blob: c0025696bcf1530965caa399da0dc2e3dccb0ad7 [file] [log] [blame]
//! This module implements the [WebAssembly `SIMD128` ISA].
//!
//! [WebAssembly `SIMD128` ISA]:
//! https://github.com/WebAssembly/simd/blob/master/proposals/simd/SIMD.md
#![allow(non_camel_case_types)]
#![allow(unused_imports)]
use crate::{
core_arch::{simd, simd_llvm::*},
marker::Sized,
mem, ptr,
};
#[cfg(test)]
use stdarch_test::assert_instr;
types! {
/// WASM-specific 128-bit wide SIMD vector type.
///
/// This type corresponds to the `v128` type in the [WebAssembly SIMD
/// proposal](https://github.com/webassembly/simd). This type is 128-bits
/// large and the meaning of all the bits is defined within the context of
/// how this value is used.
///
/// This same type is used simultaneously for all 128-bit-wide SIMD types,
/// for example:
///
/// * sixteen 8-bit integers (both `i8` and `u8`)
/// * eight 16-bit integers (both `i16` and `u16`)
/// * four 32-bit integers (both `i32` and `u32`)
/// * two 64-bit integers (both `i64` and `u64`)
/// * four 32-bit floats (`f32`)
/// * two 64-bit floats (`f64`)
///
/// The `v128` type in Rust is intended to be quite analogous to the `v128`
/// type in WebAssembly. Operations on `v128` can only be performed with the
/// functions in this module.
// N.B., internals here are arbitrary.
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub struct v128(i32, i32, i32, i32);
}
macro_rules! conversions {
($(($name:ident = $ty:ty))*) => {
impl v128 {
$(
#[inline(always)]
fn $name(self) -> $ty {
unsafe { mem::transmute(self) }
}
)*
}
$(
impl $ty {
#[inline(always)]
#[rustc_const_stable(feature = "wasm_simd_const", since = "1.56.0")]
const fn v128(self) -> v128 {
unsafe { mem::transmute(self) }
}
}
)*
}
}
conversions! {
(as_u8x16 = simd::u8x16)
(as_u16x8 = simd::u16x8)
(as_u32x4 = simd::u32x4)
(as_u64x2 = simd::u64x2)
(as_i8x16 = simd::i8x16)
(as_i16x8 = simd::i16x8)
(as_i32x4 = simd::i32x4)
(as_i64x2 = simd::i64x2)
(as_f32x4 = simd::f32x4)
(as_f64x2 = simd::f64x2)
}
#[allow(improper_ctypes)]
extern "C" {
#[link_name = "llvm.wasm.swizzle"]
fn llvm_swizzle(a: simd::i8x16, b: simd::i8x16) -> simd::i8x16;
#[link_name = "llvm.wasm.bitselect.v16i8"]
fn llvm_bitselect(a: simd::i8x16, b: simd::i8x16, c: simd::i8x16) -> simd::i8x16;
#[link_name = "llvm.wasm.anytrue.v16i8"]
fn llvm_any_true_i8x16(x: simd::i8x16) -> i32;
#[link_name = "llvm.wasm.alltrue.v16i8"]
fn llvm_i8x16_all_true(x: simd::i8x16) -> i32;
#[link_name = "llvm.ctpop.v16i8"]
fn llvm_popcnt(a: simd::i8x16) -> simd::i8x16;
#[link_name = "llvm.wasm.bitmask.v16i8"]
fn llvm_bitmask_i8x16(a: simd::i8x16) -> i32;
#[link_name = "llvm.wasm.narrow.signed.v16i8.v8i16"]
fn llvm_narrow_i8x16_s(a: simd::i16x8, b: simd::i16x8) -> simd::i8x16;
#[link_name = "llvm.wasm.narrow.unsigned.v16i8.v8i16"]
fn llvm_narrow_i8x16_u(a: simd::i16x8, b: simd::i16x8) -> simd::i8x16;
#[link_name = "llvm.sadd.sat.v16i8"]
fn llvm_i8x16_add_sat_s(a: simd::i8x16, b: simd::i8x16) -> simd::i8x16;
#[link_name = "llvm.uadd.sat.v16i8"]
fn llvm_i8x16_add_sat_u(a: simd::i8x16, b: simd::i8x16) -> simd::i8x16;
#[link_name = "llvm.wasm.sub.sat.signed.v16i8"]
fn llvm_i8x16_sub_sat_s(a: simd::i8x16, b: simd::i8x16) -> simd::i8x16;
#[link_name = "llvm.wasm.sub.sat.unsigned.v16i8"]
fn llvm_i8x16_sub_sat_u(a: simd::i8x16, b: simd::i8x16) -> simd::i8x16;
#[link_name = "llvm.wasm.avgr.unsigned.v16i8"]
fn llvm_avgr_u_i8x16(a: simd::i8x16, b: simd::i8x16) -> simd::i8x16;
#[link_name = "llvm.wasm.extadd.pairwise.signed.v8i16"]
fn llvm_i16x8_extadd_pairwise_i8x16_s(x: simd::i8x16) -> simd::i16x8;
#[link_name = "llvm.wasm.extadd.pairwise.unsigned.v8i16"]
fn llvm_i16x8_extadd_pairwise_i8x16_u(x: simd::i8x16) -> simd::i16x8;
#[link_name = "llvm.wasm.q15mulr.sat.signed"]
fn llvm_q15mulr(a: simd::i16x8, b: simd::i16x8) -> simd::i16x8;
#[link_name = "llvm.wasm.alltrue.v8i16"]
fn llvm_i16x8_all_true(x: simd::i16x8) -> i32;
#[link_name = "llvm.wasm.bitmask.v8i16"]
fn llvm_bitmask_i16x8(a: simd::i16x8) -> i32;
#[link_name = "llvm.wasm.narrow.signed.v8i16.v4i32"]
fn llvm_narrow_i16x8_s(a: simd::i32x4, b: simd::i32x4) -> simd::i16x8;
#[link_name = "llvm.wasm.narrow.unsigned.v8i16.v4i32"]
fn llvm_narrow_i16x8_u(a: simd::i32x4, b: simd::i32x4) -> simd::i16x8;
#[link_name = "llvm.sadd.sat.v8i16"]
fn llvm_i16x8_add_sat_s(a: simd::i16x8, b: simd::i16x8) -> simd::i16x8;
#[link_name = "llvm.uadd.sat.v8i16"]
fn llvm_i16x8_add_sat_u(a: simd::i16x8, b: simd::i16x8) -> simd::i16x8;
#[link_name = "llvm.wasm.sub.sat.signed.v8i16"]
fn llvm_i16x8_sub_sat_s(a: simd::i16x8, b: simd::i16x8) -> simd::i16x8;
#[link_name = "llvm.wasm.sub.sat.unsigned.v8i16"]
fn llvm_i16x8_sub_sat_u(a: simd::i16x8, b: simd::i16x8) -> simd::i16x8;
#[link_name = "llvm.wasm.avgr.unsigned.v8i16"]
fn llvm_avgr_u_i16x8(a: simd::i16x8, b: simd::i16x8) -> simd::i16x8;
#[link_name = "llvm.wasm.extadd.pairwise.signed.v16i8"]
fn llvm_i32x4_extadd_pairwise_i16x8_s(x: simd::i16x8) -> simd::i32x4;
#[link_name = "llvm.wasm.extadd.pairwise.unsigned.v16i8"]
fn llvm_i32x4_extadd_pairwise_i16x8_u(x: simd::i16x8) -> simd::i32x4;
#[link_name = "llvm.wasm.alltrue.v4i32"]
fn llvm_i32x4_all_true(x: simd::i32x4) -> i32;
#[link_name = "llvm.wasm.bitmask.v4i32"]
fn llvm_bitmask_i32x4(a: simd::i32x4) -> i32;
#[link_name = "llvm.wasm.dot"]
fn llvm_i32x4_dot_i16x8_s(a: simd::i16x8, b: simd::i16x8) -> simd::i32x4;
#[link_name = "llvm.wasm.alltrue.v2i64"]
fn llvm_i64x2_all_true(x: simd::i64x2) -> i32;
#[link_name = "llvm.wasm.bitmask.v2i64"]
fn llvm_bitmask_i64x2(a: simd::i64x2) -> i32;
#[link_name = "llvm.ceil.v4f32"]
fn llvm_f32x4_ceil(x: simd::f32x4) -> simd::f32x4;
#[link_name = "llvm.floor.v4f32"]
fn llvm_f32x4_floor(x: simd::f32x4) -> simd::f32x4;
#[link_name = "llvm.trunc.v4f32"]
fn llvm_f32x4_trunc(x: simd::f32x4) -> simd::f32x4;
#[link_name = "llvm.nearbyint.v4f32"]
fn llvm_f32x4_nearest(x: simd::f32x4) -> simd::f32x4;
#[link_name = "llvm.fabs.v4f32"]
fn llvm_f32x4_abs(x: simd::f32x4) -> simd::f32x4;
#[link_name = "llvm.sqrt.v4f32"]
fn llvm_f32x4_sqrt(x: simd::f32x4) -> simd::f32x4;
#[link_name = "llvm.minimum.v4f32"]
fn llvm_f32x4_min(x: simd::f32x4, y: simd::f32x4) -> simd::f32x4;
#[link_name = "llvm.maximum.v4f32"]
fn llvm_f32x4_max(x: simd::f32x4, y: simd::f32x4) -> simd::f32x4;
#[link_name = "llvm.ceil.v2f64"]
fn llvm_f64x2_ceil(x: simd::f64x2) -> simd::f64x2;
#[link_name = "llvm.floor.v2f64"]
fn llvm_f64x2_floor(x: simd::f64x2) -> simd::f64x2;
#[link_name = "llvm.trunc.v2f64"]
fn llvm_f64x2_trunc(x: simd::f64x2) -> simd::f64x2;
#[link_name = "llvm.nearbyint.v2f64"]
fn llvm_f64x2_nearest(x: simd::f64x2) -> simd::f64x2;
#[link_name = "llvm.fabs.v2f64"]
fn llvm_f64x2_abs(x: simd::f64x2) -> simd::f64x2;
#[link_name = "llvm.sqrt.v2f64"]
fn llvm_f64x2_sqrt(x: simd::f64x2) -> simd::f64x2;
#[link_name = "llvm.minimum.v2f64"]
fn llvm_f64x2_min(x: simd::f64x2, y: simd::f64x2) -> simd::f64x2;
#[link_name = "llvm.maximum.v2f64"]
fn llvm_f64x2_max(x: simd::f64x2, y: simd::f64x2) -> simd::f64x2;
#[link_name = "llvm.fptosi.sat.v4i32.v4f32"]
fn llvm_i32x4_trunc_sat_f32x4_s(x: simd::f32x4) -> simd::i32x4;
#[link_name = "llvm.fptoui.sat.v4i32.v4f32"]
fn llvm_i32x4_trunc_sat_f32x4_u(x: simd::f32x4) -> simd::i32x4;
#[link_name = "llvm.fptosi.sat.v2i32.v2f64"]
fn llvm_i32x2_trunc_sat_f64x2_s(x: simd::f64x2) -> simd::i32x2;
#[link_name = "llvm.fptoui.sat.v2i32.v2f64"]
fn llvm_i32x2_trunc_sat_f64x2_u(x: simd::f64x2) -> simd::i32x2;
}
#[repr(packed)]
#[derive(Copy)]
struct Unaligned<T>(T);
impl<T: Copy> Clone for Unaligned<T> {
fn clone(&self) -> Unaligned<T> {
*self
}
}
/// Loads a `v128` vector from the given heap address.
///
/// This intrinsic will emit a load with an alignment of 1. While this is
/// provided for completeness it is not strictly necessary, you can also load
/// the pointer directly:
///
/// ```rust,ignore
/// let a: &v128 = ...;
/// let value = unsafe { v128_load(a) };
/// // .. is the same as ..
/// let value = *a;
/// ```
///
/// The alignment of the load can be configured by doing a manual load without
/// this intrinsic.
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 16 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_load(m: *const v128) -> v128 {
(*(m as *const Unaligned<v128>)).0
}
/// Load eight 8-bit integers and sign extend each one to a 16-bit lane
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 8 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load8x8_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load8x8_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn i16x8_load_extend_i8x8(m: *const i8) -> v128 {
let m = *(m as *const Unaligned<simd::i8x8>);
simd_cast::<_, simd::i16x8>(m.0).v128()
}
/// Load eight 8-bit integers and zero extend each one to a 16-bit lane
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 8 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load8x8_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load8x8_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn i16x8_load_extend_u8x8(m: *const u8) -> v128 {
let m = *(m as *const Unaligned<simd::u8x8>);
simd_cast::<_, simd::u16x8>(m.0).v128()
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_load_extend_u8x8 as u16x8_load_extend_u8x8;
/// Load four 16-bit integers and sign extend each one to a 32-bit lane
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 8 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load16x4_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load16x4_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn i32x4_load_extend_i16x4(m: *const i16) -> v128 {
let m = *(m as *const Unaligned<simd::i16x4>);
simd_cast::<_, simd::i32x4>(m.0).v128()
}
/// Load four 16-bit integers and zero extend each one to a 32-bit lane
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 8 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load16x4_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load16x4_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn i32x4_load_extend_u16x4(m: *const u16) -> v128 {
let m = *(m as *const Unaligned<simd::u16x4>);
simd_cast::<_, simd::u32x4>(m.0).v128()
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_load_extend_u16x4 as u32x4_load_extend_u16x4;
/// Load two 32-bit integers and sign extend each one to a 64-bit lane
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 8 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load32x2_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load32x2_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn i64x2_load_extend_i32x2(m: *const i32) -> v128 {
let m = *(m as *const Unaligned<simd::i32x2>);
simd_cast::<_, simd::i64x2>(m.0).v128()
}
/// Load two 32-bit integers and zero extend each one to a 64-bit lane
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 8 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load32x2_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load32x2_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn i64x2_load_extend_u32x2(m: *const u32) -> v128 {
let m = *(m as *const Unaligned<simd::u32x2>);
simd_cast::<_, simd::u64x2>(m.0).v128()
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i64x2_load_extend_u32x2 as u64x2_load_extend_u32x2;
/// Load a single element and splat to all lanes of a v128 vector.
///
/// While this intrinsic is provided for completeness it can also be replaced
/// with `u8x16_splat(*m)` and it should generate equivalent code (and also not
/// require `unsafe`).
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 1 byte from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load8_splat))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load8_splat"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_load8_splat(m: *const u8) -> v128 {
u8x16_splat(*m)
}
/// Load a single element and splat to all lanes of a v128 vector.
///
/// While this intrinsic is provided for completeness it can also be replaced
/// with `u16x8_splat(*m)` and it should generate equivalent code (and also not
/// require `unsafe`).
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 2 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load16_splat))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load16_splat"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_load16_splat(m: *const u16) -> v128 {
u16x8_splat(ptr::read_unaligned(m))
}
/// Load a single element and splat to all lanes of a v128 vector.
///
/// While this intrinsic is provided for completeness it can also be replaced
/// with `u32x4_splat(*m)` and it should generate equivalent code (and also not
/// require `unsafe`).
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 4 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load32_splat))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load32_splat"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_load32_splat(m: *const u32) -> v128 {
u32x4_splat(ptr::read_unaligned(m))
}
/// Load a single element and splat to all lanes of a v128 vector.
///
/// While this intrinsic is provided for completeness it can also be replaced
/// with `u64x2_splat(*m)` and it should generate equivalent code (and also not
/// require `unsafe`).
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 8 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load64_splat))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load64_splat"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_load64_splat(m: *const u64) -> v128 {
u64x2_splat(ptr::read_unaligned(m))
}
/// Load a 32-bit element into the low bits of the vector and sets all other
/// bits to zero.
///
/// This intrinsic is provided for completeness and is equivalent to `u32x4(*m,
/// 0, 0, 0)` (which doesn't require `unsafe`).
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 4 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load32_zero))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load32_zero"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_load32_zero(m: *const u32) -> v128 {
u32x4(ptr::read_unaligned(m), 0, 0, 0)
}
/// Load a 64-bit element into the low bits of the vector and sets all other
/// bits to zero.
///
/// This intrinsic is provided for completeness and is equivalent to
/// `u64x2_replace_lane::<0>(u64x2(0, 0), *m)` (which doesn't require `unsafe`).
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 8 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load64_zero))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load64_zero"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_load64_zero(m: *const u64) -> v128 {
u64x2_replace_lane::<0>(u64x2(0, 0), ptr::read_unaligned(m))
}
/// Stores a `v128` vector to the given heap address.
///
/// This intrinsic will emit a store with an alignment of 1. While this is
/// provided for completeness it is not strictly necessary, you can also store
/// the pointer directly:
///
/// ```rust,ignore
/// let a: &mut v128 = ...;
/// unsafe { v128_store(a, value) };
/// // .. is the same as ..
/// *a = value;
/// ```
///
/// The alignment of the store can be configured by doing a manual store without
/// this intrinsic.
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to store 16 bytes to. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned store.
#[inline]
#[cfg_attr(test, assert_instr(v128.store))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.store"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_store(m: *mut v128, a: v128) {
*(m as *mut Unaligned<v128>) = Unaligned(a);
}
/// Loads an 8-bit value from `m` and sets lane `L` of `v` to that value.
///
/// This intrinsic is provided for completeness and is equivalent to
/// `u8x16_replace_lane::<L>(v, *m)` (which doesn't require `unsafe`).
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 1 byte from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load8_lane, L = 0))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load8_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_load8_lane<const L: usize>(v: v128, m: *const u8) -> v128 {
u8x16_replace_lane::<L>(v, *m)
}
/// Loads a 16-bit value from `m` and sets lane `L` of `v` to that value.
///
/// This intrinsic is provided for completeness and is equivalent to
/// `u16x8_replace_lane::<L>(v, *m)` (which doesn't require `unsafe`).
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 2 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load16_lane, L = 0))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load16_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_load16_lane<const L: usize>(v: v128, m: *const u16) -> v128 {
u16x8_replace_lane::<L>(v, ptr::read_unaligned(m))
}
/// Loads a 32-bit value from `m` and sets lane `L` of `v` to that value.
///
/// This intrinsic is provided for completeness and is equivalent to
/// `u32x4_replace_lane::<L>(v, *m)` (which doesn't require `unsafe`).
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 4 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load32_lane, L = 0))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load32_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_load32_lane<const L: usize>(v: v128, m: *const u32) -> v128 {
u32x4_replace_lane::<L>(v, ptr::read_unaligned(m))
}
/// Loads a 64-bit value from `m` and sets lane `L` of `v` to that value.
///
/// This intrinsic is provided for completeness and is equivalent to
/// `u64x2_replace_lane::<L>(v, *m)` (which doesn't require `unsafe`).
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to load 8 bytes from. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned load.
#[inline]
#[cfg_attr(test, assert_instr(v128.load64_lane, L = 0))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.load64_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_load64_lane<const L: usize>(v: v128, m: *const u64) -> v128 {
u64x2_replace_lane::<L>(v, ptr::read_unaligned(m))
}
/// Stores the 8-bit value from lane `L` of `v` into `m`
///
/// This intrinsic is provided for completeness and is equivalent to
/// `*m = u8x16_extract_lane::<L>(v)` (which doesn't require `unsafe`).
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to store 1 byte to. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned store.
#[inline]
#[cfg_attr(test, assert_instr(v128.store8_lane, L = 0))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.store8_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_store8_lane<const L: usize>(v: v128, m: *mut u8) {
*m = u8x16_extract_lane::<L>(v);
}
/// Stores the 16-bit value from lane `L` of `v` into `m`
///
/// This intrinsic is provided for completeness and is equivalent to
/// `*m = u16x8_extract_lane::<L>(v)` (which doesn't require `unsafe`).
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to store 2 bytes to. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned store.
#[inline]
#[cfg_attr(test, assert_instr(v128.store16_lane, L = 0))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.store16_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_store16_lane<const L: usize>(v: v128, m: *mut u16) {
ptr::write_unaligned(m, u16x8_extract_lane::<L>(v))
}
/// Stores the 32-bit value from lane `L` of `v` into `m`
///
/// This intrinsic is provided for completeness and is equivalent to
/// `*m = u32x4_extract_lane::<L>(v)` (which doesn't require `unsafe`).
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to store 4 bytes to. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned store.
#[inline]
#[cfg_attr(test, assert_instr(v128.store32_lane, L = 0))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.store32_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_store32_lane<const L: usize>(v: v128, m: *mut u32) {
ptr::write_unaligned(m, u32x4_extract_lane::<L>(v))
}
/// Stores the 64-bit value from lane `L` of `v` into `m`
///
/// This intrinsic is provided for completeness and is equivalent to
/// `*m = u64x2_extract_lane::<L>(v)` (which doesn't require `unsafe`).
///
/// # Unsafety
///
/// This intrinsic is unsafe because it takes a raw pointer as an argument, and
/// the pointer must be valid to store 8 bytes to. Note that there is no
/// alignment requirement on this pointer since this intrinsic performs a
/// 1-aligned store.
#[inline]
#[cfg_attr(test, assert_instr(v128.store64_lane, L = 0))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.store64_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub unsafe fn v128_store64_lane<const L: usize>(v: v128, m: *mut u64) {
ptr::write_unaligned(m, u64x2_extract_lane::<L>(v))
}
/// Materializes a SIMD value from the provided operands.
