandle};
use crate::path::{Path, PathBuf};
use crate::ptr;
use crate::sync::Mutex;
use crate::sys::args::{self, Arg};
use crate::sys::c;
use crate::sys::c::NonZeroDWORD;
use crate::sys::cvt;
use crate::sys::fs::{File, OpenOptions};
use crate::sys::handle::Handle;
use crate::sys::path;
use crate::sys::pipe::{self, AnonPipe};
use crate::sys::stdio;
use crate::sys_common::process::{CommandEnv, CommandEnvs};
use crate::sys_common::IntoInner;
use libc::{c_void, EXIT_FAILURE, EXIT_SUCCESS};
////////////////////////////////////////////////////////////////////////////////
// Command
////////////////////////////////////////////////////////////////////////////////
#[derive(Clone, Debug, Eq)]
#[doc(hidden)]
pub struct EnvKey {
os_string: OsString,
// This stores a UTF-16 encoded string to workaround the mismatch between
// Rust's OsString (WTF-8) and the Windows API string type (UTF-16).
// Normally converting on every API call is acceptable but here
// `c::CompareStringOrdinal` will be called for every use of `==`.
utf16: Vec<u16>,
}
impl EnvKey {
fn new<T: Into<OsString>>(key: T) -> Self {
EnvKey::from(key.into())
}
}
// Comparing Windows environment variable keys[1] are behaviourally the
// composition of two operations[2]:
//
// 1. Case-fold both strings. This is done using a language-independent
// uppercase mapping that's unique to Windows (albeit based on data from an
// older Unicode spec). It only operates on individual UTF-16 code units so
// surrogates are left unchanged. This uppercase mapping can potentially change
// between Windows versions.
//
// 2. Perform an ordinal comparison of the strings. A comparison using ordinal
// is just a comparison based on the numerical value of each UTF-16 code unit[3].
//
// Because the case-folding mapping is unique to Windows and not guaranteed to
// be stable, we ask the OS to compare the strings for us. This is done by
// calling `CompareStringOrdinal`[4] with `bIgnoreCase` set to `TRUE`.
//
// [1] https://docs.microsoft.com/en-us/dotnet/standard/base-types/best-practices-strings#choosing-a-stringcomparison-member-for-your-method-call
// [2] https://docs.microsoft.com/en-us/dotnet/standard/base-types/best-practices-strings#stringtoupper-and-stringtolower
// [3] https://docs.microsoft.com/en-us/dotnet/api/system.stringcomparison?view=net-5.0#System_StringComparison_Ordinal
// [4] https://docs.microsoft.com/en-us/windows/win32/api/stringapiset/nf-stringapiset-comparestringordinal
impl Ord for EnvKey {
fn cmp(&self, other: &Self) -> cmp::Ordering {
unsafe {
let result = c::CompareStringOrdinal(
self.utf16.as_ptr(),
self.utf16.len() as _,
other.utf16.as_ptr(),
other.utf16.len() as _,
c::TRUE,
);
match result {
c::CSTR_LESS_THAN => cmp::Ordering::Less,
c::CSTR_EQUAL => cmp::Ordering::Equal,
c::CSTR_GREATER_THAN => cmp::Ordering::Greater,
// `CompareStringOrdinal` should never fail so long as the parameters are correct.
_ => panic!("comparing environment keys failed: {}", Error::last_os_error()),
}
}
}
}
impl PartialOrd for EnvKey {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for EnvKey {
fn eq(&self, other: &Self) -> bool {
if self.utf16.len() != other.utf16.len() {
false
} else {
self.cmp(other) == cmp::Ordering::Equal
}
}
}
impl PartialOrd<str> for EnvKey {
fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
Some(self.cmp(&EnvKey::new(other)))
}
}
impl PartialEq<str> for EnvKey {
fn eq(&self, other: &str) -> bool {
if self.os_string.len() != other.len() {
false
} else {
self.cmp(&EnvKey::new(other)) == cmp::Ordering::Equal
}
}
}
// Environment variable keys should preserve their original case even though
// they are compared using a caseless string mapping.