///
/// If possible this will generate a `v128.const` instruction, otherwise it may
/// be lowered to a sequence of instructions to materialize the vector value.
#[inline]
#[target_feature(enable = "simd128")]
#[cfg_attr(
test,
assert_instr(
v128.const,
a0 = 0,
a1 = 1,
a2 = 2,
a3 = 3,
a4 = 4,
a5 = 5,
a6 = 6,
a7 = 7,
a8 = 8,
a9 = 9,
a10 = 10,
a11 = 11,
a12 = 12,
a13 = 13,
a14 = 14,
a15 = 15,
)
)]
#[doc(alias("v128.const"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
#[rustc_const_stable(feature = "wasm_simd", since = "1.54.0")]
pub const fn i8x16(
a0: i8,
a1: i8,
a2: i8,
a3: i8,
a4: i8,
a5: i8,
a6: i8,
a7: i8,
a8: i8,
a9: i8,
a10: i8,
a11: i8,
a12: i8,
a13: i8,
a14: i8,
a15: i8,
) -> v128 {
simd::i8x16(
a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15,
)
.v128()
}
/// Materializes a SIMD value from the provided operands.
///
/// If possible this will generate a `v128.const` instruction, otherwise it may
/// be lowered to a sequence of instructions to materialize the vector value.
#[inline]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.const"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
#[rustc_const_stable(feature = "wasm_simd", since = "1.54.0")]
pub const fn u8x16(
a0: u8,
a1: u8,
a2: u8,
a3: u8,
a4: u8,
a5: u8,
a6: u8,
a7: u8,
a8: u8,
a9: u8,
a10: u8,
a11: u8,
a12: u8,
a13: u8,
a14: u8,
a15: u8,
) -> v128 {
simd::u8x16(
a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15,
)
.v128()
}
/// Materializes a SIMD value from the provided operands.
///
/// If possible this will generate a `v128.const` instruction, otherwise it may
/// be lowered to a sequence of instructions to materialize the vector value.
#[inline]
#[target_feature(enable = "simd128")]
#[cfg_attr(
test,
assert_instr(
v128.const,
a0 = 0,
a1 = 1,
a2 = 2,
a3 = 3,
a4 = 4,
a5 = 5,
a6 = 6,
a7 = 7,
)
)]
#[doc(alias("v128.const"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
#[rustc_const_stable(feature = "wasm_simd", since = "1.54.0")]
pub const fn i16x8(a0: i16, a1: i16, a2: i16, a3: i16, a4: i16, a5: i16, a6: i16, a7: i16) -> v128 {
simd::i16x8(a0, a1, a2, a3, a4, a5, a6, a7).v128()
}
/// Materializes a SIMD value from the provided operands.
///
/// If possible this will generate a `v128.const` instruction, otherwise it may
/// be lowered to a sequence of instructions to materialize the vector value.
#[inline]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.const"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
#[rustc_const_stable(feature = "wasm_simd", since = "1.54.0")]
pub const fn u16x8(a0: u16, a1: u16, a2: u16, a3: u16, a4: u16, a5: u16, a6: u16, a7: u16) -> v128 {
simd::u16x8(a0, a1, a2, a3, a4, a5, a6, a7).v128()
}
/// Materializes a SIMD value from the provided operands.
///
/// If possible this will generate a `v128.const` instruction, otherwise it may
/// be lowered to a sequence of instructions to materialize the vector value.
#[inline]
#[target_feature(enable = "simd128")]
#[cfg_attr(test, assert_instr(v128.const, a0 = 0, a1 = 1, a2 = 2, a3 = 3))]
#[doc(alias("v128.const"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
#[rustc_const_stable(feature = "wasm_simd", since = "1.54.0")]
pub const fn i32x4(a0: i32, a1: i32, a2: i32, a3: i32) -> v128 {
simd::i32x4(a0, a1, a2, a3).v128()
}
/// Materializes a SIMD value from the provided operands.
///
/// If possible this will generate a `v128.const` instruction, otherwise it may
/// be lowered to a sequence of instructions to materialize the vector value.
#[inline]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.const"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
#[rustc_const_stable(feature = "wasm_simd", since = "1.54.0")]
pub const fn u32x4(a0: u32, a1: u32, a2: u32, a3: u32) -> v128 {
simd::u32x4(a0, a1, a2, a3).v128()
}
/// Materializes a SIMD value from the provided operands.
///
/// If possible this will generate a `v128.const` instruction, otherwise it may
/// be lowered to a sequence of instructions to materialize the vector value.
#[inline]
#[target_feature(enable = "simd128")]
#[cfg_attr(test, assert_instr(v128.const, a0 = 1, a1 = 2))]
#[doc(alias("v128.const"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
#[rustc_const_stable(feature = "wasm_simd", since = "1.54.0")]
pub const fn i64x2(a0: i64, a1: i64) -> v128 {
simd::i64x2(a0, a1).v128()
}
/// Materializes a SIMD value from the provided operands.
///
/// If possible this will generate a `v128.const` instruction, otherwise it may
/// be lowered to a sequence of instructions to materialize the vector value.
#[inline]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.const"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
#[rustc_const_stable(feature = "wasm_simd", since = "1.54.0")]
pub const fn u64x2(a0: u64, a1: u64) -> v128 {
simd::u64x2(a0, a1).v128()
}
/// Materializes a SIMD value from the provided operands.
///
/// If possible this will generate a `v128.const` instruction, otherwise it may
/// be lowered to a sequence of instructions to materialize the vector value.
#[inline]
#[target_feature(enable = "simd128")]
#[cfg_attr(test, assert_instr(v128.const, a0 = 0.0, a1 = 1.0, a2 = 2.0, a3 = 3.0))]
#[doc(alias("v128.const"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
#[rustc_const_stable(feature = "wasm_simd_const", since = "1.56.0")]
pub const fn f32x4(a0: f32, a1: f32, a2: f32, a3: f32) -> v128 {
simd::f32x4(a0, a1, a2, a3).v128()
}
/// Materializes a SIMD value from the provided operands.
///
/// If possible this will generate a `v128.const` instruction, otherwise it may
/// be lowered to a sequence of instructions to materialize the vector value.
#[inline]
#[target_feature(enable = "simd128")]
#[cfg_attr(test, assert_instr(v128.const, a0 = 0.0, a1 = 1.0))]
#[doc(alias("v128.const"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
#[rustc_const_stable(feature = "wasm_simd_const", since = "1.56.0")]
pub const fn f64x2(a0: f64, a1: f64) -> v128 {
simd::f64x2(a0, a1).v128()
}
/// Returns a new vector with lanes selected from the lanes of the two input
/// vectors `$a` and `$b` specified in the 16 immediate operands.
///
/// The `$a` and `$b` expressions must have type `v128`, and this function
/// generates a wasm instruction that is encoded with 16 bytes providing the
/// indices of the elements to return. The indices `i` in range [0, 15] select
/// the `i`-th element of `a`. The indices in range [16, 31] select the `i -
/// 16`-th element of `b`.
///
/// Note that this is a macro due to the codegen requirements of all of the
/// index expressions `$i*` must be constant. A compiler error will be
/// generated if any of the expressions are not constant.
///
/// All indexes `$i*` must have the type `u32`.
#[inline]
#[cfg_attr(test,
assert_instr(
i8x16.shuffle,
I0 = 0,
I1 = 2,
I2 = 4,
I3 = 6,
I4 = 8,
I5 = 10,
I6 = 12,
I7 = 14,
I8 = 16,
I9 = 18,
I10 = 20,
I11 = 22,
I12 = 24,
I13 = 26,
I14 = 28,
I15 = 30,
)
)]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.shuffle"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_shuffle<
const I0: usize,
const I1: usize,
const I2: usize,
const I3: usize,
const I4: usize,
const I5: usize,
const I6: usize,
const I7: usize,
const I8: usize,
const I9: usize,
const I10: usize,
const I11: usize,
const I12: usize,
const I13: usize,
const I14: usize,
const I15: usize,
>(
a: v128,
b: v128,
) -> v128 {
static_assert!(I0: usize where I0 < 32);
static_assert!(I1: usize where I1 < 32);
static_assert!(I2: usize where I2 < 32);
static_assert!(I3: usize where I3 < 32);
static_assert!(I4: usize where I4 < 32);
static_assert!(I5: usize where I5 < 32);
static_assert!(I6: usize where I6 < 32);
static_assert!(I7: usize where I7 < 32);
static_assert!(I8: usize where I8 < 32);
static_assert!(I9: usize where I9 < 32);
static_assert!(I10: usize where I10 < 32);
static_assert!(I11: usize where I11 < 32);
static_assert!(I12: usize where I12 < 32);
static_assert!(I13: usize where I13 < 32);
static_assert!(I14: usize where I14 < 32);
static_assert!(I15: usize where I15 < 32);
let shuf: simd::u8x16 = unsafe {
simd_shuffle16!(
a.as_u8x16(),
b.as_u8x16(),
<
const I0: usize,
const I1: usize,
const I2: usize,
const I3: usize,
const I4: usize,
const I5: usize,
const I6: usize,
const I7: usize,
const I8: usize,
const I9: usize,
const I10: usize,
const I11: usize,
const I12: usize,
const I13: usize,
const I14: usize,
const I15: usize,
> [
I0 as u32, I1 as u32, I2 as u32, I3 as u32, I4 as u32, I5 as u32, I6 as u32, I7 as u32,
I8 as u32, I9 as u32, I10 as u32, I11 as u32, I12 as u32, I13 as u32, I14 as u32,
I15 as u32,
],
)
};
shuf.v128()
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i8x16_shuffle as u8x16_shuffle;
/// Same as [`i8x16_shuffle`], except operates as if the inputs were eight
/// 16-bit integers, only taking 8 indices to shuffle.
///
/// Indices in the range [0, 7] select from `a` while [8, 15] select from `b`.
/// Note that this will generate the `i8x16.shuffle` instruction, since there
/// is no native `i16x8.shuffle` instruction (there is no need for one since
/// `i8x16.shuffle` suffices).
#[inline]
#[cfg_attr(test,
assert_instr(
i8x16.shuffle,
I0 = 0,
I1 = 2,
I2 = 4,
I3 = 6,
I4 = 8,
I5 = 10,
I6 = 12,
I7 = 14,
)
)]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.shuffle"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_shuffle<
const I0: usize,
const I1: usize,
const I2: usize,
const I3: usize,
const I4: usize,
const I5: usize,
const I6: usize,
const I7: usize,
>(
a: v128,
b: v128,
) -> v128 {
static_assert!(I0: usize where I0 < 16);
static_assert!(I1: usize where I1 < 16);
static_assert!(I2: usize where I2 < 16);
static_assert!(I3: usize where I3 < 16);
static_assert!(I4: usize where I4 < 16);
static_assert!(I5: usize where I5 < 16);
static_assert!(I6: usize where I6 < 16);
static_assert!(I7: usize where I7 < 16);
let shuf: simd::u16x8 = unsafe {
simd_shuffle8!(
a.as_u16x8(),
b.as_u16x8(),
<
const I0: usize,
const I1: usize,
const I2: usize,
const I3: usize,
const I4: usize,
const I5: usize,
const I6: usize,
const I7: usize,
> [
I0 as u32, I1 as u32, I2 as u32, I3 as u32, I4 as u32, I5 as u32, I6 as u32, I7 as u32,
],
)
};
shuf.v128()
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_shuffle as u16x8_shuffle;
/// Same as [`i8x16_shuffle`], except operates as if the inputs were four
/// 32-bit integers, only taking 4 indices to shuffle.
///
/// Indices in the range [0, 3] select from `a` while [4, 7] select from `b`.
/// Note that this will generate the `i8x16.shuffle` instruction, since there
/// is no native `i32x4.shuffle` instruction (there is no need for one since
/// `i8x16.shuffle` suffices).
#[inline]
#[cfg_attr(test, assert_instr(i8x16.shuffle, I0 = 0, I1 = 2, I2 = 4, I3 = 6))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.shuffle"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_shuffle<const I0: usize, const I1: usize, const I2: usize, const I3: usize>(
a: v128,
b: v128,
) -> v128 {
static_assert!(I0: usize where I0 < 8);
static_assert!(I1: usize where I1 < 8);
static_assert!(I2: usize where I2 < 8);
static_assert!(I3: usize where I3 < 8);
let shuf: simd::u32x4 = unsafe {
simd_shuffle4!(
a.as_u32x4(),
b.as_u32x4(),
<const I0: usize, const I1: usize, const I2: usize, const I3: usize> [I0 as u32, I1 as u32, I2 as u32, I3 as u32],
)
};
shuf.v128()
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_shuffle as u32x4_shuffle;
/// Same as [`i8x16_shuffle`], except operates as if the inputs were two
/// 64-bit integers, only taking 2 indices to shuffle.
///
/// Indices in the range [0, 1] select from `a` while [2, 3] select from `b`.
/// Note that this will generate the `v8x16.shuffle` instruction, since there
/// is no native `i64x2.shuffle` instruction (there is no need for one since
/// `i8x16.shuffle` suffices).
#[inline]
#[cfg_attr(test, assert_instr(i8x16.shuffle, I0 = 0, I1 = 2))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.shuffle"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_shuffle<const I0: usize, const I1: usize>(a: v128, b: v128) -> v128 {
static_assert!(I0: usize where I0 < 4);
static_assert!(I1: usize where I1 < 4);
let shuf: simd::u64x2 = unsafe {
simd_shuffle2!(
a.as_u64x2(),
b.as_u64x2(),
<const I0: usize, const I1: usize> [I0 as u32, I1 as u32],
)
};
shuf.v128()
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i64x2_shuffle as u64x2_shuffle;
/// Extracts a lane from a 128-bit vector interpreted as 16 packed i8 numbers.
///
/// Extracts the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.extract_lane_s, N = 3))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.extract_lane_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_extract_lane<const N: usize>(a: v128) -> i8 {
static_assert!(N: usize where N < 16);
unsafe { simd_extract(a.as_i8x16(), N as u32) }
}
/// Extracts a lane from a 128-bit vector interpreted as 16 packed u8 numbers.
///
/// Extracts the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.extract_lane_u, N = 3))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.extract_lane_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u8x16_extract_lane<const N: usize>(a: v128) -> u8 {
static_assert!(N: usize where N < 16);
unsafe { simd_extract(a.as_u8x16(), N as u32) }
}
/// Replaces a lane from a 128-bit vector interpreted as 16 packed i8 numbers.
///
/// Replaces the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.replace_lane, N = 2))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.replace_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_replace_lane<const N: usize>(a: v128, val: i8) -> v128 {
static_assert!(N: usize where N < 16);
unsafe { simd_insert(a.as_i8x16(), N as u32, val).v128() }
}
/// Replaces a lane from a 128-bit vector interpreted as 16 packed u8 numbers.
///
/// Replaces the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.replace_lane, N = 2))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.replace_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u8x16_replace_lane<const N: usize>(a: v128, val: u8) -> v128 {
static_assert!(N: usize where N < 16);
unsafe { simd_insert(a.as_u8x16(), N as u32, val).v128() }
}
/// Extracts a lane from a 128-bit vector interpreted as 8 packed i16 numbers.
///
/// Extracts a the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.extract_lane_s, N = 2))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.extract_lane_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_extract_lane<const N: usize>(a: v128) -> i16 {
static_assert!(N: usize where N < 8);
unsafe { simd_extract(a.as_i16x8(), N as u32) }
}
/// Extracts a lane from a 128-bit vector interpreted as 8 packed u16 numbers.
///
/// Extracts a the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.extract_lane_u, N = 2))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.extract_lane_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u16x8_extract_lane<const N: usize>(a: v128) -> u16 {
static_assert!(N: usize where N < 8);
unsafe { simd_extract(a.as_u16x8(), N as u32) }
}
/// Replaces a lane from a 128-bit vector interpreted as 8 packed i16 numbers.
///
/// Replaces the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.replace_lane, N = 2))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.replace_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_replace_lane<const N: usize>(a: v128, val: i16) -> v128 {
static_assert!(N: usize where N < 8);
unsafe { simd_insert(a.as_i16x8(), N as u32, val).v128() }
}
/// Replaces a lane from a 128-bit vector interpreted as 8 packed u16 numbers.
///
/// Replaces the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.replace_lane, N = 2))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.replace_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u16x8_replace_lane<const N: usize>(a: v128, val: u16) -> v128 {
static_assert!(N: usize where N < 8);
unsafe { simd_insert(a.as_u16x8(), N as u32, val).v128() }
}
/// Extracts a lane from a 128-bit vector interpreted as 4 packed i32 numbers.
///
/// Extracts the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.extract_lane, N = 2))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.extract_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_extract_lane<const N: usize>(a: v128) -> i32 {
static_assert!(N: usize where N < 4);
unsafe { simd_extract(a.as_i32x4(), N as u32) }
}
/// Extracts a lane from a 128-bit vector interpreted as 4 packed u32 numbers.
///
/// Extracts the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.extract_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u32x4_extract_lane<const N: usize>(a: v128) -> u32 {
i32x4_extract_lane::<N>(a) as u32
}
/// Replaces a lane from a 128-bit vector interpreted as 4 packed i32 numbers.
///
/// Replaces the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.replace_lane, N = 2))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.replace_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_replace_lane<const N: usize>(a: v128, val: i32) -> v128 {
static_assert!(N: usize where N < 4);
unsafe { simd_insert(a.as_i32x4(), N as u32, val).v128() }
}
/// Replaces a lane from a 128-bit vector interpreted as 4 packed u32 numbers.
///
/// Replaces the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.replace_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u32x4_replace_lane<const N: usize>(a: v128, val: u32) -> v128 {
i32x4_replace_lane::<N>(a, val as i32)
}
/// Extracts a lane from a 128-bit vector interpreted as 2 packed i64 numbers.
///
/// Extracts the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.extract_lane, N = 1))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.extract_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_extract_lane<const N: usize>(a: v128) -> i64 {
static_assert!(N: usize where N < 2);
unsafe { simd_extract(a.as_i64x2(), N as u32) }
}
/// Extracts a lane from a 128-bit vector interpreted as 2 packed u64 numbers.
///
/// Extracts the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.extract_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u64x2_extract_lane<const N: usize>(a: v128) -> u64 {
i64x2_extract_lane::<N>(a) as u64
}
/// Replaces a lane from a 128-bit vector interpreted as 2 packed i64 numbers.
///
/// Replaces the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.replace_lane, N = 0))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.replace_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_replace_lane<const N: usize>(a: v128, val: i64) -> v128 {
static_assert!(N: usize where N < 2);
unsafe { simd_insert(a.as_i64x2(), N as u32, val).v128() }
}
/// Replaces a lane from a 128-bit vector interpreted as 2 packed u64 numbers.
///
/// Replaces the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.replace_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u64x2_replace_lane<const N: usize>(a: v128, val: u64) -> v128 {
i64x2_replace_lane::<N>(a, val as i64)
}
/// Extracts a lane from a 128-bit vector interpreted as 4 packed f32 numbers.
///
/// Extracts the scalar value of lane specified fn the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.extract_lane, N = 1))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.extract_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_extract_lane<const N: usize>(a: v128) -> f32 {
static_assert!(N: usize where N < 4);
unsafe { simd_extract(a.as_f32x4(), N as u32) }
}
/// Replaces a lane from a 128-bit vector interpreted as 4 packed f32 numbers.
///
/// Replaces the scalar value of lane specified fn the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.replace_lane, N = 1))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.replace_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_replace_lane<const N: usize>(a: v128, val: f32) -> v128 {
static_assert!(N: usize where N < 4);
unsafe { simd_insert(a.as_f32x4(), N as u32, val).v128() }
}
/// Extracts a lane from a 128-bit vector interpreted as 2 packed f64 numbers.
///
/// Extracts the scalar value of lane specified fn the immediate mode operand
/// `N` from `a`. If `N` fs out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.extract_lane, N = 1))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.extract_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_extract_lane<const N: usize>(a: v128) -> f64 {
static_assert!(N: usize where N < 2);
unsafe { simd_extract(a.as_f64x2(), N as u32) }
}
/// Replaces a lane from a 128-bit vector interpreted as 2 packed f64 numbers.
///
/// Replaces the scalar value of lane specified in the immediate mode operand
/// `N` from `a`. If `N` is out of bounds then it is a compile time error.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.replace_lane, N = 1))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.replace_lane"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_replace_lane<const N: usize>(a: v128, val: f64) -> v128 {
static_assert!(N: usize where N < 2);
unsafe { simd_insert(a.as_f64x2(), N as u32, val).v128() }
}
/// Returns a new vector with lanes selected from the lanes of the first input
/// vector `a` specified in the second input vector `s`.
///
/// The indices `i` in range [0, 15] select the `i`-th element of `a`. For
/// indices outside of the range the resulting lane is 0.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.swizzle))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.swizzle"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_swizzle(a: v128, s: v128) -> v128 {
unsafe { llvm_swizzle(a.as_i8x16(), s.as_i8x16()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i8x16_swizzle as u8x16_swizzle;
/// Creates a vector with identical lanes.
///
/// Constructs a vector with `x` replicated to all 16 lanes.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.splat))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.splat"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_splat(a: i8) -> v128 {
simd::i8x16::splat(a).v128()
}
/// Creates a vector with identical lanes.
///
/// Constructs a vector with `x` replicated to all 16 lanes.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.splat))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.splat"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u8x16_splat(a: u8) -> v128 {
simd::u8x16::splat(a).v128()
}
/// Creates a vector with identical lanes.
///
/// Construct a vector with `x` replicated to all 8 lanes.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.splat))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.splat"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_splat(a: i16) -> v128 {
simd::i16x8::splat(a).v128()
}
/// Creates a vector with identical lanes.
///
/// Construct a vector with `x` replicated to all 8 lanes.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.splat))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.splat"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u16x8_splat(a: u16) -> v128 {
simd::u16x8::splat(a).v128()
}
/// Creates a vector with identical lanes.
///
/// Constructs a vector with `x` replicated to all 4 lanes.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.splat))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.splat"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_splat(a: i32) -> v128 {
simd::i32x4::splat(a).v128()
}
/// Creates a vector with identical lanes.
///
/// Constructs a vector with `x` replicated to all 4 lanes.
#[inline]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.splat"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u32x4_splat(a: u32) -> v128 {
i32x4_splat(a as i32)
}
/// Creates a vector with identical lanes.
///
/// Construct a vector with `x` replicated to all 2 lanes.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.splat))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.splat"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_splat(a: i64) -> v128 {
simd::i64x2::splat(a).v128()
}
/// Creates a vector with identical lanes.
///
/// Construct a vector with `x` replicated to all 2 lanes.
#[inline]
#[target_feature(enable = "simd128")]
#[doc(alias("u64x2.splat"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u64x2_splat(a: u64) -> v128 {
i64x2_splat(a as i64)
}
/// Creates a vector with identical lanes.
///
/// Constructs a vector with `x` replicated to all 4 lanes.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.splat))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.splat"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_splat(a: f32) -> v128 {
simd::f32x4::splat(a).v128()
}
/// Creates a vector with identical lanes.
///
/// Constructs a vector with `x` replicated to all 2 lanes.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.splat))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.splat"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_splat(a: f64) -> v128 {
simd::f64x2::splat(a).v128()
}
/// Compares two 128-bit vectors as if they were two vectors of 16 eight-bit
/// integers.
///
/// Returns a new vector where each lane is all ones if the corresponding input elements
/// were equal, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.eq))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.eq"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_eq(a: v128, b: v128) -> v128 {
unsafe { simd_eq::<_, simd::i8x16>(a.as_i8x16(), b.as_i8x16()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 16 eight-bit
/// integers.
///
/// Returns a new vector where each lane is all ones if the corresponding input elements
/// were not equal, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.ne))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.ne"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_ne(a: v128, b: v128) -> v128 {
unsafe { simd_ne::<_, simd::i8x16>(a.as_i8x16(), b.as_i8x16()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i8x16_eq as u8x16_eq;
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i8x16_ne as u8x16_ne;
/// Compares two 128-bit vectors as if they were two vectors of 16 eight-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.lt_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.lt_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_lt(a: v128, b: v128) -> v128 {
unsafe { simd_lt::<_, simd::i8x16>(a.as_i8x16(), b.as_i8x16()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 16 eight-bit
/// unsigned integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.lt_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.lt_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u8x16_lt(a: v128, b: v128) -> v128 {
unsafe { simd_lt::<_, simd::i8x16>(a.as_u8x16(), b.as_u8x16()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 16 eight-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.gt_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.gt_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_gt(a: v128, b: v128) -> v128 {
unsafe { simd_gt::<_, simd::i8x16>(a.as_i8x16(), b.as_i8x16()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 16 eight-bit
/// unsigned integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.gt_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.gt_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u8x16_gt(a: v128, b: v128) -> v128 {
unsafe { simd_gt::<_, simd::i8x16>(a.as_u8x16(), b.as_u8x16()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 16 eight-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.le_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.le_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_le(a: v128, b: v128) -> v128 {
unsafe { simd_le::<_, simd::i8x16>(a.as_i8x16(), b.as_i8x16()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 16 eight-bit
/// unsigned integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.le_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.le_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u8x16_le(a: v128, b: v128) -> v128 {
unsafe { simd_le::<_, simd::i8x16>(a.as_u8x16(), b.as_u8x16()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 16 eight-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.ge_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.ge_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_ge(a: v128, b: v128) -> v128 {
unsafe { simd_ge::<_, simd::i8x16>(a.as_i8x16(), b.as_i8x16()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 16 eight-bit
/// unsigned integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.ge_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.ge_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u8x16_ge(a: v128, b: v128) -> v128 {
unsafe { simd_ge::<_, simd::i8x16>(a.as_u8x16(), b.as_u8x16()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 8 sixteen-bit
/// integers.
///
/// Returns a new vector where each lane is all ones if the corresponding input elements
/// were equal, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.eq))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.eq"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_eq(a: v128, b: v128) -> v128 {
unsafe { simd_eq::<_, simd::i16x8>(a.as_i16x8(), b.as_i16x8()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 8 sixteen-bit
/// integers.
///
/// Returns a new vector where each lane is all ones if the corresponding input elements
/// were not equal, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.ne))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.ne"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_ne(a: v128, b: v128) -> v128 {
unsafe { simd_ne::<_, simd::i16x8>(a.as_i16x8(), b.as_i16x8()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_eq as u16x8_eq;
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_ne as u16x8_ne;
/// Compares two 128-bit vectors as if they were two vectors of 8 sixteen-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.lt_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.lt_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_lt(a: v128, b: v128) -> v128 {
unsafe { simd_lt::<_, simd::i16x8>(a.as_i16x8(), b.as_i16x8()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 8 sixteen-bit
/// unsigned integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.lt_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.lt_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u16x8_lt(a: v128, b: v128) -> v128 {
unsafe { simd_lt::<_, simd::i16x8>(a.as_u16x8(), b.as_u16x8()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 8 sixteen-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.gt_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.gt_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_gt(a: v128, b: v128) -> v128 {
unsafe { simd_gt::<_, simd::i16x8>(a.as_i16x8(), b.as_i16x8()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 8 sixteen-bit
/// unsigned integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.gt_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.gt_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u16x8_gt(a: v128, b: v128) -> v128 {
unsafe { simd_gt::<_, simd::i16x8>(a.as_u16x8(), b.as_u16x8()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 8 sixteen-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.le_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.le_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_le(a: v128, b: v128) -> v128 {
unsafe { simd_le::<_, simd::i16x8>(a.as_i16x8(), b.as_i16x8()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 8 sixteen-bit
/// unsigned integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.le_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.le_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u16x8_le(a: v128, b: v128) -> v128 {
unsafe { simd_le::<_, simd::i16x8>(a.as_u16x8(), b.as_u16x8()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 8 sixteen-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.ge_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.ge_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_ge(a: v128, b: v128) -> v128 {
unsafe { simd_ge::<_, simd::i16x8>(a.as_i16x8(), b.as_i16x8()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 8 sixteen-bit
/// unsigned integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.ge_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.ge_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u16x8_ge(a: v128, b: v128) -> v128 {
unsafe { simd_ge::<_, simd::i16x8>(a.as_u16x8(), b.as_u16x8()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// integers.
///
/// Returns a new vector where each lane is all ones if the corresponding input elements
/// were equal, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.eq))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.eq"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_eq(a: v128, b: v128) -> v128 {
unsafe { simd_eq::<_, simd::i32x4>(a.as_i32x4(), b.as_i32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// integers.
///
/// Returns a new vector where each lane is all ones if the corresponding input elements
/// were not equal, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.ne))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.ne"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_ne(a: v128, b: v128) -> v128 {
unsafe { simd_ne::<_, simd::i32x4>(a.as_i32x4(), b.as_i32x4()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_eq as u32x4_eq;
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_ne as u32x4_ne;
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.lt_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.lt_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_lt(a: v128, b: v128) -> v128 {
unsafe { simd_lt::<_, simd::i32x4>(a.as_i32x4(), b.as_i32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// unsigned integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.lt_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.lt_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u32x4_lt(a: v128, b: v128) -> v128 {
unsafe { simd_lt::<_, simd::i32x4>(a.as_u32x4(), b.as_u32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.gt_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.gt_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_gt(a: v128, b: v128) -> v128 {
unsafe { simd_gt::<_, simd::i32x4>(a.as_i32x4(), b.as_i32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// unsigned integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.gt_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.gt_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u32x4_gt(a: v128, b: v128) -> v128 {
unsafe { simd_gt::<_, simd::i32x4>(a.as_u32x4(), b.as_u32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.le_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.le_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_le(a: v128, b: v128) -> v128 {
unsafe { simd_le::<_, simd::i32x4>(a.as_i32x4(), b.as_i32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// unsigned integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.le_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.le_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u32x4_le(a: v128, b: v128) -> v128 {
unsafe { simd_le::<_, simd::i32x4>(a.as_u32x4(), b.as_u32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.ge_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.ge_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_ge(a: v128, b: v128) -> v128 {
unsafe { simd_ge::<_, simd::i32x4>(a.as_i32x4(), b.as_i32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// unsigned integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.ge_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.ge_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u32x4_ge(a: v128, b: v128) -> v128 {
unsafe { simd_ge::<_, simd::i32x4>(a.as_u32x4(), b.as_u32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 2 sixty-four-bit
/// integers.
///
/// Returns a new vector where each lane is all ones if the corresponding input elements
/// were equal, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.eq))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.eq"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_eq(a: v128, b: v128) -> v128 {
unsafe { simd_eq::<_, simd::i64x2>(a.as_i64x2(), b.as_i64x2()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 2 sixty-four-bit
/// integers.
///
/// Returns a new vector where each lane is all ones if the corresponding input elements
/// were not equal, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.ne))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.ne"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_ne(a: v128, b: v128) -> v128 {
unsafe { simd_ne::<_, simd::i64x2>(a.as_i64x2(), b.as_i64x2()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i64x2_eq as u64x2_eq;
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i64x2_ne as u64x2_ne;
/// Compares two 128-bit vectors as if they were two vectors of 2 sixty-four-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.lt_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.lt_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_lt(a: v128, b: v128) -> v128 {
unsafe { simd_lt::<_, simd::i64x2>(a.as_i64x2(), b.as_i64x2()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 2 sixty-four-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.gt_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.gt_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_gt(a: v128, b: v128) -> v128 {
unsafe { simd_gt::<_, simd::i64x2>(a.as_i64x2(), b.as_i64x2()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 2 sixty-four-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.le_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.le_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_le(a: v128, b: v128) -> v128 {
unsafe { simd_le::<_, simd::i64x2>(a.as_i64x2(), b.as_i64x2()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 2 sixty-four-bit
/// signed integers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.ge_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.ge_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_ge(a: v128, b: v128) -> v128 {
unsafe { simd_ge::<_, simd::i64x2>(a.as_i64x2(), b.as_i64x2()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// floating point numbers.
///
/// Returns a new vector where each lane is all ones if the corresponding input elements
/// were equal, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.eq))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.eq"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_eq(a: v128, b: v128) -> v128 {
unsafe { simd_eq::<_, simd::i32x4>(a.as_f32x4(), b.as_f32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// floating point numbers.
///
/// Returns a new vector where each lane is all ones if the corresponding input elements
/// were not equal, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.ne))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.ne"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_ne(a: v128, b: v128) -> v128 {
unsafe { simd_ne::<_, simd::i32x4>(a.as_f32x4(), b.as_f32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// floating point numbers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.lt))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.lt"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_lt(a: v128, b: v128) -> v128 {
unsafe { simd_lt::<_, simd::i32x4>(a.as_f32x4(), b.as_f32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// floating point numbers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.gt))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.gt"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_gt(a: v128, b: v128) -> v128 {
unsafe { simd_gt::<_, simd::i32x4>(a.as_f32x4(), b.as_f32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// floating point numbers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.le))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.le"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_le(a: v128, b: v128) -> v128 {
unsafe { simd_le::<_, simd::i32x4>(a.as_f32x4(), b.as_f32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 4 thirty-two-bit
/// floating point numbers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.ge))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.ge"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_ge(a: v128, b: v128) -> v128 {
unsafe { simd_ge::<_, simd::i32x4>(a.as_f32x4(), b.as_f32x4()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 2 sixty-four-bit
/// floating point numbers.
///
/// Returns a new vector where each lane is all ones if the corresponding input elements
/// were equal, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.eq))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.eq"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_eq(a: v128, b: v128) -> v128 {
unsafe { simd_eq::<_, simd::i64x2>(a.as_f64x2(), b.as_f64x2()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 2 sixty-four-bit
/// floating point numbers.
///
/// Returns a new vector where each lane is all ones if the corresponding input elements
/// were not equal, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.ne))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.ne"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_ne(a: v128, b: v128) -> v128 {
unsafe { simd_ne::<_, simd::i64x2>(a.as_f64x2(), b.as_f64x2()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 2 sixty-four-bit
/// floating point numbers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.lt))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.lt"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_lt(a: v128, b: v128) -> v128 {
unsafe { simd_lt::<_, simd::i64x2>(a.as_f64x2(), b.as_f64x2()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 2 sixty-four-bit
/// floating point numbers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.gt))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.gt"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_gt(a: v128, b: v128) -> v128 {
unsafe { simd_gt::<_, simd::i64x2>(a.as_f64x2(), b.as_f64x2()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 2 sixty-four-bit
/// floating point numbers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is less than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.le))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.le"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_le(a: v128, b: v128) -> v128 {
unsafe { simd_le::<_, simd::i64x2>(a.as_f64x2(), b.as_f64x2()).v128() }
}
/// Compares two 128-bit vectors as if they were two vectors of 2 sixty-four-bit
/// floating point numbers.
///
/// Returns a new vector where each lane is all ones if the lane-wise left
/// element is greater than the right element, or all zeros otherwise.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.ge))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.ge"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_ge(a: v128, b: v128) -> v128 {
unsafe { simd_ge::<_, simd::i64x2>(a.as_f64x2(), b.as_f64x2()).v128() }
}
/// Flips each bit of the 128-bit input vector.
#[inline]
#[cfg_attr(test, assert_instr(v128.not))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.not"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn v128_not(a: v128) -> v128 {
unsafe { simd_xor(a.as_i64x2(), simd::i64x2(!0, !0)).v128() }
}
/// Performs a bitwise and of the two input 128-bit vectors, returning the
/// resulting vector.
#[inline]
#[cfg_attr(test, assert_instr(v128.and))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.and"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn v128_and(a: v128, b: v128) -> v128 {
unsafe { simd_and(a.as_i64x2(), b.as_i64x2()).v128() }
}
/// Bitwise AND of bits of `a` and the logical inverse of bits of `b`.
///
/// This operation is equivalent to `v128.and(a, v128.not(b))`
#[inline]
#[cfg_attr(test, assert_instr(v128.andnot))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.andnot"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn v128_andnot(a: v128, b: v128) -> v128 {
unsafe { simd_and(a.as_i64x2(), simd_xor(b.as_i64x2(), simd::i64x2(-1, -1))).v128() }
}
/// Performs a bitwise or of the two input 128-bit vectors, returning the
/// resulting vector.
#[inline]
#[cfg_attr(test, assert_instr(v128.or))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.or"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn v128_or(a: v128, b: v128) -> v128 {
unsafe { simd_or(a.as_i64x2(), b.as_i64x2()).v128() }
}
/// Performs a bitwise xor of the two input 128-bit vectors, returning the
/// resulting vector.
#[inline]
#[cfg_attr(test, assert_instr(v128.xor))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.xor"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn v128_xor(a: v128, b: v128) -> v128 {
unsafe { simd_xor(a.as_i64x2(), b.as_i64x2()).v128() }
}
/// Use the bitmask in `c` to select bits from `v1` when 1 and `v2` when 0.
#[inline]
#[cfg_attr(test, assert_instr(v128.bitselect))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.bitselect"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn v128_bitselect(v1: v128, v2: v128, c: v128) -> v128 {
unsafe { llvm_bitselect(v1.as_i8x16(), v2.as_i8x16(), c.as_i8x16()).v128() }
}
/// Returns `true` if any bit in `a` is set, or `false` otherwise.
#[inline]
#[cfg_attr(test, assert_instr(v128.any_true))]
#[target_feature(enable = "simd128")]
#[doc(alias("v128.any_true"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn v128_any_true(a: v128) -> bool {
unsafe { llvm_any_true_i8x16(a.as_i8x16()) != 0 }
}
/// Lane-wise wrapping absolute value.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.abs))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.abs"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_abs(a: v128) -> v128 {
unsafe {
let a = a.as_i8x16();
let zero = simd::i8x16::splat(0);
simd_select::<simd::m8x16, simd::i8x16>(simd_lt(a, zero), simd_sub(zero, a), a).v128()
}
}
/// Negates a 128-bit vectors interpreted as sixteen 8-bit signed integers
#[inline]
#[cfg_attr(test, assert_instr(i8x16.neg))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.neg"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_neg(a: v128) -> v128 {
unsafe { simd_mul(a.as_i8x16(), simd::i8x16::splat(-1)).v128() }
}
/// Count the number of bits set to one within each lane.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.popcnt))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.popcnt"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_popcnt(v: v128) -> v128 {
unsafe { llvm_popcnt(v.as_i8x16()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i8x16_popcnt as u8x16_popcnt;
/// Returns true if all lanes are non-zero, false otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.all_true))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.all_true"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_all_true(a: v128) -> bool {
unsafe { llvm_i8x16_all_true(a.as_i8x16()) != 0 }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i8x16_all_true as u8x16_all_true;
/// Extracts the high bit for each lane in `a` and produce a scalar mask with
/// all bits concatenated.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.bitmask))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.bitmask"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_bitmask(a: v128) -> u16 {
// FIXME(https://bugs.llvm.org/show_bug.cgi?id=50507) - this produces an
// extraneous `i32.and` instruction against a mask of 65535 when converting
// from the native intrinsic's i32 return value to our desired u16. This
// shouldn't be necessary, though, but requires upstream LLVM changes.
unsafe { llvm_bitmask_i8x16(a.as_i8x16()) as u16 }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i8x16_bitmask as u8x16_bitmask;
/// Converts two input vectors into a smaller lane vector by narrowing each
/// lane.
///
/// Signed saturation to 0x7f or 0x80 is used and the input lanes are always
/// interpreted as signed integers.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.narrow_i16x8_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.narrow_i16x8_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_narrow_i16x8(a: v128, b: v128) -> v128 {
unsafe { llvm_narrow_i8x16_s(a.as_i16x8(), b.as_i16x8()).v128() }
}
/// Converts two input vectors into a smaller lane vector by narrowing each
/// lane.
///
/// Signed saturation to 0x00 or 0xff is used and the input lanes are always
/// interpreted as signed integers.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.narrow_i16x8_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.narrow_i16x8_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u8x16_narrow_i16x8(a: v128, b: v128) -> v128 {
unsafe { llvm_narrow_i8x16_u(a.as_i16x8(), b.as_i16x8()).v128() }
}
/// Shifts each lane to the left by the specified number of bits.
///
/// Only the low bits of the shift amount are used if the shift amount is
/// greater than the lane width.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.shl))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.shl"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_shl(a: v128, amt: u32) -> v128 {
unsafe { simd_shl(a.as_i8x16(), simd::i8x16::splat(amt as i8)).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i8x16_shl as u8x16_shl;
/// Shifts each lane to the right by the specified number of bits, sign
/// extending.
///
/// Only the low bits of the shift amount are used if the shift amount is
/// greater than the lane width.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.shr_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.shr_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_shr(a: v128, amt: u32) -> v128 {
unsafe { simd_shr(a.as_i8x16(), simd::i8x16::splat(amt as i8)).v128() }
}
/// Shifts each lane to the right by the specified number of bits, shifting in
/// zeros.