impl From<OsString> for EnvKey {
fn from(k: OsString) -> Self {
EnvKey { utf16: k.encode_wide().collect(), os_string: k }
}
}
impl From<EnvKey> for OsString {
fn from(k: EnvKey) -> Self {
k.os_string
}
}
impl From<&OsStr> for EnvKey {
fn from(k: &OsStr) -> Self {
Self::from(k.to_os_string())
}
}
impl AsRef<OsStr> for EnvKey {
fn as_ref(&self) -> &OsStr {
&self.os_string
}
}
pub(crate) fn ensure_no_nuls<T: AsRef<OsStr>>(str: T) -> io::Result<T> {
if str.as_ref().encode_wide().any(|b| b == 0) {
Err(io::const_io_error!(ErrorKind::InvalidInput, "nul byte found in provided data"))
} else {
Ok(str)
}
}
pub struct Command {
program: OsString,
args: Vec<Arg>,
env: CommandEnv,
cwd: Option<OsString>,
flags: u32,
detach: bool, // not currently exposed in std::process
stdin: Option<Stdio>,
stdout: Option<Stdio>,
stderr: Option<Stdio>,
force_quotes_enabled: bool,
}
pub enum Stdio {
Inherit,
Null,
MakePipe,
Pipe(AnonPipe),
Handle(Handle),
}
pub struct StdioPipes {
pub stdin: Option<AnonPipe>,
pub stdout: Option<AnonPipe>,
pub stderr: Option<AnonPipe>,
}
impl Command {
pub fn new(program: &OsStr) -> Command {
Command {
program: program.to_os_string(),
args: Vec::new(),
env: Default::default(),
cwd: None,
flags: 0,
detach: false,
stdin: None,
stdout: None,
stderr: None,
force_quotes_enabled: false,
}
}
pub fn arg(&mut self, arg: &OsStr) {
self.args.push(Arg::Regular(arg.to_os_string()))
}
pub fn env_mut(&mut self) -> &mut CommandEnv {
&mut self.env
}
pub fn cwd(&mut self, dir: &OsStr) {
self.cwd = Some(dir.to_os_string())
}
pub fn stdin(&mut self, stdin: Stdio) {
self.stdin = Some(stdin);
}
pub fn stdout(&mut self, stdout: Stdio) {
self.stdout = Some(stdout);
}
pub fn stderr(&mut self, stderr: Stdio) {
self.stderr = Some(stderr);
}
pub fn creation_flags(&mut self, flags: u32) {
self.flags = flags;
}
pub fn force_quotes(&mut self, enabled: bool) {
self.force_quotes_enabled = enabled;
}
pub fn raw_arg(&mut self, command_str_to_append: &OsStr) {
self.args.push(Arg::Raw(command_str_to_append.to_os_string()))
}
pub fn get_program(&self) -> &OsStr {
&self.program
}
pub fn get_args(&self) -> CommandArgs<'_> {
let iter = self.args.iter();
CommandArgs { iter }
}
pub fn get_envs(&self) -> CommandEnvs<'_> {
self.env.iter()
}
pub fn get_current_dir(&self) -> Option<&Path> {
self.cwd.as_ref().map(|cwd| Path::new(cwd))
}
pub fn spawn(
&mut self,
default: Stdio,
needs_stdin: bool,
) -> io::Result<(Process, StdioPipes)> {
let maybe_env = self.env.capture_if_changed();
let child_paths = if let Some(env) = maybe_env.as_ref() {
env.get(&EnvKey::new("PATH")).map(|s| s.as_os_str())
} else {
None
};
let program = resolve_exe(&self.program, || env::var_os("PATH"), child_paths)?;
// Case insensitive "ends_with" of UTF-16 encoded ".bat" or ".cmd"
let is_batch_file = matches!(
program.len().checked_sub(5).and_then(|i| program.get(i..)),
Some([46, 98 | 66, 97 | 65, 116 | 84, 0] | [46, 99 | 67, 109 | 77, 100 | 68, 0])
);
let (program, mut cmd_str) = if is_batch_file {
(
command_prompt()?,
args::make_bat_command_line(
&args::to_user_path(program)?,
&self.args,
self.force_quotes_enabled,
)?,
)
} else {
let cmd_str = make_command_line(&self.program, &self.args, self.force_quotes_enabled)?;
(program, cmd_str)
};
cmd_str.push(0); // add null terminator
// stolen from the libuv code.