///
/// Only the low bits of the shift amount are used if the shift amount is
/// greater than the lane width.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.shr_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.shr_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u8x16_shr(a: v128, amt: u32) -> v128 {
unsafe { simd_shr(a.as_u8x16(), simd::u8x16::splat(amt as u8)).v128() }
}
/// Adds two 128-bit vectors as if they were two packed sixteen 8-bit integers.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.add))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.add"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_add(a: v128, b: v128) -> v128 {
unsafe { simd_add(a.as_i8x16(), b.as_i8x16()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i8x16_add as u8x16_add;
/// Adds two 128-bit vectors as if they were two packed sixteen 8-bit signed
/// integers, saturating on overflow to `i8::MAX`.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.add_sat_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.add_sat_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_add_sat(a: v128, b: v128) -> v128 {
unsafe { llvm_i8x16_add_sat_s(a.as_i8x16(), b.as_i8x16()).v128() }
}
/// Adds two 128-bit vectors as if they were two packed sixteen 8-bit unsigned
/// integers, saturating on overflow to `u8::MAX`.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.add_sat_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.add_sat_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u8x16_add_sat(a: v128, b: v128) -> v128 {
unsafe { llvm_i8x16_add_sat_u(a.as_i8x16(), b.as_i8x16()).v128() }
}
/// Subtracts two 128-bit vectors as if they were two packed sixteen 8-bit integers.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.sub))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.sub"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_sub(a: v128, b: v128) -> v128 {
unsafe { simd_sub(a.as_i8x16(), b.as_i8x16()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i8x16_sub as u8x16_sub;
/// Subtracts two 128-bit vectors as if they were two packed sixteen 8-bit
/// signed integers, saturating on overflow to `i8::MIN`.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.sub_sat_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.sub_sat_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_sub_sat(a: v128, b: v128) -> v128 {
unsafe { llvm_i8x16_sub_sat_s(a.as_i8x16(), b.as_i8x16()).v128() }
}
/// Subtracts two 128-bit vectors as if they were two packed sixteen 8-bit
/// unsigned integers, saturating on overflow to 0.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.sub_sat_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.sub_sat_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u8x16_sub_sat(a: v128, b: v128) -> v128 {
unsafe { llvm_i8x16_sub_sat_u(a.as_i8x16(), b.as_i8x16()).v128() }
}
/// Compares lane-wise signed integers, and returns the minimum of
/// each pair.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.min_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.min_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_min(a: v128, b: v128) -> v128 {
let a = a.as_i8x16();
let b = b.as_i8x16();
unsafe { simd_select::<simd::i8x16, _>(simd_lt(a, b), a, b).v128() }
}
/// Compares lane-wise unsigned integers, and returns the minimum of
/// each pair.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.min_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.min_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u8x16_min(a: v128, b: v128) -> v128 {
let a = a.as_u8x16();
let b = b.as_u8x16();
unsafe { simd_select::<simd::i8x16, _>(simd_lt(a, b), a, b).v128() }
}
/// Compares lane-wise signed integers, and returns the maximum of
/// each pair.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.max_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.max_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i8x16_max(a: v128, b: v128) -> v128 {
let a = a.as_i8x16();
let b = b.as_i8x16();
unsafe { simd_select::<simd::i8x16, _>(simd_gt(a, b), a, b).v128() }
}
/// Compares lane-wise unsigned integers, and returns the maximum of
/// each pair.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.max_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.max_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u8x16_max(a: v128, b: v128) -> v128 {
let a = a.as_u8x16();
let b = b.as_u8x16();
unsafe { simd_select::<simd::i8x16, _>(simd_gt(a, b), a, b).v128() }
}
/// Lane-wise rounding average.
#[inline]
#[cfg_attr(test, assert_instr(i8x16.avgr_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i8x16.avgr_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u8x16_avgr(a: v128, b: v128) -> v128 {
unsafe { llvm_avgr_u_i8x16(a.as_i8x16(), b.as_i8x16()).v128() }
}
/// Integer extended pairwise addition producing extended results
/// (twice wider results than the inputs).
#[inline]
#[cfg_attr(test, assert_instr(i16x8.extadd_pairwise_i8x16_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.extadd_pairwise_i8x16_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_extadd_pairwise_i8x16(a: v128) -> v128 {
unsafe { llvm_i16x8_extadd_pairwise_i8x16_s(a.as_i8x16()).v128() }
}
/// Integer extended pairwise addition producing extended results
/// (twice wider results than the inputs).
#[inline]
#[cfg_attr(test, assert_instr(i16x8.extadd_pairwise_i8x16_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.extadd_pairwise_i8x16_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_extadd_pairwise_u8x16(a: v128) -> v128 {
unsafe { llvm_i16x8_extadd_pairwise_i8x16_u(a.as_i8x16()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_extadd_pairwise_u8x16 as u16x8_extadd_pairwise_u8x16;
/// Lane-wise wrapping absolute value.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.abs))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.abs"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_abs(a: v128) -> v128 {
let a = a.as_i16x8();
let zero = simd::i16x8::splat(0);
unsafe {
simd_select::<simd::m16x8, simd::i16x8>(simd_lt(a, zero), simd_sub(zero, a), a).v128()
}
}
/// Negates a 128-bit vectors interpreted as eight 16-bit signed integers
#[inline]
#[cfg_attr(test, assert_instr(i16x8.neg))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.neg"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_neg(a: v128) -> v128 {
unsafe { simd_mul(a.as_i16x8(), simd::i16x8::splat(-1)).v128() }
}
/// Lane-wise saturating rounding multiplication in Q15 format.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.q15mulr_sat_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.q15mulr_sat_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_q15mulr_sat(a: v128, b: v128) -> v128 {
unsafe { llvm_q15mulr(a.as_i16x8(), b.as_i16x8()).v128() }
}
/// Returns true if all lanes are non-zero, false otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.all_true))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.all_true"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_all_true(a: v128) -> bool {
unsafe { llvm_i16x8_all_true(a.as_i16x8()) != 0 }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_all_true as u16x8_all_true;
/// Extracts the high bit for each lane in `a` and produce a scalar mask with
/// all bits concatenated.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.bitmask))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.bitmask"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_bitmask(a: v128) -> u8 {
unsafe { llvm_bitmask_i16x8(a.as_i16x8()) as u8 }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_bitmask as u16x8_bitmask;
/// Converts two input vectors into a smaller lane vector by narrowing each
/// lane.
///
/// Signed saturation to 0x7fff or 0x8000 is used and the input lanes are always
/// interpreted as signed integers.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.narrow_i32x4_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.narrow_i32x4_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_narrow_i32x4(a: v128, b: v128) -> v128 {
unsafe { llvm_narrow_i16x8_s(a.as_i32x4(), b.as_i32x4()).v128() }
}
/// Converts two input vectors into a smaller lane vector by narrowing each
/// lane.
///
/// Signed saturation to 0x0000 or 0xffff is used and the input lanes are always
/// interpreted as signed integers.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.narrow_i32x4_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.narrow_i32x4_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u16x8_narrow_i32x4(a: v128, b: v128) -> v128 {
unsafe { llvm_narrow_i16x8_u(a.as_i32x4(), b.as_i32x4()).v128() }
}
/// Converts low half of the smaller lane vector to a larger lane
/// vector, sign extended.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.extend_low_i8x16_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.extend_low_i8x16_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_extend_low_i8x16(a: v128) -> v128 {
unsafe {
simd_cast::<simd::i8x8, simd::i16x8>(simd_shuffle8!(
a.as_i8x16(),
a.as_i8x16(),
[0, 1, 2, 3, 4, 5, 6, 7],
))
.v128()
}
}
/// Converts high half of the smaller lane vector to a larger lane
/// vector, sign extended.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.extend_high_i8x16_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.extend_high_i8x16_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_extend_high_i8x16(a: v128) -> v128 {
unsafe {
simd_cast::<simd::i8x8, simd::i16x8>(simd_shuffle8!(
a.as_i8x16(),
a.as_i8x16(),
[8, 9, 10, 11, 12, 13, 14, 15],
))
.v128()
}
}
/// Converts low half of the smaller lane vector to a larger lane
/// vector, zero extended.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.extend_low_i8x16_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.extend_low_i8x16_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_extend_low_u8x16(a: v128) -> v128 {
unsafe {
simd_cast::<simd::u8x8, simd::u16x8>(simd_shuffle8!(
a.as_u8x16(),
a.as_u8x16(),
[0, 1, 2, 3, 4, 5, 6, 7],
))
.v128()
}
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_extend_low_u8x16 as u16x8_extend_low_u8x16;
/// Converts high half of the smaller lane vector to a larger lane
/// vector, zero extended.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.extend_high_i8x16_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.extend_high_i8x16_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_extend_high_u8x16(a: v128) -> v128 {
unsafe {
simd_cast::<simd::u8x8, simd::u16x8>(simd_shuffle8!(
a.as_u8x16(),
a.as_u8x16(),
[8, 9, 10, 11, 12, 13, 14, 15],
))
.v128()
}
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_extend_high_u8x16 as u16x8_extend_high_u8x16;
/// Shifts each lane to the left by the specified number of bits.
///
/// Only the low bits of the shift amount are used if the shift amount is
/// greater than the lane width.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.shl))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.shl"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_shl(a: v128, amt: u32) -> v128 {
unsafe { simd_shl(a.as_i16x8(), simd::i16x8::splat(amt as i16)).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_shl as u16x8_shl;
/// Shifts each lane to the right by the specified number of bits, sign
/// extending.
///
/// Only the low bits of the shift amount are used if the shift amount is
/// greater than the lane width.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.shr_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.shr_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_shr(a: v128, amt: u32) -> v128 {
unsafe { simd_shr(a.as_i16x8(), simd::i16x8::splat(amt as i16)).v128() }
}
/// Shifts each lane to the right by the specified number of bits, shifting in
/// zeros.
///
/// Only the low bits of the shift amount are used if the shift amount is
/// greater than the lane width.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.shr_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.shr_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u16x8_shr(a: v128, amt: u32) -> v128 {
unsafe { simd_shr(a.as_u16x8(), simd::u16x8::splat(amt as u16)).v128() }
}
/// Adds two 128-bit vectors as if they were two packed eight 16-bit integers.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.add))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.add"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_add(a: v128, b: v128) -> v128 {
unsafe { simd_add(a.as_i16x8(), b.as_i16x8()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_add as u16x8_add;
/// Adds two 128-bit vectors as if they were two packed eight 16-bit signed
/// integers, saturating on overflow to `i16::MAX`.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.add_sat_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.add_sat_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_add_sat(a: v128, b: v128) -> v128 {
unsafe { llvm_i16x8_add_sat_s(a.as_i16x8(), b.as_i16x8()).v128() }
}
/// Adds two 128-bit vectors as if they were two packed eight 16-bit unsigned
/// integers, saturating on overflow to `u16::MAX`.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.add_sat_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.add_sat_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u16x8_add_sat(a: v128, b: v128) -> v128 {
unsafe { llvm_i16x8_add_sat_u(a.as_i16x8(), b.as_i16x8()).v128() }
}
/// Subtracts two 128-bit vectors as if they were two packed eight 16-bit integers.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.sub))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.sub"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_sub(a: v128, b: v128) -> v128 {
unsafe { simd_sub(a.as_i16x8(), b.as_i16x8()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_sub as u16x8_sub;
/// Subtracts two 128-bit vectors as if they were two packed eight 16-bit
/// signed integers, saturating on overflow to `i16::MIN`.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.sub_sat_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.sub_sat_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_sub_sat(a: v128, b: v128) -> v128 {
unsafe { llvm_i16x8_sub_sat_s(a.as_i16x8(), b.as_i16x8()).v128() }
}
/// Subtracts two 128-bit vectors as if they were two packed eight 16-bit
/// unsigned integers, saturating on overflow to 0.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.sub_sat_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.sub_sat_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u16x8_sub_sat(a: v128, b: v128) -> v128 {
unsafe { llvm_i16x8_sub_sat_u(a.as_i16x8(), b.as_i16x8()).v128() }
}
/// Multiplies two 128-bit vectors as if they were two packed eight 16-bit
/// signed integers.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.mul))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.mul"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_mul(a: v128, b: v128) -> v128 {
unsafe { simd_mul(a.as_i16x8(), b.as_i16x8()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_mul as u16x8_mul;
/// Compares lane-wise signed integers, and returns the minimum of
/// each pair.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.min_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.min_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_min(a: v128, b: v128) -> v128 {
let a = a.as_i16x8();
let b = b.as_i16x8();
unsafe { simd_select::<simd::i16x8, _>(simd_lt(a, b), a, b).v128() }
}
/// Compares lane-wise unsigned integers, and returns the minimum of
/// each pair.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.min_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.min_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u16x8_min(a: v128, b: v128) -> v128 {
let a = a.as_u16x8();
let b = b.as_u16x8();
unsafe { simd_select::<simd::i16x8, _>(simd_lt(a, b), a, b).v128() }
}
/// Compares lane-wise signed integers, and returns the maximum of
/// each pair.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.max_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.max_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_max(a: v128, b: v128) -> v128 {
let a = a.as_i16x8();
let b = b.as_i16x8();
unsafe { simd_select::<simd::i16x8, _>(simd_gt(a, b), a, b).v128() }
}
/// Compares lane-wise unsigned integers, and returns the maximum of
/// each pair.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.max_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.max_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u16x8_max(a: v128, b: v128) -> v128 {
let a = a.as_u16x8();
let b = b.as_u16x8();
unsafe { simd_select::<simd::i16x8, _>(simd_gt(a, b), a, b).v128() }
}
/// Lane-wise rounding average.
#[inline]
#[cfg_attr(test, assert_instr(i16x8.avgr_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.avgr_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u16x8_avgr(a: v128, b: v128) -> v128 {
unsafe { llvm_avgr_u_i16x8(a.as_i16x8(), b.as_i16x8()).v128() }
}
/// Lane-wise integer extended multiplication producing twice wider result than
/// the inputs.
///
/// Equivalent of `i16x8_mul(i16x8_extend_low_i8x16(a), i16x8_extend_low_i8x16(b))`
#[inline]
#[cfg_attr(test, assert_instr(i16x8.extmul_low_i8x16_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.extmul_low_i8x16_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_extmul_low_i8x16(a: v128, b: v128) -> v128 {
unsafe {
let lhs = simd_cast::<simd::i8x8, simd::i16x8>(simd_shuffle8!(
a.as_i8x16(),
a.as_i8x16(),
[0, 1, 2, 3, 4, 5, 6, 7],
));
let rhs = simd_cast::<simd::i8x8, simd::i16x8>(simd_shuffle8!(
b.as_i8x16(),
b.as_i8x16(),
[0, 1, 2, 3, 4, 5, 6, 7],
));
simd_mul(lhs, rhs).v128()
}
}
/// Lane-wise integer extended multiplication producing twice wider result than
/// the inputs.
///
/// Equivalent of `i16x8_mul(i16x8_extend_high_i8x16(a), i16x8_extend_high_i8x16(b))`
#[inline]
#[cfg_attr(test, assert_instr(i16x8.extmul_high_i8x16_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.extmul_high_i8x16_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_extmul_high_i8x16(a: v128, b: v128) -> v128 {
unsafe {
let lhs = simd_cast::<simd::i8x8, simd::i16x8>(simd_shuffle8!(
a.as_i8x16(),
a.as_i8x16(),
[8, 9, 10, 11, 12, 13, 14, 15],
));
let rhs = simd_cast::<simd::i8x8, simd::i16x8>(simd_shuffle8!(
b.as_i8x16(),
b.as_i8x16(),
[8, 9, 10, 11, 12, 13, 14, 15],
));
simd_mul(lhs, rhs).v128()
}
}
/// Lane-wise integer extended multiplication producing twice wider result than
/// the inputs.
///
/// Equivalent of `i16x8_mul(i16x8_extend_low_u8x16(a), i16x8_extend_low_u8x16(b))`
#[inline]
#[cfg_attr(test, assert_instr(i16x8.extmul_low_i8x16_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.extmul_low_i8x16_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_extmul_low_u8x16(a: v128, b: v128) -> v128 {
unsafe {
let lhs = simd_cast::<simd::u8x8, simd::u16x8>(simd_shuffle8!(
a.as_u8x16(),
a.as_u8x16(),
[0, 1, 2, 3, 4, 5, 6, 7],
));
let rhs = simd_cast::<simd::u8x8, simd::u16x8>(simd_shuffle8!(
b.as_u8x16(),
b.as_u8x16(),
[0, 1, 2, 3, 4, 5, 6, 7],
));
simd_mul(lhs, rhs).v128()
}
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_extmul_low_u8x16 as u16x8_extmul_low_u8x16;
/// Lane-wise integer extended multiplication producing twice wider result than
/// the inputs.
///
/// Equivalent of `i16x8_mul(i16x8_extend_high_u8x16(a), i16x8_extend_high_u8x16(b))`
#[inline]
#[cfg_attr(test, assert_instr(i16x8.extmul_high_i8x16_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i16x8.extmul_high_i8x16_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i16x8_extmul_high_u8x16(a: v128, b: v128) -> v128 {
unsafe {
let lhs = simd_cast::<simd::u8x8, simd::u16x8>(simd_shuffle8!(
a.as_u8x16(),
a.as_u8x16(),
[8, 9, 10, 11, 12, 13, 14, 15],
));
let rhs = simd_cast::<simd::u8x8, simd::u16x8>(simd_shuffle8!(
b.as_u8x16(),
b.as_u8x16(),
[8, 9, 10, 11, 12, 13, 14, 15],
));
simd_mul(lhs, rhs).v128()
}
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i16x8_extmul_high_u8x16 as u16x8_extmul_high_u8x16;
/// Integer extended pairwise addition producing extended results
/// (twice wider results than the inputs).
#[inline]
#[cfg_attr(test, assert_instr(i32x4.extadd_pairwise_i16x8_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.extadd_pairwise_i16x8_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_extadd_pairwise_i16x8(a: v128) -> v128 {
unsafe { llvm_i32x4_extadd_pairwise_i16x8_s(a.as_i16x8()).v128() }
}
/// Integer extended pairwise addition producing extended results
/// (twice wider results than the inputs).
#[inline]
#[cfg_attr(test, assert_instr(i32x4.extadd_pairwise_i16x8_u))]
#[doc(alias("i32x4.extadd_pairwise_i16x8_u"))]
#[target_feature(enable = "simd128")]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_extadd_pairwise_u16x8(a: v128) -> v128 {
unsafe { llvm_i32x4_extadd_pairwise_i16x8_u(a.as_i16x8()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_extadd_pairwise_u16x8 as u32x4_extadd_pairwise_u16x8;
/// Lane-wise wrapping absolute value.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.abs))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.abs"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_abs(a: v128) -> v128 {
let a = a.as_i32x4();
let zero = simd::i32x4::splat(0);
unsafe {
simd_select::<simd::m32x4, simd::i32x4>(simd_lt(a, zero), simd_sub(zero, a), a).v128()
}
}
/// Negates a 128-bit vectors interpreted as four 32-bit signed integers
#[inline]
#[cfg_attr(test, assert_instr(i32x4.neg))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.neg"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_neg(a: v128) -> v128 {
unsafe { simd_mul(a.as_i32x4(), simd::i32x4::splat(-1)).v128() }
}
/// Returns true if all lanes are non-zero, false otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.all_true))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.all_true"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_all_true(a: v128) -> bool {
unsafe { llvm_i32x4_all_true(a.as_i32x4()) != 0 }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_all_true as u32x4_all_true;
/// Extracts the high bit for each lane in `a` and produce a scalar mask with
/// all bits concatenated.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.bitmask))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.bitmask"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_bitmask(a: v128) -> u8 {
unsafe { llvm_bitmask_i32x4(a.as_i32x4()) as u8 }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_bitmask as u32x4_bitmask;
/// Converts low half of the smaller lane vector to a larger lane
/// vector, sign extended.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.extend_low_i16x8_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.extend_low_i16x8_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_extend_low_i16x8(a: v128) -> v128 {
unsafe {
simd_cast::<simd::i16x4, simd::i32x4>(simd_shuffle4!(
a.as_i16x8(),
a.as_i16x8(),
[0, 1, 2, 3]
))
.v128()
}
}
/// Converts high half of the smaller lane vector to a larger lane
/// vector, sign extended.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.extend_high_i16x8_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.extend_high_i16x8_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_extend_high_i16x8(a: v128) -> v128 {
unsafe {
simd_cast::<simd::i16x4, simd::i32x4>(simd_shuffle4!(
a.as_i16x8(),
a.as_i16x8(),
[4, 5, 6, 7]
))
.v128()
}
}
/// Converts low half of the smaller lane vector to a larger lane
/// vector, zero extended.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.extend_low_i16x8_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.extend_low_i16x8_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_extend_low_u16x8(a: v128) -> v128 {
unsafe {
simd_cast::<simd::u16x4, simd::u32x4>(simd_shuffle4!(
a.as_u16x8(),
a.as_u16x8(),
[0, 1, 2, 3]
))
.v128()
}
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_extend_low_u16x8 as u32x4_extend_low_u16x8;
/// Converts high half of the smaller lane vector to a larger lane
/// vector, zero extended.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.extend_high_i16x8_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.extend_high_i16x8_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_extend_high_u16x8(a: v128) -> v128 {
unsafe {
simd_cast::<simd::u16x4, simd::u32x4>(simd_shuffle4!(
a.as_u16x8(),
a.as_u16x8(),
[4, 5, 6, 7]
))
.v128()
}
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_extend_high_u16x8 as u32x4_extend_high_u16x8;
/// Shifts each lane to the left by the specified number of bits.
///
/// Only the low bits of the shift amount are used if the shift amount is
/// greater than the lane width.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.shl))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.shl"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_shl(a: v128, amt: u32) -> v128 {
unsafe { simd_shl(a.as_i32x4(), simd::i32x4::splat(amt as i32)).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_shl as u32x4_shl;
/// Shifts each lane to the right by the specified number of bits, sign
/// extending.
///
/// Only the low bits of the shift amount are used if the shift amount is
/// greater than the lane width.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.shr_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.shr_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_shr(a: v128, amt: u32) -> v128 {
unsafe { simd_shr(a.as_i32x4(), simd::i32x4::splat(amt as i32)).v128() }
}
/// Shifts each lane to the right by the specified number of bits, shifting in
/// zeros.
///
/// Only the low bits of the shift amount are used if the shift amount is
/// greater than the lane width.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.shr_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.shr_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u32x4_shr(a: v128, amt: u32) -> v128 {
unsafe { simd_shr(a.as_u32x4(), simd::u32x4::splat(amt as u32)).v128() }
}
/// Adds two 128-bit vectors as if they were two packed four 32-bit integers.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.add))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.add"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_add(a: v128, b: v128) -> v128 {
unsafe { simd_add(a.as_i32x4(), b.as_i32x4()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_add as u32x4_add;
/// Subtracts two 128-bit vectors as if they were two packed four 32-bit integers.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.sub))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.sub"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_sub(a: v128, b: v128) -> v128 {
unsafe { simd_sub(a.as_i32x4(), b.as_i32x4()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_sub as u32x4_sub;
/// Multiplies two 128-bit vectors as if they were two packed four 32-bit
/// signed integers.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.mul))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.mul"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_mul(a: v128, b: v128) -> v128 {
unsafe { simd_mul(a.as_i32x4(), b.as_i32x4()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_mul as u32x4_mul;
/// Compares lane-wise signed integers, and returns the minimum of
/// each pair.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.min_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.min_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_min(a: v128, b: v128) -> v128 {
let a = a.as_i32x4();
let b = b.as_i32x4();
unsafe { simd_select::<simd::i32x4, _>(simd_lt(a, b), a, b).v128() }
}
/// Compares lane-wise unsigned integers, and returns the minimum of
/// each pair.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.min_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.min_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u32x4_min(a: v128, b: v128) -> v128 {
let a = a.as_u32x4();
let b = b.as_u32x4();
unsafe { simd_select::<simd::i32x4, _>(simd_lt(a, b), a, b).v128() }
}
/// Compares lane-wise signed integers, and returns the maximum of
/// each pair.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.max_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.max_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_max(a: v128, b: v128) -> v128 {
let a = a.as_i32x4();
let b = b.as_i32x4();
unsafe { simd_select::<simd::i32x4, _>(simd_gt(a, b), a, b).v128() }
}
/// Compares lane-wise unsigned integers, and returns the maximum of
/// each pair.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.max_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.max_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u32x4_max(a: v128, b: v128) -> v128 {
let a = a.as_u32x4();
let b = b.as_u32x4();
unsafe { simd_select::<simd::i32x4, _>(simd_gt(a, b), a, b).v128() }
}
/// Lane-wise multiply signed 16-bit integers in the two input vectors and add
/// adjacent pairs of the full 32-bit results.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.dot_i16x8_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.dot_i16x8_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_dot_i16x8(a: v128, b: v128) -> v128 {
unsafe { llvm_i32x4_dot_i16x8_s(a.as_i16x8(), b.as_i16x8()).v128() }
}
/// Lane-wise integer extended multiplication producing twice wider result than
/// the inputs.
///
/// Equivalent of `i32x4_mul(i32x4_extend_low_i16x8_s(a), i32x4_extend_low_i16x8_s(b))`
#[inline]
#[cfg_attr(test, assert_instr(i32x4.extmul_low_i16x8_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.extmul_low_i16x8_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_extmul_low_i16x8(a: v128, b: v128) -> v128 {
unsafe {
let lhs = simd_cast::<simd::i16x4, simd::i32x4>(simd_shuffle4!(
a.as_i16x8(),
a.as_i16x8(),
[0, 1, 2, 3]
));
let rhs = simd_cast::<simd::i16x4, simd::i32x4>(simd_shuffle4!(
b.as_i16x8(),
b.as_i16x8(),
[0, 1, 2, 3]
));
simd_mul(lhs, rhs).v128()
}
}
/// Lane-wise integer extended multiplication producing twice wider result than
/// the inputs.
///
/// Equivalent of `i32x4_mul(i32x4_extend_high_i16x8_s(a), i32x4_extend_high_i16x8_s(b))`
#[inline]
#[cfg_attr(test, assert_instr(i32x4.extmul_high_i16x8_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.extmul_high_i16x8_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_extmul_high_i16x8(a: v128, b: v128) -> v128 {
unsafe {
let lhs = simd_cast::<simd::i16x4, simd::i32x4>(simd_shuffle4!(
a.as_i16x8(),
a.as_i16x8(),
[4, 5, 6, 7]
));
let rhs = simd_cast::<simd::i16x4, simd::i32x4>(simd_shuffle4!(
b.as_i16x8(),
b.as_i16x8(),
[4, 5, 6, 7]
));
simd_mul(lhs, rhs).v128()
}
}
/// Lane-wise integer extended multiplication producing twice wider result than
/// the inputs.
///
/// Equivalent of `i32x4_mul(i32x4_extend_low_u16x8(a), i32x4_extend_low_u16x8(b))`
#[inline]
#[cfg_attr(test, assert_instr(i32x4.extmul_low_i16x8_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.extmul_low_i16x8_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_extmul_low_u16x8(a: v128, b: v128) -> v128 {
unsafe {
let lhs = simd_cast::<simd::u16x4, simd::u32x4>(simd_shuffle4!(
a.as_u16x8(),
a.as_u16x8(),
[0, 1, 2, 3]
));
let rhs = simd_cast::<simd::u16x4, simd::u32x4>(simd_shuffle4!(
b.as_u16x8(),
b.as_u16x8(),
[0, 1, 2, 3]
));
simd_mul(lhs, rhs).v128()
}
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_extmul_low_u16x8 as u32x4_extmul_low_u16x8;
/// Lane-wise integer extended multiplication producing twice wider result than
/// the inputs.
///
/// Equivalent of `i32x4_mul(i32x4_extend_high_u16x8(a), i32x4_extend_high_u16x8(b))`
#[inline]
#[cfg_attr(test, assert_instr(i32x4.extmul_high_i16x8_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.extmul_high_i16x8_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_extmul_high_u16x8(a: v128, b: v128) -> v128 {
unsafe {
let lhs = simd_cast::<simd::u16x4, simd::u32x4>(simd_shuffle4!(
a.as_u16x8(),
a.as_u16x8(),
[4, 5, 6, 7]
));
let rhs = simd_cast::<simd::u16x4, simd::u32x4>(simd_shuffle4!(
b.as_u16x8(),
b.as_u16x8(),
[4, 5, 6, 7]
));
simd_mul(lhs, rhs).v128()
}
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i32x4_extmul_high_u16x8 as u32x4_extmul_high_u16x8;
/// Lane-wise wrapping absolute value.
#[inline]
// #[cfg_attr(test, assert_instr(i64x2.abs))] // FIXME llvm
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.abs"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_abs(a: v128) -> v128 {
let a = a.as_i64x2();
let zero = simd::i64x2::splat(0);
unsafe {
simd_select::<simd::m64x2, simd::i64x2>(simd_lt(a, zero), simd_sub(zero, a), a).v128()
}
}
/// Negates a 128-bit vectors interpreted as two 64-bit signed integers
#[inline]
#[cfg_attr(test, assert_instr(i64x2.neg))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.neg"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_neg(a: v128) -> v128 {
unsafe { simd_mul(a.as_i64x2(), simd::i64x2::splat(-1)).v128() }
}
/// Returns true if all lanes are non-zero, false otherwise.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.all_true))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.all_true"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_all_true(a: v128) -> bool {
unsafe { llvm_i64x2_all_true(a.as_i64x2()) != 0 }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i64x2_all_true as u64x2_all_true;
/// Extracts the high bit for each lane in `a` and produce a scalar mask with
/// all bits concatenated.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.bitmask))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.bitmask"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_bitmask(a: v128) -> u8 {
unsafe { llvm_bitmask_i64x2(a.as_i64x2()) as u8 }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i64x2_bitmask as u64x2_bitmask;
/// Converts low half of the smaller lane vector to a larger lane
/// vector, sign extended.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.extend_low_i32x4_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.extend_low_i32x4_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_extend_low_i32x4(a: v128) -> v128 {
unsafe {
simd_cast::<simd::i32x2, simd::i64x2>(simd_shuffle2!(a.as_i32x4(), a.as_i32x4(), [0, 1]))
.v128()
}
}
/// Converts high half of the smaller lane vector to a larger lane
/// vector, sign extended.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.extend_high_i32x4_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.extend_high_i32x4_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_extend_high_i32x4(a: v128) -> v128 {
unsafe {
simd_cast::<simd::i32x2, simd::i64x2>(simd_shuffle2!(a.as_i32x4(), a.as_i32x4(), [2, 3]))
.v128()
}
}
/// Converts low half of the smaller lane vector to a larger lane
/// vector, zero extended.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.extend_low_i32x4_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.extend_low_i32x4_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_extend_low_u32x4(a: v128) -> v128 {
unsafe {
simd_cast::<simd::u32x2, simd::i64x2>(simd_shuffle2!(a.as_u32x4(), a.as_u32x4(), [0, 1]))
.v128()
}
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i64x2_extend_low_u32x4 as u64x2_extend_low_u32x4;
/// Converts high half of the smaller lane vector to a larger lane
/// vector, zero extended.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.extend_high_i32x4_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.extend_high_i32x4_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_extend_high_u32x4(a: v128) -> v128 {
unsafe {
simd_cast::<simd::u32x2, simd::i64x2>(simd_shuffle2!(a.as_u32x4(), a.as_u32x4(), [2, 3]))
.v128()
}
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i64x2_extend_high_u32x4 as u64x2_extend_high_u32x4;
/// Shifts each lane to the left by the specified number of bits.
///
/// Only the low bits of the shift amount are used if the shift amount is
/// greater than the lane width.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.shl))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.shl"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_shl(a: v128, amt: u32) -> v128 {
unsafe { simd_shl(a.as_i64x2(), simd::i64x2::splat(amt as i64)).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i64x2_shl as u64x2_shl;
/// Shifts each lane to the right by the specified number of bits, sign
/// extending.
///
/// Only the low bits of the shift amount are used if the shift amount is
/// greater than the lane width.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.shr_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.shr_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_shr(a: v128, amt: u32) -> v128 {
unsafe { simd_shr(a.as_i64x2(), simd::i64x2::splat(amt as i64)).v128() }
}
/// Shifts each lane to the right by the specified number of bits, shifting in
/// zeros.
///
/// Only the low bits of the shift amount are used if the shift amount is
/// greater than the lane width.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.shr_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.shr_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u64x2_shr(a: v128, amt: u32) -> v128 {
unsafe { simd_shr(a.as_u64x2(), simd::u64x2::splat(amt as u64)).v128() }
}
/// Adds two 128-bit vectors as if they were two packed two 64-bit integers.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.add))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.add"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_add(a: v128, b: v128) -> v128 {
unsafe { simd_add(a.as_i64x2(), b.as_i64x2()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i64x2_add as u64x2_add;
/// Subtracts two 128-bit vectors as if they were two packed two 64-bit integers.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.sub))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.sub"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_sub(a: v128, b: v128) -> v128 {
unsafe { simd_sub(a.as_i64x2(), b.as_i64x2()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i64x2_sub as u64x2_sub;
/// Multiplies two 128-bit vectors as if they were two packed two 64-bit integers.
#[inline]
#[cfg_attr(test, assert_instr(i64x2.mul))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.mul"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_mul(a: v128, b: v128) -> v128 {
unsafe { simd_mul(a.as_i64x2(), b.as_i64x2()).v128() }
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i64x2_mul as u64x2_mul;
/// Lane-wise integer extended multiplication producing twice wider result than
/// the inputs.
///
/// Equivalent of `i64x2_mul(i64x2_extend_low_i32x4_s(a), i64x2_extend_low_i32x4_s(b))`
#[inline]
#[cfg_attr(test, assert_instr(i64x2.extmul_low_i32x4_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.extmul_low_i32x4_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_extmul_low_i32x4(a: v128, b: v128) -> v128 {
unsafe {
let lhs = simd_cast::<simd::i32x2, simd::i64x2>(simd_shuffle2!(
a.as_i32x4(),
a.as_i32x4(),
[0, 1]
));
let rhs = simd_cast::<simd::i32x2, simd::i64x2>(simd_shuffle2!(
b.as_i32x4(),
b.as_i32x4(),
[0, 1]
));
simd_mul(lhs, rhs).v128()
}
}
/// Lane-wise integer extended multiplication producing twice wider result than
/// the inputs.
///
/// Equivalent of `i64x2_mul(i64x2_extend_high_i32x4_s(a), i64x2_extend_high_i32x4_s(b))`
#[inline]
#[cfg_attr(test, assert_instr(i64x2.extmul_high_i32x4_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.extmul_high_i32x4_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_extmul_high_i32x4(a: v128, b: v128) -> v128 {
unsafe {
let lhs = simd_cast::<simd::i32x2, simd::i64x2>(simd_shuffle2!(
a.as_i32x4(),
a.as_i32x4(),
[2, 3]
));
let rhs = simd_cast::<simd::i32x2, simd::i64x2>(simd_shuffle2!(
b.as_i32x4(),
b.as_i32x4(),
[2, 3]
));
simd_mul(lhs, rhs).v128()
}
}
/// Lane-wise integer extended multiplication producing twice wider result than
/// the inputs.
///
/// Equivalent of `i64x2_mul(i64x2_extend_low_i32x4_u(a), i64x2_extend_low_i32x4_u(b))`
#[inline]
#[cfg_attr(test, assert_instr(i64x2.extmul_low_i32x4_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.extmul_low_i32x4_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_extmul_low_u32x4(a: v128, b: v128) -> v128 {
unsafe {
let lhs = simd_cast::<simd::u32x2, simd::u64x2>(simd_shuffle2!(
a.as_u32x4(),
a.as_u32x4(),
[0, 1]
));
let rhs = simd_cast::<simd::u32x2, simd::u64x2>(simd_shuffle2!(
b.as_u32x4(),
b.as_u32x4(),
[0, 1]
));
simd_mul(lhs, rhs).v128()
}
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i64x2_extmul_low_u32x4 as u64x2_extmul_low_u32x4;
/// Lane-wise integer extended multiplication producing twice wider result than
/// the inputs.
///
/// Equivalent of `i64x2_mul(i64x2_extend_high_i32x4_u(a), i64x2_extend_high_i32x4_u(b))`
#[inline]
#[cfg_attr(test, assert_instr(i64x2.extmul_high_i32x4_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i64x2.extmul_high_i32x4_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i64x2_extmul_high_u32x4(a: v128, b: v128) -> v128 {
unsafe {
let lhs = simd_cast::<simd::u32x2, simd::u64x2>(simd_shuffle2!(
a.as_u32x4(),
a.as_u32x4(),
[2, 3]
));
let rhs = simd_cast::<simd::u32x2, simd::u64x2>(simd_shuffle2!(
b.as_u32x4(),
b.as_u32x4(),
[2, 3]
));
simd_mul(lhs, rhs).v128()
}
}
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub use i64x2_extmul_high_u32x4 as u64x2_extmul_high_u32x4;
/// Lane-wise rounding to the nearest integral value not smaller than the input.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.ceil))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.ceil"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_ceil(a: v128) -> v128 {
unsafe { llvm_f32x4_ceil(a.as_f32x4()).v128() }
}
/// Lane-wise rounding to the nearest integral value not greater than the input.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.floor))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.floor"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_floor(a: v128) -> v128 {
unsafe { llvm_f32x4_floor(a.as_f32x4()).v128() }
}
/// Lane-wise rounding to the nearest integral value with the magnitude not
/// larger than the input.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.trunc))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.trunc"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_trunc(a: v128) -> v128 {
unsafe { llvm_f32x4_trunc(a.as_f32x4()).v128() }
}
/// Lane-wise rounding to the nearest integral value; if two values are equally
/// near, rounds to the even one.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.nearest))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.nearest"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_nearest(a: v128) -> v128 {
unsafe { llvm_f32x4_nearest(a.as_f32x4()).v128() }
}
/// Calculates the absolute value of each lane of a 128-bit vector interpreted
/// as four 32-bit floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.abs))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.abs"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_abs(a: v128) -> v128 {
unsafe { llvm_f32x4_abs(a.as_f32x4()).v128() }
}
/// Negates each lane of a 128-bit vector interpreted as four 32-bit floating
/// point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.neg))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.neg"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_neg(a: v128) -> v128 {
f32x4_mul(a, f32x4_splat(-1.))
}
/// Calculates the square root of each lane of a 128-bit vector interpreted as
/// four 32-bit floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.sqrt))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.sqrt"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_sqrt(a: v128) -> v128 {
unsafe { llvm_f32x4_sqrt(a.as_f32x4()).v128() }
}
/// Lane-wise addition of two 128-bit vectors interpreted as four 32-bit
/// floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.add))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.add"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_add(a: v128, b: v128) -> v128 {
unsafe { simd_add(a.as_f32x4(), b.as_f32x4()).v128() }
}
/// Lane-wise subtraction of two 128-bit vectors interpreted as four 32-bit
/// floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.sub))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.sub"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_sub(a: v128, b: v128) -> v128 {
unsafe { simd_sub(a.as_f32x4(), b.as_f32x4()).v128() }
}
/// Lane-wise multiplication of two 128-bit vectors interpreted as four 32-bit
/// floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.mul))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.mul"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_mul(a: v128, b: v128) -> v128 {
unsafe { simd_mul(a.as_f32x4(), b.as_f32x4()).v128() }
}
/// Lane-wise division of two 128-bit vectors interpreted as four 32-bit
/// floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.div))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.div"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_div(a: v128, b: v128) -> v128 {
unsafe { simd_div(a.as_f32x4(), b.as_f32x4()).v128() }
}
/// Calculates the lane-wise minimum of two 128-bit vectors interpreted
/// as four 32-bit floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.min))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.min"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_min(a: v128, b: v128) -> v128 {
unsafe { llvm_f32x4_min(a.as_f32x4(), b.as_f32x4()).v128() }
}
/// Calculates the lane-wise minimum of two 128-bit vectors interpreted
/// as four 32-bit floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.max))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.max"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_max(a: v128, b: v128) -> v128 {
unsafe { llvm_f32x4_max(a.as_f32x4(), b.as_f32x4()).v128() }
}
/// Lane-wise minimum value, defined as `b < a ? b : a`
#[inline]
#[cfg_attr(test, assert_instr(f32x4.pmin))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.pmin"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_pmin(a: v128, b: v128) -> v128 {
unsafe {
simd_select::<simd::m32x4, simd::f32x4>(
simd_lt(b.as_f32x4(), a.as_f32x4()),
b.as_f32x4(),
a.as_f32x4(),
)
.v128()
}
}
/// Lane-wise maximum value, defined as `a < b ? b : a`
#[inline]
#[cfg_attr(test, assert_instr(f32x4.pmax))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.pmax"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_pmax(a: v128, b: v128) -> v128 {
unsafe {
simd_select::<simd::m32x4, simd::f32x4>(
simd_lt(a.as_f32x4(), b.as_f32x4()),
b.as_f32x4(),
a.as_f32x4(),
)
.v128()
}
}
/// Lane-wise rounding to the nearest integral value not smaller than the input.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.ceil))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.ceil"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_ceil(a: v128) -> v128 {
unsafe { llvm_f64x2_ceil(a.as_f64x2()).v128() }
}
/// Lane-wise rounding to the nearest integral value not greater than the input.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.floor))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.floor"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_floor(a: v128) -> v128 {
unsafe { llvm_f64x2_floor(a.as_f64x2()).v128() }
}
/// Lane-wise rounding to the nearest integral value with the magnitude not
/// larger than the input.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.trunc))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.trunc"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_trunc(a: v128) -> v128 {
unsafe { llvm_f64x2_trunc(a.as_f64x2()).v128() }
}
/// Lane-wise rounding to the nearest integral value; if two values are equally
/// near, rounds to the even one.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.nearest))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.nearest"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_nearest(a: v128) -> v128 {
unsafe { llvm_f64x2_nearest(a.as_f64x2()).v128() }
}
/// Calculates the absolute value of each lane of a 128-bit vector interpreted
/// as two 64-bit floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.abs))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.abs"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_abs(a: v128) -> v128 {
unsafe { llvm_f64x2_abs(a.as_f64x2()).v128() }
}
/// Negates each lane of a 128-bit vector interpreted as two 64-bit floating
/// point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.neg))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.neg"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_neg(a: v128) -> v128 {
f64x2_mul(a, f64x2_splat(-1.0))
}
/// Calculates the square root of each lane of a 128-bit vector interpreted as
/// two 64-bit floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.sqrt))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.sqrt"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_sqrt(a: v128) -> v128 {
unsafe { llvm_f64x2_sqrt(a.as_f64x2()).v128() }
}
/// Lane-wise add of two 128-bit vectors interpreted as two 64-bit
/// floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.add))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.add"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_add(a: v128, b: v128) -> v128 {
unsafe { simd_add(a.as_f64x2(), b.as_f64x2()).v128() }
}
/// Lane-wise subtract of two 128-bit vectors interpreted as two 64-bit
/// floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.sub))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.sub"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_sub(a: v128, b: v128) -> v128 {
unsafe { simd_sub(a.as_f64x2(), b.as_f64x2()).v128() }
}
/// Lane-wise multiply of two 128-bit vectors interpreted as two 64-bit
/// floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.mul))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.mul"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_mul(a: v128, b: v128) -> v128 {
unsafe { simd_mul(a.as_f64x2(), b.as_f64x2()).v128() }
}
/// Lane-wise divide of two 128-bit vectors interpreted as two 64-bit
/// floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.div))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.div"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_div(a: v128, b: v128) -> v128 {
unsafe { simd_div(a.as_f64x2(), b.as_f64x2()).v128() }
}
/// Calculates the lane-wise minimum of two 128-bit vectors interpreted
/// as two 64-bit floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.min))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.min"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_min(a: v128, b: v128) -> v128 {
unsafe { llvm_f64x2_min(a.as_f64x2(), b.as_f64x2()).v128() }
}
/// Calculates the lane-wise maximum of two 128-bit vectors interpreted
/// as two 64-bit floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.max))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.max"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_max(a: v128, b: v128) -> v128 {
unsafe { llvm_f64x2_max(a.as_f64x2(), b.as_f64x2()).v128() }
}
/// Lane-wise minimum value, defined as `b < a ? b : a`
#[inline]
#[cfg_attr(test, assert_instr(f64x2.pmin))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.pmin"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_pmin(a: v128, b: v128) -> v128 {
unsafe {
simd_select::<simd::m64x2, simd::f64x2>(
simd_lt(b.as_f64x2(), a.as_f64x2()),
b.as_f64x2(),
a.as_f64x2(),
)
.v128()
}
}
/// Lane-wise maximum value, defined as `a < b ? b : a`
#[inline]
#[cfg_attr(test, assert_instr(f64x2.pmax))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.pmax"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_pmax(a: v128, b: v128) -> v128 {
unsafe {
simd_select::<simd::m64x2, simd::f64x2>(
simd_lt(a.as_f64x2(), b.as_f64x2()),
b.as_f64x2(),
a.as_f64x2(),
)
.v128()
}
}
/// Converts a 128-bit vector interpreted as four 32-bit floating point numbers
/// into a 128-bit vector of four 32-bit signed integers.