let mut flags = self.flags | c::CREATE_UNICODE_ENVIRONMENT;
if self.detach {
flags |= c::DETACHED_PROCESS | c::CREATE_NEW_PROCESS_GROUP;
}
let (envp, _data) = make_envp(maybe_env)?;
let (dirp, _data) = make_dirp(self.cwd.as_ref())?;
let mut pi = zeroed_process_information();
// Prepare all stdio handles to be inherited by the child. This
// currently involves duplicating any existing ones with the ability to
// be inherited by child processes. Note, however, that once an
// inheritable handle is created, *any* spawned child will inherit that
// handle. We only want our own child to inherit this handle, so we wrap
// the remaining portion of this spawn in a mutex.
//
// For more information, msdn also has an article about this race:
// https://support.microsoft.com/kb/315939
static CREATE_PROCESS_LOCK: Mutex<()> = Mutex::new(());
let _guard = CREATE_PROCESS_LOCK.lock();
let mut pipes = StdioPipes { stdin: None, stdout: None, stderr: None };
let null = Stdio::Null;
let default_stdin = if needs_stdin { &default } else { &null };
let stdin = self.stdin.as_ref().unwrap_or(default_stdin);
let stdout = self.stdout.as_ref().unwrap_or(&default);
let stderr = self.stderr.as_ref().unwrap_or(&default);
let stdin = stdin.to_handle(c::STD_INPUT_HANDLE, &mut pipes.stdin)?;
let stdout = stdout.to_handle(c::STD_OUTPUT_HANDLE, &mut pipes.stdout)?;
let stderr = stderr.to_handle(c::STD_ERROR_HANDLE, &mut pipes.stderr)?;
let mut si = zeroed_startupinfo();
si.cb = mem::size_of::<c::STARTUPINFO>() as c::DWORD;
// If at least one of stdin, stdout or stderr are set (i.e. are non null)
// then set the `hStd` fields in `STARTUPINFO`.
// Otherwise skip this and allow the OS to apply its default behaviour.
// This provides more consistent behaviour between Win7 and Win8+.
let is_set = |stdio: &Handle| !stdio.as_raw_handle().is_null();
if is_set(&stderr) || is_set(&stdout) || is_set(&stdin) {
si.dwFlags |= c::STARTF_USESTDHANDLES;
si.hStdInput = stdin.as_raw_handle();
si.hStdOutput = stdout.as_raw_handle();
si.hStdError = stderr.as_raw_handle();
}
unsafe {
cvt(c::CreateProcessW(
program.as_ptr(),
cmd_str.as_mut_ptr(),
ptr::null_mut(),
ptr::null_mut(),
c::TRUE,
flags,
envp,
dirp,
&mut si,
&mut pi,
))
}?;
unsafe {
Ok((
Process {
handle: Handle::from_raw_handle(pi.hProcess),
main_thread_handle: Handle::from_raw_handle(pi.hThread),
},
pipes,
))
}
}
}
impl fmt::Debug for Command {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.program.fmt(f)?;
for arg in &self.args {
f.write_str(" ")?;
match arg {
Arg::Regular(s) => s.fmt(f),
Arg::Raw(s) => f.write_str(&s.to_string_lossy()),
}?;
}
Ok(())
}
}
// Resolve `exe_path` to the executable name.