///
/// NaN is converted to 0 and if it's out of bounds it becomes the nearest
/// representable intger.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.trunc_sat_f32x4_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.trunc_sat_f32x4_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_trunc_sat_f32x4(a: v128) -> v128 {
unsafe { llvm_i32x4_trunc_sat_f32x4_s(a.as_f32x4()).v128() }
}
/// Converts a 128-bit vector interpreted as four 32-bit floating point numbers
/// into a 128-bit vector of four 32-bit unsigned integers.
///
/// NaN is converted to 0 and if it's out of bounds it becomes the nearest
/// representable intger.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.trunc_sat_f32x4_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.trunc_sat_f32x4_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u32x4_trunc_sat_f32x4(a: v128) -> v128 {
unsafe { llvm_i32x4_trunc_sat_f32x4_u(a.as_f32x4()).v128() }
}
/// Converts a 128-bit vector interpreted as four 32-bit signed integers into a
/// 128-bit vector of four 32-bit floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.convert_i32x4_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.convert_i32x4_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_convert_i32x4(a: v128) -> v128 {
unsafe { simd_cast::<_, simd::f32x4>(a.as_i32x4()).v128() }
}
/// Converts a 128-bit vector interpreted as four 32-bit unsigned integers into a
/// 128-bit vector of four 32-bit floating point numbers.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.convert_i32x4_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.convert_i32x4_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_convert_u32x4(a: v128) -> v128 {
unsafe { simd_cast::<_, simd::f32x4>(a.as_u32x4()).v128() }
}
/// Saturating conversion of the two double-precision floating point lanes to
/// two lower integer lanes using the IEEE `convertToIntegerTowardZero`
/// function.
///
/// The two higher lanes of the result are initialized to zero. If any input
/// lane is a NaN, the resulting lane is 0. If the rounded integer value of a
/// lane is outside the range of the destination type, the result is saturated
/// to the nearest representable integer value.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.trunc_sat_f64x2_s_zero))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.trunc_sat_f64x2_s_zero"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn i32x4_trunc_sat_f64x2_zero(a: v128) -> v128 {
let ret: simd::i32x4 = unsafe {
simd_shuffle4!(
llvm_i32x2_trunc_sat_f64x2_s(a.as_f64x2()),
simd::i32x2::splat(0),
[0, 1, 2, 3],
)
};
ret.v128()
}
/// Saturating conversion of the two double-precision floating point lanes to
/// two lower integer lanes using the IEEE `convertToIntegerTowardZero`
/// function.
///
/// The two higher lanes of the result are initialized to zero. If any input
/// lane is a NaN, the resulting lane is 0. If the rounded integer value of a
/// lane is outside the range of the destination type, the result is saturated
/// to the nearest representable integer value.
#[inline]
#[cfg_attr(test, assert_instr(i32x4.trunc_sat_f64x2_u_zero))]
#[target_feature(enable = "simd128")]
#[doc(alias("i32x4.trunc_sat_f64x2_u_zero"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn u32x4_trunc_sat_f64x2_zero(a: v128) -> v128 {
let ret: simd::i32x4 = unsafe {
simd_shuffle4!(
llvm_i32x2_trunc_sat_f64x2_u(a.as_f64x2()),
simd::i32x2::splat(0),
[0, 1, 2, 3],
)
};
ret.v128()
}
/// Lane-wise conversion from integer to floating point.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.convert_low_i32x4_s))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.convert_low_i32x4_s"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_convert_low_i32x4(a: v128) -> v128 {
unsafe {
simd_cast::<simd::i32x2, simd::f64x2>(simd_shuffle2!(a.as_i32x4(), a.as_i32x4(), [0, 1],))
.v128()
}
}
/// Lane-wise conversion from integer to floating point.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.convert_low_i32x4_u))]
#[target_feature(enable = "simd128")]
#[doc(alias("f64x2.convert_low_i32x4_u"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_convert_low_u32x4(a: v128) -> v128 {
unsafe {
simd_cast::<simd::u32x2, simd::f64x2>(simd_shuffle2!(a.as_u32x4(), a.as_u32x4(), [0, 1],))
.v128()
}
}
/// Conversion of the two double-precision floating point lanes to two lower
/// single-precision lanes of the result. The two higher lanes of the result are
/// initialized to zero. If the conversion result is not representable as a
/// single-precision floating point number, it is rounded to the nearest-even
/// representable number.
#[inline]
#[cfg_attr(test, assert_instr(f32x4.demote_f64x2_zero))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.demote_f64x2_zero"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f32x4_demote_f64x2_zero(a: v128) -> v128 {
unsafe {
simd_cast::<simd::f64x4, simd::f32x4>(simd_shuffle4!(
a.as_f64x2(),
simd::f64x2::splat(0.0),
[0, 1, 2, 3]
))
.v128()
}
}
/// Conversion of the two lower single-precision floating point lanes to the two
/// double-precision lanes of the result.
#[inline]
#[cfg_attr(test, assert_instr(f64x2.promote_low_f32x4))]
#[target_feature(enable = "simd128")]
#[doc(alias("f32x4.promote_low_f32x4"))]
#[stable(feature = "wasm_simd", since = "1.54.0")]
pub fn f64x2_promote_low_f32x4(a: v128) -> v128 {
unsafe {
simd_cast::<simd::f32x2, simd::f64x2>(simd_shuffle2!(a.as_f32x4(), a.as_f32x4(), [0, 1]))
.v128()
}
}
#[cfg(test)]
pub mod tests {
use super::*;
use core::ops::{Add, Div, Mul, Neg, Sub};
use std;
use std::fmt::Debug;
use std::mem::transmute;
use std::num::Wrapping;
use std::prelude::v1::*;
fn compare_bytes(a: v128, b: v128) {
let a: [u8; 16] = unsafe { transmute(a) };
let b: [u8; 16] = unsafe { transmute(b) };
assert_eq!(a, b);
}
#[test]
fn test_load() {
unsafe {
let arr: [i32; 4] = [0, 1, 2, 3];
let vec = v128_load(arr.as_ptr() as *const v128);
compare_bytes(vec, i32x4(0, 1, 2, 3));
}
}
#[test]
fn test_load_extend() {
unsafe {
let arr: [i8; 8] = [-3, -2, -1, 0, 1, 2, 3, 4];
let vec = i16x8_load_extend_i8x8(arr.as_ptr());
compare_bytes(vec, i16x8(-3, -2, -1, 0, 1, 2, 3, 4));
let vec = i16x8_load_extend_u8x8(arr.as_ptr() as *const u8);
compare_bytes(vec, i16x8(253, 254, 255, 0, 1, 2, 3, 4));
let arr: [i16; 4] = [-1, 0, 1, 2];
let vec = i32x4_load_extend_i16x4(arr.as_ptr());
compare_bytes(vec, i32x4(-1, 0, 1, 2));
let vec = i32x4_load_extend_u16x4(arr.as_ptr() as *const u16);
compare_bytes(vec, i32x4(65535, 0, 1, 2));
let arr: [i32; 2] = [-1, 1];
let vec = i64x2_load_extend_i32x2(arr.as_ptr());
compare_bytes(vec, i64x2(-1, 1));
let vec = i64x2_load_extend_u32x2(arr.as_ptr() as *const u32);
compare_bytes(vec, i64x2(u32::max_value().into(), 1));
}
}
#[test]
fn test_load_splat() {
unsafe {
compare_bytes(v128_load8_splat(&8), i8x16_splat(8));
compare_bytes(v128_load16_splat(&9), i16x8_splat(9));
compare_bytes(v128_load32_splat(&10), i32x4_splat(10));
compare_bytes(v128_load64_splat(&11), i64x2_splat(11));
}
}
#[test]
fn test_load_zero() {
unsafe {
compare_bytes(v128_load32_zero(&10), i32x4(10, 0, 0, 0));
compare_bytes(v128_load64_zero(&11), i64x2(11, 0));
}
}
#[test]
fn test_store() {
unsafe {
let mut spot = i8x16_splat(0);
v128_store(&mut spot, i8x16_splat(1));
compare_bytes(spot, i8x16_splat(1));
}
}
#[test]
fn test_load_lane() {
unsafe {
let zero = i8x16_splat(0);
compare_bytes(
v128_load8_lane::<2>(zero, &1),
i8x16_replace_lane::<2>(zero, 1),
);
compare_bytes(
v128_load16_lane::<2>(zero, &1),
i16x8_replace_lane::<2>(zero, 1),
);
compare_bytes(
v128_load32_lane::<2>(zero, &1),
i32x4_replace_lane::<2>(zero, 1),
);
compare_bytes(
v128_load64_lane::<1>(zero, &1),
i64x2_replace_lane::<1>(zero, 1),
);
}
}
#[test]
fn test_store_lane() {
unsafe {
let mut spot = 0;
let zero = i8x16_splat(0);
v128_store8_lane::<5>(i8x16_replace_lane::<5>(zero, 7), &mut spot);
assert_eq!(spot, 7);
let mut spot = 0;
v128_store16_lane::<5>(i16x8_replace_lane::<5>(zero, 7), &mut spot);
assert_eq!(spot, 7);
let mut spot = 0;
v128_store32_lane::<3>(i32x4_replace_lane::<3>(zero, 7), &mut spot);
assert_eq!(spot, 7);
let mut spot = 0;
v128_store64_lane::<0>(i64x2_replace_lane::<0>(zero, 7), &mut spot);
assert_eq!(spot, 7);
}
}
#[test]
fn test_i8x16() {
const A: v128 = super::i8x16(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
compare_bytes(A, A);
const _: v128 = i16x8(0, 1, 2, 3, 4, 5, 6, 7);
const _: v128 = i32x4(0, 1, 2, 3);
const _: v128 = i64x2(0, 1);
const _: v128 = f32x4(0., 1., 2., 3.);
const _: v128 = f64x2(0., 1.);
let bytes: [i16; 8] = unsafe { mem::transmute(i16x8(-1, -2, -3, -4, -5, -6, -7, -8)) };
assert_eq!(bytes, [-1, -2, -3, -4, -5, -6, -7, -8]);
let bytes: [i8; 16] = unsafe {
mem::transmute(i8x16(
-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16,
))
};
assert_eq!(
bytes,
[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16]
);
}
#[test]
fn test_shuffle() {
let vec_a = i8x16(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
let vec_b = i8x16(
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
);
let vec_r = i8x16_shuffle::<0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30>(
vec_a, vec_b,
);
let vec_e = i8x16(0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30);
compare_bytes(vec_r, vec_e);
let vec_a = i16x8(0, 1, 2, 3, 4, 5, 6, 7);
let vec_b = i16x8(8, 9, 10, 11, 12, 13, 14, 15);
let vec_r = i16x8_shuffle::<0, 8, 2, 10, 4, 12, 6, 14>(vec_a, vec_b);
let vec_e = i16x8(0, 8, 2, 10, 4, 12, 6, 14);
compare_bytes(vec_r, vec_e);
let vec_a = i32x4(0, 1, 2, 3);
let vec_b = i32x4(4, 5, 6, 7);
let vec_r = i32x4_shuffle::<0, 4, 2, 6>(vec_a, vec_b);
let vec_e = i32x4(0, 4, 2, 6);
compare_bytes(vec_r, vec_e);
let vec_a = i64x2(0, 1);
let vec_b = i64x2(2, 3);
let vec_r = i64x2_shuffle::<0, 2>(vec_a, vec_b);
let vec_e = i64x2(0, 2);
compare_bytes(vec_r, vec_e);
}
// tests extract and replace lanes
macro_rules! test_extract {
(
name: $test_id:ident,
extract: $extract:ident,
replace: $replace:ident,
elem: $elem:ty,
count: $count:expr,
indices: [$($idx:expr),*],
) => {
#[test]
fn $test_id() {
unsafe {
let arr: [$elem; $count] = [123 as $elem; $count];
let vec: v128 = transmute(arr);
$(
assert_eq!($extract::<$idx>(vec), 123 as $elem);
)*
// create a vector from array and check that the indices contain
// the same values as in the array:
let arr: [$elem; $count] = [$($idx as $elem),*];
let vec: v128 = transmute(arr);
$(
assert_eq!($extract::<$idx>(vec), $idx as $elem);
let tmp = $replace::<$idx>(vec, 124 as $elem);
assert_eq!($extract::<$idx>(tmp), 124 as $elem);
)*
}
}
}
}
test_extract! {
name: test_i8x16_extract_replace,
extract: i8x16_extract_lane,
replace: i8x16_replace_lane,
elem: i8,
count: 16,
indices: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
}
test_extract! {
name: test_i16x8_extract_replace,
extract: i16x8_extract_lane,
replace: i16x8_replace_lane,
elem: i16,
count: 8,
indices: [0, 1, 2, 3, 4, 5, 6, 7],
}
test_extract! {
name: test_i32x4_extract_replace,
extract: i32x4_extract_lane,
replace: i32x4_replace_lane,
elem: i32,
count: 4,
indices: [0, 1, 2, 3],
}
test_extract! {
name: test_i64x2_extract_replace,
extract: i64x2_extract_lane,
replace: i64x2_replace_lane,
elem: i64,
count: 2,
indices: [0, 1],
}
test_extract! {
name: test_f32x4_extract_replace,
extract: f32x4_extract_lane,
replace: f32x4_replace_lane,
elem: f32,
count: 4,
indices: [0, 1, 2, 3],
}
test_extract! {
name: test_f64x2_extract_replace,
extract: f64x2_extract_lane,
replace: f64x2_replace_lane,
elem: f64,
count: 2,
indices: [0, 1],
}
#[test]
#[rustfmt::skip]
fn test_swizzle() {
compare_bytes(
i8x16_swizzle(
i32x4(1, 2, 3, 4),
i8x16(
32, 31, 30, 29,
0, 1, 2, 3,
12, 13, 14, 15,
0, 4, 8, 12),
),
i32x4(0, 1, 4, 0x04030201),
);
}
macro_rules! test_splat {
($test_id:ident: $val:expr => $($vals:expr),*) => {
#[test]
fn $test_id() {
let a = super::$test_id($val);
let b = u8x16($($vals as u8),*);
compare_bytes(a, b);
}
}
}
mod splats {
use super::*;
test_splat!(i8x16_splat: 42 => 42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42);
test_splat!(i16x8_splat: 42 => 42, 0, 42, 0, 42, 0, 42, 0, 42, 0, 42, 0, 42, 0, 42, 0);
test_splat!(i32x4_splat: 42 => 42, 0, 0, 0, 42, 0, 0, 0, 42, 0, 0, 0, 42, 0, 0, 0);
test_splat!(i64x2_splat: 42 => 42, 0, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0);
test_splat!(f32x4_splat: 42. => 0, 0, 40, 66, 0, 0, 40, 66, 0, 0, 40, 66, 0, 0, 40, 66);
test_splat!(f64x2_splat: 42. => 0, 0, 0, 0, 0, 0, 69, 64, 0, 0, 0, 0, 0, 0, 69, 64);
}
#[test]
fn test_bitmasks() {
let zero = i8x16_splat(0);
let ones = i8x16_splat(!0);
assert_eq!(i8x16_bitmask(zero), 0);
assert_eq!(i8x16_bitmask(ones), 0xffff);
assert_eq!(i8x16_bitmask(i8x16_splat(i8::MAX)), 0);
assert_eq!(i8x16_bitmask(i8x16_splat(i8::MIN)), 0xffff);
assert_eq!(i8x16_bitmask(i8x16_replace_lane::<1>(zero, -1)), 0b10);
assert_eq!(i16x8_bitmask(zero), 0);
assert_eq!(i16x8_bitmask(ones), 0xff);
assert_eq!(i16x8_bitmask(i16x8_splat(i16::MAX)), 0);
assert_eq!(i16x8_bitmask(i16x8_splat(i16::MIN)), 0xff);
assert_eq!(i16x8_bitmask(i16x8_replace_lane::<1>(zero, -1)), 0b10);
assert_eq!(i32x4_bitmask(zero), 0);
assert_eq!(i32x4_bitmask(ones), 0b1111);
assert_eq!(i32x4_bitmask(i32x4_splat(i32::MAX)), 0);
assert_eq!(i32x4_bitmask(i32x4_splat(i32::MIN)), 0b1111);
assert_eq!(i32x4_bitmask(i32x4_replace_lane::<1>(zero, -1)), 0b10);
assert_eq!(i64x2_bitmask(zero), 0);
assert_eq!(i64x2_bitmask(ones), 0b11);
assert_eq!(i64x2_bitmask(i64x2_splat(i64::MAX)), 0);
assert_eq!(i64x2_bitmask(i64x2_splat(i64::MIN)), 0b11);
assert_eq!(i64x2_bitmask(i64x2_replace_lane::<1>(zero, -1)), 0b10);
}
#[test]
fn test_narrow() {
let zero = i8x16_splat(0);
let ones = i8x16_splat(!0);
compare_bytes(i8x16_narrow_i16x8(zero, zero), zero);
compare_bytes(u8x16_narrow_i16x8(zero, zero), zero);
compare_bytes(i8x16_narrow_i16x8(ones, ones), ones);
compare_bytes(u8x16_narrow_i16x8(ones, ones), zero);
compare_bytes(
i8x16_narrow_i16x8(
i16x8(
0,
1,
2,
-1,
i8::MIN.into(),
i8::MAX.into(),
u8::MIN.into(),
u8::MAX.into(),
),
i16x8(
i16::MIN.into(),
i16::MAX.into(),
u16::MIN as i16,
u16::MAX as i16,
0,
0,
0,
0,
),
),
i8x16(0, 1, 2, -1, -128, 127, 0, 127, -128, 127, 0, -1, 0, 0, 0, 0),
);
compare_bytes(
u8x16_narrow_i16x8(
i16x8(
0,
1,
2,
-1,
i8::MIN.into(),
i8::MAX.into(),
u8::MIN.into(),
u8::MAX.into(),
),
i16x8(
i16::MIN.into(),
i16::MAX.into(),
u16::MIN as i16,
u16::MAX as i16,
0,
0,
0,
0,
),
),
i8x16(0, 1, 2, 0, 0, 127, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0),
);
compare_bytes(i16x8_narrow_i32x4(zero, zero), zero);
compare_bytes(u16x8_narrow_i32x4(zero, zero), zero);
compare_bytes(i16x8_narrow_i32x4(ones, ones), ones);