//
// * If the path is simply a file name then use the paths given by `search_paths` to find the executable.
// * Otherwise use the `exe_path` as given.
//
// This function may also append `.exe` to the name. The rationale for doing so is as follows:
//
// It is a very strong convention that Windows executables have the `exe` extension.
// In Rust, it is common to omit this extension.
// Therefore this functions first assumes `.exe` was intended.
// It falls back to the plain file name if a full path is given and the extension is omitted
// or if only a file name is given and it already contains an extension.
fn resolve_exe<'a>(
exe_path: &'a OsStr,
parent_paths: impl FnOnce() -> Option<OsString>,
child_paths: Option<&OsStr>,
) -> io::Result<Vec<u16>> {
// Early return if there is no filename.
if exe_path.is_empty() || path::has_trailing_slash(exe_path) {
return Err(io::const_io_error!(
io::ErrorKind::InvalidInput,
"program path has no file name",
));
}
// Test if the file name has the `exe` extension.
// This does a case-insensitive `ends_with`.
let has_exe_suffix = if exe_path.len() >= EXE_SUFFIX.len() {
exe_path.bytes()[exe_path.len() - EXE_SUFFIX.len()..]
.eq_ignore_ascii_case(EXE_SUFFIX.as_bytes())
} else {
false
};
// If `exe_path` is an absolute path or a sub-path then don't search `PATH` for it.
if !path::is_file_name(exe_path) {
if has_exe_suffix {
// The application name is a path to a `.exe` file.
// Let `CreateProcessW` figure out if it exists or not.
return path::maybe_verbatim(Path::new(exe_path));
}
let mut path = PathBuf::from(exe_path);
// Append `.exe` if not already there.
path = path::append_suffix(path, EXE_SUFFIX.as_ref());
if let Some(path) = program_exists(&path) {
return Ok(path);
} else {
// It's ok to use `set_extension` here because the intent is to
// remove the extension that was just added.
path.set_extension("");
return path::maybe_verbatim(&path);
}
} else {
ensure_no_nuls(exe_path)?;
// From the `CreateProcessW` docs:
// > If the file name does not contain an extension, .exe is appended.
// Note that this rule only applies when searching paths.
let has_extension = exe_path.bytes().contains(&b'.');
// Search the directories given by `search_paths`.
let result = search_paths(parent_paths, child_paths, |mut path| {
path.push(&exe_path);
if !has_extension {
path.set_extension(EXE_EXTENSION);
}
program_exists(&path)
});
if let Some(path) = result {
return Ok(path);
}
}
// If we get here then the executable cannot be found.
Err(io::const_io_error!(io::ErrorKind::NotFound, "program not found"))
}
// Calls `f` for every path that should be used to find an executable.
// Returns once `f` returns the path to an executable or all paths have been searched.
fn search_paths<Paths, Exists>(
parent_paths: Paths,
child_paths: Option<&OsStr>,
mut exists: Exists,
) -> Option<Vec<u16>>
where
Paths: FnOnce() -> Option<OsString>,
Exists: FnMut(PathBuf) -> Option<Vec<u16>>,
{
// 1. Child paths
// This is for consistency with Rust's historic behaviour.
if let Some(paths) = child_paths {
for path in env::split_paths(paths).filter(|p| !p.as_os_str().is_empty()) {
if let Some(path) = exists(path) {
return Some(path);
}
}
}
// 2. Application path
if let Ok(mut app_path) = env::current_exe() {
app_path.pop();
if let Some(path) = exists(app_path) {
return Some(path);
}
}
// 3 & 4. System paths
// SAFETY: This uses `fill_utf16_buf` to safely call the OS functions.
unsafe {
if let Ok(Some(path)) = super::fill_utf16_buf(
|buf, size| c::GetSystemDirectoryW(buf, size),
|buf| exists(PathBuf::from(OsString::from_wide(buf))),
) {
return Some(path);
}
#[cfg(not(target_vendor = "uwp"))]
{
if let Ok(Some(path)) = super::fill_utf16_buf(
|buf, size| c::GetWindowsDirectoryW(buf, size),
|buf| exists(PathBuf::from(OsString::from_wide(buf))),
) {
return Some(path);
}
}
}
// 5. Parent paths
if let Some(parent_paths) = parent_paths() {
for path in env::split_paths(&parent_paths).filter(|p| !p.as_os_str().is_empty()) {
if let Some(path) = exists(path) {
return Some(path);
}
}
}
None
}
/// Check if a file exists without following symlinks.
fn program_exists(path: &Path) -> Option<Vec<u16>> {
unsafe {
let path = path::maybe_verbatim(path).ok()?;
// Getting attributes using `GetFileAttributesW` does not follow symlinks
// and it will almost always be successful if the link exists.
// There are some exceptions for special system files (e.g. the pagefile)
// but these are not executable.
if c::GetFileAttributesW(path.as_ptr()) == c::INVALID_FILE_ATTRIBUTES {
None
} else {
Some(path)
}
}
}
impl Stdio {
fn to_handle(&self, stdio_id: c::DWORD, pipe: &mut Option<AnonPipe>) -> io::Result<Handle> {
match *self {
Stdio::Inherit => match stdio::get_handle(stdio_id) {
Ok(io) => unsafe {
let io = Handle::from_raw_handle(io);
let ret = io.duplicate(0, true, c::DUPLICATE_SAME_ACCESS);
io.into_raw_handle();
ret
},
// If no stdio handle is available, then propagate the null value.
Err(..) => unsafe { Ok(Handle::from_raw_handle(ptr::null_mut())) },
},
Stdio::MakePipe => {
let ours_readable = stdio_id != c::STD_INPUT_HANDLE;
let pipes = pipe::anon_pipe(ours_readable, true)?;
*pipe = Some(pipes.ours);
Ok(pipes.theirs.into_handle())
}
Stdio::Pipe(ref source) => {
let ours_readable = stdio_id != c::STD_INPUT_HANDLE;
pipe::spawn_pipe_relay(source, ours_readable, true).map(AnonPipe::into_handle)
}
Stdio::Handle(ref handle) => handle.duplicate(0, true, c::DUPLICATE_SAME_ACCESS),
// Open up a reference to NUL with appropriate read/write
// permissions as well as the ability to be inherited to child
// processes (as this is about to be inherited).
Stdio::Null => {
let size = mem::size_of::<c::SECURITY_ATTRIBUTES>();
let mut sa = c::SECURITY_ATTRIBUTES {
nLength: size as c::DWORD,
lpSecurityDescriptor: ptr::null_mut(),
bInheritHandle: 1,
};
let mut opts = OpenOptions::new();
opts.read(stdio_id == c::STD_INPUT_HANDLE);
opts.write(stdio_id != c::STD_INPUT_HANDLE);
opts.security_attributes(&mut sa);
File::open(Path::new("NUL"), &opts).map(|file| file.into_inner())
}
}
}
}
impl From<AnonPipe> for Stdio {
fn from(pipe: AnonPipe) -> Stdio {
Stdio::Pipe(pipe)
}
}
impl From<File> for Stdio {
fn from(file: File) -> Stdio {
Stdio::Handle(file.into_inner())
}
}
////////////////////////////////////////////////////////////////////////////////
// Processes
////////////////////////////////////////////////////////////////////////////////
/// A value representing a child process.