compare_bytes(u16x8_narrow_i32x4(ones, ones), zero);
compare_bytes(
i16x8_narrow_i32x4(
i32x4(0, -1, i16::MIN.into(), i16::MAX.into()),
i32x4(
i32::MIN.into(),
i32::MAX.into(),
u32::MIN as i32,
u32::MAX as i32,
),
),
i16x8(0, -1, i16::MIN, i16::MAX, i16::MIN, i16::MAX, 0, -1),
);
compare_bytes(
u16x8_narrow_i32x4(
i32x4(u16::MAX.into(), -1, i16::MIN.into(), i16::MAX.into()),
i32x4(
i32::MIN.into(),
i32::MAX.into(),
u32::MIN as i32,
u32::MAX as i32,
),
),
i16x8(-1, 0, 0, i16::MAX, 0, -1, 0, 0),
);
}
#[test]
fn test_extend() {
let zero = i8x16_splat(0);
let ones = i8x16_splat(!0);
compare_bytes(i16x8_extend_low_i8x16(zero), zero);
compare_bytes(i16x8_extend_high_i8x16(zero), zero);
compare_bytes(i16x8_extend_low_u8x16(zero), zero);
compare_bytes(i16x8_extend_high_u8x16(zero), zero);
compare_bytes(i16x8_extend_low_i8x16(ones), ones);
compare_bytes(i16x8_extend_high_i8x16(ones), ones);
let halves = u16x8_splat(u8::MAX.into());
compare_bytes(i16x8_extend_low_u8x16(ones), halves);
compare_bytes(i16x8_extend_high_u8x16(ones), halves);
compare_bytes(i32x4_extend_low_i16x8(zero), zero);
compare_bytes(i32x4_extend_high_i16x8(zero), zero);
compare_bytes(i32x4_extend_low_u16x8(zero), zero);
compare_bytes(i32x4_extend_high_u16x8(zero), zero);
compare_bytes(i32x4_extend_low_i16x8(ones), ones);
compare_bytes(i32x4_extend_high_i16x8(ones), ones);
let halves = u32x4_splat(u16::MAX.into());
compare_bytes(i32x4_extend_low_u16x8(ones), halves);
compare_bytes(i32x4_extend_high_u16x8(ones), halves);
compare_bytes(i64x2_extend_low_i32x4(zero), zero);
compare_bytes(i64x2_extend_high_i32x4(zero), zero);
compare_bytes(i64x2_extend_low_u32x4(zero), zero);
compare_bytes(i64x2_extend_high_u32x4(zero), zero);
compare_bytes(i64x2_extend_low_i32x4(ones), ones);
compare_bytes(i64x2_extend_high_i32x4(ones), ones);
let halves = i64x2_splat(u32::MAX.into());
compare_bytes(u64x2_extend_low_u32x4(ones), halves);
compare_bytes(u64x2_extend_high_u32x4(ones), halves);
}
#[test]
fn test_dot() {
let zero = i8x16_splat(0);
let ones = i8x16_splat(!0);
let two = i32x4_splat(2);
compare_bytes(i32x4_dot_i16x8(zero, zero), zero);
compare_bytes(i32x4_dot_i16x8(ones, ones), two);
}
macro_rules! test_binop {
(
$($name:ident => {
$([$($vec1:tt)*] ($op:ident | $f:ident) [$($vec2:tt)*],)*
})*
) => ($(
#[test]
fn $name() {
unsafe {
$(
let v1 = [$($vec1)*];
let v2 = [$($vec2)*];
let v1_v128: v128 = mem::transmute(v1);
let v2_v128: v128 = mem::transmute(v2);
let v3_v128 = super::$f(v1_v128, v2_v128);
let mut v3 = [$($vec1)*];
drop(v3);
v3 = mem::transmute(v3_v128);
for (i, actual) in v3.iter().enumerate() {
let expected = v1[i].$op(v2[i]);
assert_eq!(*actual, expected);
}
)*
}
}
)*)
}
macro_rules! test_unop {
(
$($name:ident => {
$(($op:ident | $f:ident) [$($vec1:tt)*],)*
})*
) => ($(
#[test]
fn $name() {
unsafe {
$(
let v1 = [$($vec1)*];
let v1_v128: v128 = mem::transmute(v1);
let v2_v128 = super::$f(v1_v128);
let mut v2 = [$($vec1)*];
drop(v2);
v2 = mem::transmute(v2_v128);
for (i, actual) in v2.iter().enumerate() {
let expected = v1[i].$op();
assert_eq!(*actual, expected);
}
)*
}
}
)*)
}
trait Avgr: Sized {
fn avgr(self, other: Self) -> Self;
}
macro_rules! impl_avgr {
($($i:ident)*) => ($(impl Avgr for $i {
fn avgr(self, other: Self) -> Self {
((self as u64 + other as u64 + 1) / 2) as $i
}
})*)
}
impl_avgr!(u8 u16);
test_binop! {
test_i8x16_add => {
[0i8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
(wrapping_add | i8x16_add)
[1i8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1i8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(wrapping_add | i8x16_add)
[-2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -18],
[1i8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(wrapping_add | i8x16_add)
[127, -44, 43, 126, 4, 2, 9, -3, -59, -43, 39, -69, 79, -3, 9, -24],
}
test_i8x16_add_sat_s => {
[0i8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
(saturating_add | i8x16_add_sat)
[1i8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1i8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(saturating_add | i8x16_add_sat)
[-2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -18],
[1i8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(saturating_add | i8x16_add_sat)
[127, -44, 43, 126, 4, 2, 9, -3, -59, -43, 39, -69, 79, -3, 9, -24],
}
test_i8x16_add_sat_u => {
[0u8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
(saturating_add | u8x16_add_sat)
[1u8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(saturating_add | u8x16_add_sat)
[255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240],
[1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(saturating_add | u8x16_add_sat)
[127, -44i8 as u8, 43, 126, 4, 2, 9, -3i8 as u8, -59i8 as u8, -43i8 as u8, 39, -69i8 as u8, 79, -3i8 as u8, 9, -24i8 as u8],
}
test_i8x16_sub => {
[0i8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
(wrapping_sub | i8x16_sub)
[1i8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1i8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(wrapping_sub | i8x16_sub)
[-2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -18],
[1i8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(wrapping_sub | i8x16_sub)
[-127, -44, 43, 126, 4, 2, 9, -3, -59, -43, 39, -69, 79, -3, 4, 8],
}
test_i8x16_sub_sat_s => {
[0i8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
(saturating_sub | i8x16_sub_sat)
[1i8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1i8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(saturating_sub | i8x16_sub_sat)
[-2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -18],
[1i8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(saturating_sub | i8x16_sub_sat)
[-127, -44, 43, 126, 4, 2, 9, -3, -59, -43, 39, -69, 79, -3, 4, 8],
}
test_i8x16_sub_sat_u => {
[0u8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
(saturating_sub | u8x16_sub_sat)
[1u8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(saturating_sub | u8x16_sub_sat)
[255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240],
[1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(saturating_sub | u8x16_sub_sat)
[127, -44i8 as u8, 43, 126, 4, 2, 9, -3i8 as u8, -59i8 as u8, -43i8 as u8, 39, -69i8 as u8, 79, -3i8 as u8, 9, -24i8 as u8],
}
test_i8x16_min_s => {
[0i8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
(min | i8x16_min)
[1i8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1i8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(min | i8x16_min)
[-2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -18],
[1i8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(min | i8x16_min)
[-127, -44, 43, 126, 4, 2, 9, -3, -59, -43, 39, -69, 79, -3, 4, 8],
}
test_i8x16_min_u => {
[0u8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
(min | u8x16_min)
[1u8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(min | u8x16_min)
[255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240],
[1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(min | u8x16_min)
[127, -44i8 as u8, 43, 126, 4, 2, 9, -3i8 as u8, -59i8 as u8, -43i8 as u8, 39, -69i8 as u8, 79, -3i8 as u8, 9, -24i8 as u8],
}
test_i8x16_max_s => {
[0i8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
(max | i8x16_max)
[1i8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1i8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(max | i8x16_max)
[-2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -18],
[1i8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(max | i8x16_max)
[-127, -44, 43, 126, 4, 2, 9, -3, -59, -43, 39, -69, 79, -3, 4, 8],
}
test_i8x16_max_u => {
[0u8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
(max | u8x16_max)
[1u8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(max | u8x16_max)
[255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240],
[1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(max | u8x16_max)
[127, -44i8 as u8, 43, 126, 4, 2, 9, -3i8 as u8, -59i8 as u8, -43i8 as u8, 39, -69i8 as u8, 79, -3i8 as u8, 9, -24i8 as u8],
}
test_i8x16_avgr_u => {
[0u8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
(avgr | u8x16_avgr)
[1u8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(avgr | u8x16_avgr)
[255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240],
[1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
(avgr | u8x16_avgr)
[127, -44i8 as u8, 43, 126, 4, 2, 9, -3i8 as u8, -59i8 as u8, -43i8 as u8, 39, -69i8 as u8, 79, -3i8 as u8, 9, -24i8 as u8],
}
test_i16x8_add => {
[0i16, 0, 0, 0, 0, 0, 0, 0]
(wrapping_add | i16x8_add)
[1i16, 1, 1, 1, 1, 1, 1, 1],
[1i16, 2, 3, 4, 5, 6, 7, 8]
(wrapping_add | i16x8_add)
[32767, 8, -2494,-4, 4882, -4, 848, 3830],
}
test_i16x8_add_sat_s => {
[0i16, 0, 0, 0, 0, 0, 0, 0]
(saturating_add | i16x8_add_sat)
[1i16, 1, 1, 1, 1, 1, 1, 1],
[1i16, 2, 3, 4, 5, 6, 7, 8]
(saturating_add | i16x8_add_sat)
[32767, 8, -2494,-4, 4882, -4, 848, 3830],
}
test_i16x8_add_sat_u => {
[0u16, 0, 0, 0, 0, 0, 0, 0]
(saturating_add | u16x8_add_sat)
[1u16, 1, 1, 1, 1, 1, 1, 1],
[1u16, 2, 3, 4, 5, 6, 7, 8]
(saturating_add | u16x8_add_sat)
[32767, 8, -2494i16 as u16,-4i16 as u16, 4882, -4i16 as u16, 848, 3830],
}
test_i16x8_sub => {
[0i16, 0, 0, 0, 0, 0, 0, 0]
(wrapping_sub | i16x8_sub)
[1i16, 1, 1, 1, 1, 1, 1, 1],
[1i16, 2, 3, 4, 5, 6, 7, 8]
(wrapping_sub | i16x8_sub)
[32767, 8, -2494,-4, 4882, -4, 848, 3830],
}
test_i16x8_sub_sat_s => {
[0i16, 0, 0, 0, 0, 0, 0, 0]
(saturating_sub | i16x8_sub_sat)
[1i16, 1, 1, 1, 1, 1, 1, 1],
[1i16, 2, 3, 4, 5, 6, 7, 8]
(saturating_sub | i16x8_sub_sat)
[32767, 8, -2494,-4, 4882, -4, 848, 3830],
}
test_i16x8_sub_sat_u => {
[0u16, 0, 0, 0, 0, 0, 0, 0]
(saturating_sub | u16x8_sub_sat)
[1u16, 1, 1, 1, 1, 1, 1, 1],
[1u16, 2, 3, 4, 5, 6, 7, 8]
(saturating_sub | u16x8_sub_sat)
[32767, 8, -2494i16 as u16,-4i16 as u16, 4882, -4i16 as u16, 848, 3830],
}
test_i16x8_mul => {
[0i16, 0, 0, 0, 0, 0, 0, 0]
(wrapping_mul | i16x8_mul)
[1i16, 1, 1, 1, 1, 1, 1, 1],
[1i16, 2, 3, 4, 5, 6, 7, 8]
(wrapping_mul | i16x8_mul)
[32767, 8, -2494,-4, 4882, -4, 848, 3830],
}
test_i16x8_min_s => {
[0i16, 0, 0, 0, 0, 0, 0, 0]
(min | i16x8_min)
[1i16, 1, 1, 1, 1, 1, 1, 1],
[1i16, 2, 3, 4, 5, 6, 7, 8]
(min | i16x8_min)
[32767, 8, -2494,-4, 4882, -4, 848, 3830],
}
test_i16x8_min_u => {
[0u16, 0, 0, 0, 0, 0, 0, 0]
(min | u16x8_min)
[1u16, 1, 1, 1, 1, 1, 1, 1],
[1u16, 2, 3, 4, 5, 6, 7, 8]
(min | u16x8_min)
[32767, 8, -2494i16 as u16,-4i16 as u16, 4882, -4i16 as u16, 848, 3830],
}
test_i16x8_max_s => {
[0i16, 0, 0, 0, 0, 0, 0, 0]
(max | i16x8_max)
[1i16, 1, 1, 1, 1, 1, 1, 1],
[1i16, 2, 3, 4, 5, 6, 7, 8]
(max | i16x8_max)
[32767, 8, -2494,-4, 4882, -4, 848, 3830],
}
test_i16x8_max_u => {
[0u16, 0, 0, 0, 0, 0, 0, 0]
(max | u16x8_max)
[1u16, 1, 1, 1, 1, 1, 1, 1],
[1u16, 2, 3, 4, 5, 6, 7, 8]
(max | u16x8_max)
[32767, 8, -2494i16 as u16,-4i16 as u16, 4882, -4i16 as u16, 848, 3830],
}
test_i16x8_avgr_u => {
[0u16, 0, 0, 0, 0, 0, 0, 0]
(avgr | u16x8_avgr)
[1u16, 1, 1, 1, 1, 1, 1, 1],
[1u16, 2, 3, 4, 5, 6, 7, 8]
(avgr | u16x8_avgr)
[32767, 8, -2494i16 as u16,-4i16 as u16, 4882, -4i16 as u16, 848, 3830],
}
test_i32x4_add => {
[0i32, 0, 0, 0] (wrapping_add | i32x4_add) [1, 2, 3, 4],
[1i32, 1283, i32::MAX, i32::MIN]
(wrapping_add | i32x4_add)
[i32::MAX; 4],
}
test_i32x4_sub => {
[0i32, 0, 0, 0] (wrapping_sub | i32x4_sub) [1, 2, 3, 4],
[1i32, 1283, i32::MAX, i32::MIN]
(wrapping_sub | i32x4_sub)
[i32::MAX; 4],
}
test_i32x4_mul => {
[0i32, 0, 0, 0] (wrapping_mul | i32x4_mul) [1, 2, 3, 4],
[1i32, 1283, i32::MAX, i32::MIN]
(wrapping_mul | i32x4_mul)
[i32::MAX; 4],
}
test_i32x4_min_s => {
[0i32, 0, 0, 0] (min | i32x4_min) [1, 2, 3, 4],
[1i32, 1283, i32::MAX, i32::MIN]
(min | i32x4_min)
[i32::MAX; 4],
}
test_i32x4_min_u => {
[0u32, 0, 0, 0] (min | u32x4_min) [1, 2, 3, 4],
[1u32, 1283, i32::MAX as u32, i32::MIN as u32]
(min | u32x4_min)
[i32::MAX as u32; 4],
}
test_i32x4_max_s => {
[0i32, 0, 0, 0] (max | i32x4_max) [1, 2, 3, 4],
[1i32, 1283, i32::MAX, i32::MIN]
(max | i32x4_max)
[i32::MAX; 4],
}
test_i32x4_max_u => {
[0u32, 0, 0, 0] (max | u32x4_max) [1, 2, 3, 4],
[1u32, 1283, i32::MAX as u32, i32::MIN as u32]
(max | u32x4_max)
[i32::MAX as u32; 4],
}
test_i64x2_add => {
[0i64, 0] (wrapping_add | i64x2_add) [1, 2],
[i64::MIN, i64::MAX] (wrapping_add | i64x2_add) [i64::MAX, i64::MIN],
[i64::MAX; 2] (wrapping_add | i64x2_add) [i64::MAX; 2],
[-4i64, -4] (wrapping_add | i64x2_add) [800, 939],
}
test_i64x2_sub => {
[0i64, 0] (wrapping_sub | i64x2_sub) [1, 2],
[i64::MIN, i64::MAX] (wrapping_sub | i64x2_sub) [i64::MAX, i64::MIN],
[i64::MAX; 2] (wrapping_sub | i64x2_sub) [i64::MAX; 2],
[-4i64, -4] (wrapping_sub | i64x2_sub) [800, 939],
}
test_i64x2_mul => {
[0i64, 0] (wrapping_mul | i64x2_mul) [1, 2],
[i64::MIN, i64::MAX] (wrapping_mul | i64x2_mul) [i64::MAX, i64::MIN],
[i64::MAX; 2] (wrapping_mul | i64x2_mul) [i64::MAX; 2],
[-4i64, -4] (wrapping_mul | i64x2_mul) [800, 939],
}
test_f32x4_add => {
[-1.0f32, 2.0, 3.0, 4.0] (add | f32x4_add) [1., 2., 0., 0.],
[f32::INFINITY, -0.0, f32::NEG_INFINITY, 3.0]
(add | f32x4_add)
[1., 2., 0., 0.],
}
test_f32x4_sub => {
[-1.0f32, 2.0, 3.0, 4.0] (sub | f32x4_sub) [1., 2., 0., 0.],
[f32::INFINITY, -0.0, f32::NEG_INFINITY, 3.0]
(sub | f32x4_sub)
[1., 2., 0., 0.],
}
test_f32x4_mul => {
[-1.0f32, 2.0, 3.0, 4.0] (mul | f32x4_mul) [1., 2., 0., 0.],
[f32::INFINITY, -0.0, f32::NEG_INFINITY, 3.0]
(mul | f32x4_mul)
[1., 2., 1., 0.],
}
test_f32x4_div => {
[-1.0f32, 2.0, 3.0, 4.0] (div | f32x4_div) [1., 2., 0., 0.],
[f32::INFINITY, -0.0, f32::NEG_INFINITY, 3.0]
(div | f32x4_div)
[1., 2., 0., 0.],
}
test_f32x4_min => {
[-1.0f32, 2.0, 3.0, 4.0] (min | f32x4_min) [1., 2., 0., 0.],
[f32::INFINITY, -0.0, f32::NEG_INFINITY, 3.0]
(min | f32x4_min)
[1., 2., 0., 0.],
}
test_f32x4_max => {
[-1.0f32, 2.0, 3.0, 4.0] (max | f32x4_max) [1., 2., 0., 0.],
[f32::INFINITY, -0.0, f32::NEG_INFINITY, 3.0]
(max | f32x4_max)
[1., 2., 0., 0.],
}
test_f32x4_pmin => {
[-1.0f32, 2.0, 3.0, 4.0] (min | f32x4_pmin) [1., 2., 0., 0.],
[f32::INFINITY, -0.0, f32::NEG_INFINITY, 3.0]
(min | f32x4_pmin)
[1., 2., 0., 0.],
}
test_f32x4_pmax => {
[-1.0f32, 2.0, 3.0, 4.0] (max | f32x4_pmax) [1., 2., 0., 0.],
[f32::INFINITY, -0.0, f32::NEG_INFINITY, 3.0]
(max | f32x4_pmax)
[1., 2., 0., 0.],
}
test_f64x2_add => {
[-1.0f64, 2.0] (add | f64x2_add) [1., 2.],
[f64::INFINITY, f64::NEG_INFINITY] (add | f64x2_add) [1., 2.],
}
test_f64x2_sub => {
[-1.0f64, 2.0] (sub | f64x2_sub) [1., 2.],
[f64::INFINITY, f64::NEG_INFINITY] (sub | f64x2_sub) [1., 2.],
}
test_f64x2_mul => {
[-1.0f64, 2.0] (mul | f64x2_mul) [1., 2.],
[f64::INFINITY, f64::NEG_INFINITY] (mul | f64x2_mul) [1., 2.],
}
test_f64x2_div => {
[-1.0f64, 2.0] (div | f64x2_div) [1., 2.],