///
/// The lifetime of this value is linked to the lifetime of the actual
/// process - the Process destructor calls self.finish() which waits
/// for the process to terminate.
pub struct Process {
handle: Handle,
main_thread_handle: Handle,
}
impl Process {
pub fn kill(&mut self) -> io::Result<()> {
cvt(unsafe { c::TerminateProcess(self.handle.as_raw_handle(), 1) })?;
Ok(())
}
pub fn id(&self) -> u32 {
unsafe { c::GetProcessId(self.handle.as_raw_handle()) as u32 }
}
pub fn main_thread_handle(&self) -> BorrowedHandle<'_> {
self.main_thread_handle.as_handle()
}
pub fn wait(&mut self) -> io::Result<ExitStatus> {
unsafe {
let res = c::WaitForSingleObject(self.handle.as_raw_handle(), c::INFINITE);
if res != c::WAIT_OBJECT_0 {
return Err(Error::last_os_error());
}
let mut status = 0;
cvt(c::GetExitCodeProcess(self.handle.as_raw_handle(), &mut status))?;
Ok(ExitStatus(status))
}
}
pub fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> {
unsafe {
match c::WaitForSingleObject(self.handle.as_raw_handle(), 0) {
c::WAIT_OBJECT_0 => {}
c::WAIT_TIMEOUT => {
return Ok(None);
}
_ => return Err(io::Error::last_os_error()),
}
let mut status = 0;
cvt(c::GetExitCodeProcess(self.handle.as_raw_handle(), &mut status))?;
Ok(Some(ExitStatus(status)))
}
}
pub fn handle(&self) -> &Handle {
&self.handle
}
pub fn into_handle(self) -> Handle {
self.handle
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ExitStatus(c::DWORD);
impl ExitStatus {
pub fn exit_ok(&self) -> Result<(), ExitStatusError> {
match NonZeroDWORD::try_from(self.0) {
/* was nonzero */ Ok(failure) => Err(ExitStatusError(failure)),
/* was zero, couldn't convert */ Err(_) => Ok(()),
}
}
pub fn code(&self) -> Option<i32> {
Some(self.0 as i32)
}
}
/// Converts a raw `c::DWORD` to a type-safe `ExitStatus` by wrapping it without copying.
impl From<c::DWORD> for ExitStatus {
fn from(u: c::DWORD) -> ExitStatus {
ExitStatus(u)
}
}
impl fmt::Display for ExitStatus {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Windows exit codes with the high bit set typically mean some form of
// unhandled exception or warning. In this scenario printing the exit
// code in decimal doesn't always make sense because it's a very large
// and somewhat gibberish number. The hex code is a bit more
// recognizable and easier to search for, so print that.
if self.0 & 0x80000000 != 0 {
write!(f, "exit code: {:#x}", self.0)
} else {
write!(f, "exit code: {}", self.0)
}
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ExitStatusError(c::NonZeroDWORD);
impl Into<ExitStatus> for ExitStatusError {
fn into(self) -> ExitStatus {
ExitStatus(self.0.into())
}
}
impl ExitStatusError {
pub fn code(self) -> Option<NonZeroI32> {
Some((u32::from(self.0) as i32).try_into().unwrap())
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ExitCode(c::DWORD);
impl ExitCode {
pub const SUCCESS: ExitCode = ExitCode(EXIT_SUCCESS as _);
pub const FAILURE: ExitCode = ExitCode(EXIT_FAILURE as _);
#[inline]
pub fn as_i32(&self) -> i32 {
self.0 as i32
}
}
impl From<u8> for ExitCode {
fn from(code: u8) -> Self {
ExitCode(c::DWORD::from(code))
}
}
impl From<u32> for ExitCode {
fn from(code: u32) -> Self {
ExitCode(c::DWORD::from(code))
}
}
fn zeroed_startupinfo() -> c::STARTUPINFO {
c::STARTUPINFO {
cb: 0,
lpReserved: ptr::null_mut(),
lpDesktop: ptr::null_mut(),
lpTitle: ptr::null_mut(),
dwX: 0,
dwY: 0,
dwXSize: 0,
dwYSize: 0,
dwXCountChars: 0,
dwYCountCharts: 0,
dwFillAttribute: 0,
dwFlags: 0,
wShowWindow: 0,
cbReserved2: 0,
lpReserved2: ptr::null_mut(),
hStdInput: ptr::null_mut(),
hStdOutput: ptr::null_mut(),
hStdError: ptr::null_mut(),
}
}
fn zeroed_process_information() -> c::PROCESS_INFORMATION {
c::PROCESS_INFORMATION {
hProcess: ptr::null_mut(),
hThread: ptr::null_mut(),
dwProcessId: 0,
dwThreadId: 0,
}
}
// Produces a wide string *without terminating null*; returns an error if
// `prog` or any of the `args` contain a nul.
fn make_command_line(argv0: &OsStr, args: &[Arg], force_quotes: bool) -> io::Result<Vec<u16>> {
// Encode the command and arguments in a command line string such
// that the spawned process may recover them using CommandLineToArgvW.
let mut cmd: Vec<u16> = Vec::new();
// Always quote the program name so CreateProcess to avoid ambiguity when
// the child process parses its arguments.
// Note that quotes aren't escaped here because they can't be used in arg0.
// But that's ok because file paths can't contain quotes.
cmd.push(b'"' as u16);
cmd.extend(argv0.encode_wide());
cmd.push(b'"' as u16);
for arg in args {
cmd.push(' ' as u16);
args::append_arg(&mut cmd, arg, force_quotes)?;
}
Ok(cmd)
}
// Get `cmd.exe` for use with bat scripts, encoded as a UTF-16 string.
fn command_prompt() -> io::Result<Vec<u16>> {
let mut system: Vec<u16> = super::fill_utf16_buf(
|buf, size| unsafe { c::GetSystemDirectoryW(buf, size) },
|buf| buf.into(),
)?;
system.extend("\\cmd.exe".encode_utf16().chain([0]));
Ok(system)
}
fn make_envp(maybe_env: Option<BTreeMap<EnvKey, OsString>>) -> io::Result<(*mut c_void, Vec<u16>)> {
// On Windows we pass an "environment block" which is not a char**, but
// rather a concatenation of null-terminated k=v\0 sequences, with a final
// \0 to terminate.
if let Some(env) = maybe_env {
let mut blk = Vec::new();
// If there are no environment variables to set then signal this by
// pushing a null.
if env.is_empty() {
blk.push(0);
}
for (k, v) in env {
ensure_no_nuls(k.os_string)?;
blk.extend(k.utf16);
blk.push('=' as u16);
blk.extend(ensure_no_nuls(v)?.encode_wide());
blk.push(0);
}
blk.push(0);
Ok((blk.as_mut_ptr() as *mut c_void, blk))
} else {
Ok((ptr::null_mut(), Vec::new()))
}
}
fn make_dirp(d: Option<&OsString>) -> io::Result<(*const u16, Vec<u16>)> {
match d {
Some(dir) => {
let mut dir_str: Vec<u16> = ensure_no_nuls(dir)?.encode_wide().collect();
dir_str.push(0);
Ok((dir_str.as_ptr(), dir_str))
}
None => Ok((ptr::null(), Vec::new())),
}
}
pub struct CommandArgs<'a> {
iter: crate::slice::Iter<'a, Arg>,
}
impl<'a> Iterator for CommandArgs<'a> {
type Item = &'a OsStr;
fn next(&mut self) -> Option<&'a OsStr> {
self.iter.next().map(|arg| match arg {
Arg::Regular(s) | Arg::Raw(s) => s.as_ref(),
})
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a> ExactSizeIterator for CommandArgs<'a> {
fn len(&self) -> usize {
self.iter.len()
}
fn is_empty(&self) -> bool {
self.iter.is_empty()
}
}
impl<'a> fmt::Debug for CommandArgs<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.iter.clone()).finish()
}
}