[f64::INFINITY, f64::NEG_INFINITY] (div | f64x2_div) [1., 2.],
}
test_f64x2_min => {
[-1.0f64, 2.0] (min | f64x2_min) [1., 2.],
[f64::INFINITY, f64::NEG_INFINITY] (min | f64x2_min) [1., 2.],
}
test_f64x2_max => {
[-1.0f64, 2.0] (max | f64x2_max) [1., 2.],
[f64::INFINITY, f64::NEG_INFINITY] (max | f64x2_max) [1., 2.],
}
test_f64x2_pmin => {
[-1.0f64, 2.0] (min | f64x2_pmin) [1., 2.],
[f64::INFINITY, f64::NEG_INFINITY] (min | f64x2_pmin) [1., 2.],
}
test_f64x2_pmax => {
[-1.0f64, 2.0] (max | f64x2_pmax) [1., 2.],
[f64::INFINITY, f64::NEG_INFINITY] (max | f64x2_pmax) [1., 2.],
}
}
test_unop! {
test_i8x16_abs => {
(wrapping_abs | i8x16_abs)
[1i8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
(wrapping_abs | i8x16_abs)
[-2i8, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -18],
(wrapping_abs | i8x16_abs)
[-127i8, -44, 43, 126, 4, -128, 127, -59, -43, 39, -69, 79, -3, 35, 83, 13],
}
test_i8x16_neg => {
(wrapping_neg | i8x16_neg)
[1i8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
(wrapping_neg | i8x16_neg)
[-2i8, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -18],
(wrapping_neg | i8x16_neg)
[-127i8, -44, 43, 126, 4, -128, 127, -59, -43, 39, -69, 79, -3, 35, 83, 13],
}
test_i16x8_abs => {
(wrapping_abs | i16x8_abs) [1i16, 1, 1, 1, 1, 1, 1, 1],
(wrapping_abs | i16x8_abs) [2i16, 0x7fff, !0, 4, 42, -5, 33, -4847],
}
test_i16x8_neg => {
(wrapping_neg | i16x8_neg) [1i16, 1, 1, 1, 1, 1, 1, 1],
(wrapping_neg | i16x8_neg) [2i16, 0x7fff, !0, 4, 42, -5, 33, -4847],
}
test_i32x4_abs => {
(wrapping_abs | i32x4_abs) [1i32, 2, 3, 4],
(wrapping_abs | i32x4_abs) [i32::MIN, i32::MAX, 0, 4],
}
test_i32x4_neg => {
(wrapping_neg | i32x4_neg) [1i32, 2, 3, 4],
(wrapping_neg | i32x4_neg) [i32::MIN, i32::MAX, 0, 4],
}
test_i64x2_abs => {
(wrapping_abs | i64x2_abs) [1i64, 2],
(wrapping_abs | i64x2_abs) [i64::MIN, i64::MAX],
}
test_i64x2_neg => {
(wrapping_neg | i64x2_neg) [1i64, 2],
(wrapping_neg | i64x2_neg) [i64::MIN, i64::MAX],
}
test_f32x4_ceil => {
(ceil | f32x4_ceil) [1.0f32, 2., 2.5, 3.3],
(ceil | f32x4_ceil) [0.0, -0.3, f32::INFINITY, -0.0],
}
test_f32x4_floor => {
(floor | f32x4_floor) [1.0f32, 2., 2.5, 3.3],
(floor | f32x4_floor) [0.0, -0.3, f32::INFINITY, -0.0],
}
test_f32x4_trunc => {
(trunc | f32x4_trunc) [1.0f32, 2., 2.5, 3.3],
(trunc | f32x4_trunc) [0.0, -0.3, f32::INFINITY, -0.0],
}
test_f32x4_nearest => {
(round | f32x4_nearest) [1.0f32, 2., 2.6, 3.3],
(round | f32x4_nearest) [0.0, -0.3, f32::INFINITY, -0.0],
}
test_f32x4_abs => {
(abs | f32x4_abs) [1.0f32, 2., 2.6, 3.3],
(abs | f32x4_abs) [0.0, -0.3, f32::INFINITY, -0.0],
}
test_f32x4_neg => {
(neg | f32x4_neg) [1.0f32, 2., 2.6, 3.3],
(neg | f32x4_neg) [0.0, -0.3, f32::INFINITY, -0.0],
}
test_f32x4_sqrt => {
(sqrt | f32x4_sqrt) [1.0f32, 2., 2.6, 3.3],
(sqrt | f32x4_sqrt) [0.0, 0.3, f32::INFINITY, 0.1],
}
test_f64x2_ceil => {
(ceil | f64x2_ceil) [1.0f64, 2.3],
(ceil | f64x2_ceil) [f64::INFINITY, -0.1],
}
test_f64x2_floor => {
(floor | f64x2_floor) [1.0f64, 2.3],
(floor | f64x2_floor) [f64::INFINITY, -0.1],
}
test_f64x2_trunc => {
(trunc | f64x2_trunc) [1.0f64, 2.3],
(trunc | f64x2_trunc) [f64::INFINITY, -0.1],
}
test_f64x2_nearest => {
(round | f64x2_nearest) [1.0f64, 2.3],
(round | f64x2_nearest) [f64::INFINITY, -0.1],
}
test_f64x2_abs => {
(abs | f64x2_abs) [1.0f64, 2.3],
(abs | f64x2_abs) [f64::INFINITY, -0.1],
}
test_f64x2_neg => {
(neg | f64x2_neg) [1.0f64, 2.3],
(neg | f64x2_neg) [f64::INFINITY, -0.1],
}
test_f64x2_sqrt => {
(sqrt | f64x2_sqrt) [1.0f64, 2.3],
(sqrt | f64x2_sqrt) [f64::INFINITY, 0.1],
}
}
macro_rules! floating_point {
(f32) => {
true
};
(f64) => {
true
};
($id:ident) => {
false
};
}
trait IsNan: Sized {
fn is_nan(self) -> bool {
false
}
}
impl IsNan for i8 {}
impl IsNan for i16 {}
impl IsNan for i32 {}
impl IsNan for i64 {}
macro_rules! test_bop {
($id:ident[$ety:ident; $ecount:expr] |
$binary_op:ident [$op_test_id:ident] :
([$($in_a:expr),*], [$($in_b:expr),*]) => [$($out:expr),*]) => {
test_bop!(
$id[$ety; $ecount] => $ety | $binary_op [ $op_test_id ]:
([$($in_a),*], [$($in_b),*]) => [$($out),*]
);
};
($id:ident[$ety:ident; $ecount:expr] => $oty:ident |
$binary_op:ident [$op_test_id:ident] :
([$($in_a:expr),*], [$($in_b:expr),*]) => [$($out:expr),*]) => {
#[test]
fn $op_test_id() {
unsafe {
let a_input: [$ety; $ecount] = [$($in_a),*];
let b_input: [$ety; $ecount] = [$($in_b),*];
let output: [$oty; $ecount] = [$($out),*];
let a_vec_in: v128 = transmute(a_input);
let b_vec_in: v128 = transmute(b_input);
let vec_res: v128 = $binary_op(a_vec_in, b_vec_in);
let res: [$oty; $ecount] = transmute(vec_res);
if !floating_point!($ety) {
assert_eq!(res, output);
} else {
for i in 0..$ecount {
let r = res[i];
let o = output[i];
assert_eq!(r.is_nan(), o.is_nan());
if !r.is_nan() {
assert_eq!(r, o);
}
}
}
}
}
}
}
macro_rules! test_bops {
($id:ident[$ety:ident; $ecount:expr] |
$binary_op:ident [$op_test_id:ident]:
([$($in_a:expr),*], $in_b:expr) => [$($out:expr),*]) => {
#[test]
fn $op_test_id() {
unsafe {
let a_input: [$ety; $ecount] = [$($in_a),*];
let output: [$ety; $ecount] = [$($out),*];
let a_vec_in: v128 = transmute(a_input);
let vec_res: v128 = $binary_op(a_vec_in, $in_b);
let res: [$ety; $ecount] = transmute(vec_res);
assert_eq!(res, output);
}
}
}
}
macro_rules! test_uop {
($id:ident[$ety:ident; $ecount:expr] |
$unary_op:ident [$op_test_id:ident]: [$($in_a:expr),*] => [$($out:expr),*]) => {
#[test]
fn $op_test_id() {
unsafe {
let a_input: [$ety; $ecount] = [$($in_a),*];
let output: [$ety; $ecount] = [$($out),*];
let a_vec_in: v128 = transmute(a_input);
let vec_res: v128 = $unary_op(a_vec_in);
let res: [$ety; $ecount] = transmute(vec_res);
assert_eq!(res, output);
}
}
}
}
test_bops!(i8x16[i8; 16] | i8x16_shl[i8x16_shl_test]:
([0, -1, 2, 3, 4, 5, 6, i8::MAX, 1, 1, 1, 1, 1, 1, 1, 1], 1) =>
[0, -2, 4, 6, 8, 10, 12, -2, 2, 2, 2, 2, 2, 2, 2, 2]);
test_bops!(i16x8[i16; 8] | i16x8_shl[i16x8_shl_test]:
([0, -1, 2, 3, 4, 5, 6, i16::MAX], 1) =>
[0, -2, 4, 6, 8, 10, 12, -2]);
test_bops!(i32x4[i32; 4] | i32x4_shl[i32x4_shl_test]:
([0, -1, 2, 3], 1) => [0, -2, 4, 6]);
test_bops!(i64x2[i64; 2] | i64x2_shl[i64x2_shl_test]:
([0, -1], 1) => [0, -2]);
test_bops!(i8x16[i8; 16] | i8x16_shr[i8x16_shr_s_test]:
([0, -1, 2, 3, 4, 5, 6, i8::MAX, 1, 1, 1, 1, 1, 1, 1, 1], 1) =>
[0, -1, 1, 1, 2, 2, 3, 63, 0, 0, 0, 0, 0, 0, 0, 0]);
test_bops!(i16x8[i16; 8] | i16x8_shr[i16x8_shr_s_test]:
([0, -1, 2, 3, 4, 5, 6, i16::MAX], 1) =>
[0, -1, 1, 1, 2, 2, 3, i16::MAX / 2]);
test_bops!(i32x4[i32; 4] | i32x4_shr[i32x4_shr_s_test]:
([0, -1, 2, 3], 1) => [0, -1, 1, 1]);
test_bops!(i64x2[i64; 2] | i64x2_shr[i64x2_shr_s_test]:
([0, -1], 1) => [0, -1]);
test_bops!(i8x16[i8; 16] | u8x16_shr[i8x16_uhr_u_test]:
([0, -1, 2, 3, 4, 5, 6, i8::MAX, 1, 1, 1, 1, 1, 1, 1, 1], 1) =>
[0, i8::MAX, 1, 1, 2, 2, 3, 63, 0, 0, 0, 0, 0, 0, 0, 0]);
test_bops!(i16x8[i16; 8] | u16x8_shr[i16x8_uhr_u_test]:
([0, -1, 2, 3, 4, 5, 6, i16::MAX], 1) =>
[0, i16::MAX, 1, 1, 2, 2, 3, i16::MAX / 2]);
test_bops!(i32x4[i32; 4] | u32x4_shr[i32x4_uhr_u_test]:
([0, -1, 2, 3], 1) => [0, i32::MAX, 1, 1]);
test_bops!(i64x2[i64; 2] | u64x2_shr[i64x2_uhr_u_test]:
([0, -1], 1) => [0, i64::MAX]);
#[test]
fn v128_bitwise_logical_ops() {
unsafe {
let a: [u32; 4] = [u32::MAX, 0, u32::MAX, 0];
let b: [u32; 4] = [u32::MAX; 4];
let c: [u32; 4] = [0; 4];
let vec_a: v128 = transmute(a);
let vec_b: v128 = transmute(b);
let vec_c: v128 = transmute(c);
let r: v128 = v128_and(vec_a, vec_a);
compare_bytes(r, vec_a);
let r: v128 = v128_and(vec_a, vec_b);
compare_bytes(r, vec_a);
let r: v128 = v128_andnot(vec_a, vec_b);
compare_bytes(r, vec_c);
let r: v128 = v128_andnot(vec_a, vec_a);
compare_bytes(r, vec_c);
let r: v128 = v128_andnot(vec_a, vec_c);
compare_bytes(r, vec_a);
let r: v128 = v128_or(vec_a, vec_b);
compare_bytes(r, vec_b);
let r: v128 = v128_not(vec_b);
compare_bytes(r, vec_c);
let r: v128 = v128_xor(vec_a, vec_c);
compare_bytes(r, vec_a);
let r: v128 = v128_bitselect(vec_b, vec_c, vec_b);
compare_bytes(r, vec_b);
let r: v128 = v128_bitselect(vec_b, vec_c, vec_c);
compare_bytes(r, vec_c);
let r: v128 = v128_bitselect(vec_b, vec_c, vec_a);
compare_bytes(r, vec_a);
}
}
macro_rules! test_bool_red {
([$test_id:ident, $any:ident, $all:ident] | [$($true:expr),*] | [$($false:expr),*] | [$($alt:expr),*]) => {
#[test]
fn $test_id() {
unsafe {
let vec_a: v128 = transmute([$($true),*]); // true
let vec_b: v128 = transmute([$($false),*]); // false
let vec_c: v128 = transmute([$($alt),*]); // alternating
// TODO
// assert_eq!($any(vec_a), true);
// assert_eq!($any(vec_b), false);
// assert_eq!($any(vec_c), true);
assert_eq!($all(vec_a), true);
assert_eq!($all(vec_b), false);
assert_eq!($all(vec_c), false);
}
}
}
}
test_bool_red!(
[i8x16_boolean_reductions, v128_any_true, i8x16_all_true]
| [1_i8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
| [0_i8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
| [1_i8, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]
);
test_bool_red!(
[i16x8_boolean_reductions, v128_any_true, i16x8_all_true]
| [1_i16, 1, 1, 1, 1, 1, 1, 1]
| [0_i16, 0, 0, 0, 0, 0, 0, 0]
| [1_i16, 0, 1, 0, 1, 0, 1, 0]
);
test_bool_red!(
[i32x4_boolean_reductions, v128_any_true, i32x4_all_true]
| [1_i32, 1, 1, 1]
| [0_i32, 0, 0, 0]
| [1_i32, 0, 1, 0]
);
test_bool_red!(
[i64x2_boolean_reductions, v128_any_true, i64x2_all_true]
| [1_i64, 1]
| [0_i64, 0]
| [1_i64, 0]
);
test_bop!(i8x16[i8; 16] | i8x16_eq[i8x16_eq_test]:
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
[0, 2, 2, 4, 4, 6, 6, 7, 8, 10, 10, 12, 12, 14, 14, 15]) =>
[-1, 0, -1, 0 ,-1, 0, -1, -1, -1, 0, -1, 0 ,-1, 0, -1, -1]);
test_bop!(i16x8[i16; 8] | i16x8_eq[i16x8_eq_test]:
([0, 1, 2, 3, 4, 5, 6, 7], [0, 2, 2, 4, 4, 6, 6, 7]) =>
[-1, 0, -1, 0 ,-1, 0, -1, -1]);
test_bop!(i32x4[i32; 4] | i32x4_eq[i32x4_eq_test]:
([0, 1, 2, 3], [0, 2, 2, 4]) => [-1, 0, -1, 0]);
test_bop!(i64x2[i64; 2] | i64x2_eq[i64x2_eq_test]:
([0, 1], [0, 2]) => [-1, 0]);
test_bop!(f32x4[f32; 4] => i32 | f32x4_eq[f32x4_eq_test]:
([0., 1., 2., 3.], [0., 2., 2., 4.]) => [-1, 0, -1, 0]);
test_bop!(f64x2[f64; 2] => i64 | f64x2_eq[f64x2_eq_test]: ([0., 1.], [0., 2.]) => [-1, 0]);
test_bop!(i8x16[i8; 16] | i8x16_ne[i8x16_ne_test]:
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
[0, 2, 2, 4, 4, 6, 6, 7, 8, 10, 10, 12, 12, 14, 14, 15]) =>
[0, -1, 0, -1 ,0, -1, 0, 0, 0, -1, 0, -1 ,0, -1, 0, 0]);
test_bop!(i16x8[i16; 8] | i16x8_ne[i16x8_ne_test]:
([0, 1, 2, 3, 4, 5, 6, 7], [0, 2, 2, 4, 4, 6, 6, 7]) =>
[0, -1, 0, -1 ,0, -1, 0, 0]);
test_bop!(i32x4[i32; 4] | i32x4_ne[i32x4_ne_test]:
([0, 1, 2, 3], [0, 2, 2, 4]) => [0, -1, 0, -1]);
test_bop!(i64x2[i64; 2] | i64x2_ne[i64x2_ne_test]:
([0, 1], [0, 2]) => [0, -1]);
test_bop!(f32x4[f32; 4] => i32 | f32x4_ne[f32x4_ne_test]:
([0., 1., 2., 3.], [0., 2., 2., 4.]) => [0, -1, 0, -1]);
test_bop!(f64x2[f64; 2] => i64 | f64x2_ne[f64x2_ne_test]: ([0., 1.], [0., 2.]) => [0, -1]);
test_bop!(i8x16[i8; 16] | i8x16_lt[i8x16_lt_s_test]:
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, -12, 13, 14, 15],
[0, 2, 2, 4, 4, 6, 6, 7, 8, 10, 10, 12, 12, 14, 14, 15]) =>
[0, -1, 0, -1 ,0, -1, 0, 0, 0, -1, 0, -1, -1, -1, 0, 0]);
test_bop!(i8x16[i8; 16] | u8x16_lt[i8x16_lt_u_test]:
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, -12, 13, 14, 15],
[0, 2, 2, 4, 4, 6, 6, 7, 8, 10, 10, 12, 12, 14, 14, 15]) =>
[0, -1, 0, -1 ,0, -1, 0, 0, 0, -1, 0, -1 ,0, -1, 0, 0]);
test_bop!(i16x8[i16; 8] | i16x8_lt[i16x8_lt_s_test]:
([0, 1, 2, 3, 4, 5, 6, -7], [0, 2, 2, 4, 4, 6, 6, 7]) =>
[0, -1, 0, -1 ,0, -1, 0, -1]);
test_bop!(i16x8[i16; 8] | u16x8_lt[i16x8_lt_u_test]:
([0, 1, 2, 3, 4, 5, 6, -7], [0, 2, 2, 4, 4, 6, 6, 7]) =>
[0, -1, 0, -1 ,0, -1, 0, 0]);
test_bop!(i32x4[i32; 4] | i32x4_lt[i32x4_lt_s_test]:
([-1, 1, 2, 3], [0, 2, 2, 4]) => [-1, -1, 0, -1]);
test_bop!(i32x4[i32; 4] | u32x4_lt[i32x4_lt_u_test]:
([-1, 1, 2, 3], [0, 2, 2, 4]) => [0, -1, 0, -1]);
test_bop!(i64x2[i64; 2] | i64x2_lt[i64x2_lt_s_test]:
([-1, 3], [0, 2]) => [-1, 0]);
test_bop!(f32x4[f32; 4] => i32 | f32x4_lt[f32x4_lt_test]:
([0., 1., 2., 3.], [0., 2., 2., 4.]) => [0, -1, 0, -1]);
test_bop!(f64x2[f64; 2] => i64 | f64x2_lt[f64x2_lt_test]: ([0., 1.], [0., 2.]) => [0, -1]);
test_bop!(i8x16[i8; 16] | i8x16_gt[i8x16_gt_s_test]:
([0, 2, 2, 4, 4, 6, 6, 7, 8, 10, 10, 12, 12, 14, 14, -15],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) =>
[0, -1, 0, -1 ,0, -1, 0, 0, 0, -1, 0, -1 ,0, -1, 0, 0]);
test_bop!(i8x16[i8; 16] | u8x16_gt[i8x16_gt_u_test]:
([0, 2, 2, 4, 4, 6, 6, 7, 8, 10, 10, 12, 12, 14, 14, -15],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) =>
[0, -1, 0, -1 ,0, -1, 0, 0, 0, -1, 0, -1 ,0, -1, 0, -1]);
test_bop!(i16x8[i16; 8] | i16x8_gt[i16x8_gt_s_test]:
([0, 2, 2, 4, 4, 6, 6, -7], [0, 1, 2, 3, 4, 5, 6, 7]) =>
[0, -1, 0, -1 ,0, -1, 0, 0]);
test_bop!(i16x8[i16; 8] | u16x8_gt[i16x8_gt_u_test]:
([0, 2, 2, 4, 4, 6, 6, -7], [0, 1, 2, 3, 4, 5, 6, 7]) =>
[0, -1, 0, -1 ,0, -1, 0, -1]);
test_bop!(i32x4[i32; 4] | i32x4_gt[i32x4_gt_s_test]:
([0, 2, 2, -4], [0, 1, 2, 3]) => [0, -1, 0, 0]);
test_bop!(i32x4[i32; 4] | u32x4_gt[i32x4_gt_u_test]:
([0, 2, 2, -4], [0, 1, 2, 3]) => [0, -1, 0, -1]);
test_bop!(i64x2[i64; 2] | i64x2_gt[i64x2_gt_s_test]:
([-1, 2], [0, 1]) => [0, -1]);
test_bop!(f32x4[f32; 4] => i32 | f32x4_gt[f32x4_gt_test]:
([0., 2., 2., 4.], [0., 1., 2., 3.]) => [0, -1, 0, -1]);
test_bop!(f64x2[f64; 2] => i64 | f64x2_gt[f64x2_gt_test]: ([0., 2.], [0., 1.]) => [0, -1]);
test_bop!(i8x16[i8; 16] | i8x16_ge[i8x16_ge_s_test]:
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -15],
[0, 2, 2, 4, 4, 6, 6, 7, 8, 10, 10, 12, 12, 14, 14, 15]) =>
[-1, 0, -1, 0 ,-1, 0, -1, -1, -1, 0, -1, 0 ,-1, 0, -1, 0]);
test_bop!(i8x16[i8; 16] | u8x16_ge[i8x16_ge_u_test]:
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -15],
[0, 2, 2, 4, 4, 6, 6, 7, 8, 10, 10, 12, 12, 14, 14, 15]) =>
[-1, 0, -1, 0 ,-1, 0, -1, -1, -1, 0, -1, 0 ,-1, 0, -1, -1]);
test_bop!(i16x8[i16; 8] | i16x8_ge[i16x8_ge_s_test]:
([0, 1, 2, 3, 4, 5, 6, -7], [0, 2, 2, 4, 4, 6, 6, 7]) =>
[-1, 0, -1, 0 ,-1, 0, -1, 0]);
test_bop!(i16x8[i16; 8] | u16x8_ge[i16x8_ge_u_test]:
([0, 1, 2, 3, 4, 5, 6, -7], [0, 2, 2, 4, 4, 6, 6, 7]) =>
[-1, 0, -1, 0 ,-1, 0, -1, -1]);
test_bop!(i32x4[i32; 4] | i32x4_ge[i32x4_ge_s_test]:
([0, 1, 2, -3], [0, 2, 2, 4]) => [-1, 0, -1, 0]);
test_bop!(i32x4[i32; 4] | u32x4_ge[i32x4_ge_u_test]:
([0, 1, 2, -3], [0, 2, 2, 4]) => [-1, 0, -1, -1]);
test_bop!(i64x2[i64; 2] | i64x2_ge[i64x2_ge_s_test]:
([0, 1], [-1, 2]) => [-1, 0]);
test_bop!(f32x4[f32; 4] => i32 | f32x4_ge[f32x4_ge_test]:
([0., 1., 2., 3.], [0., 2., 2., 4.]) => [-1, 0, -1, 0]);
test_bop!(f64x2[f64; 2] => i64 | f64x2_ge[f64x2_ge_test]: ([0., 1.], [0., 2.]) => [-1, 0]);
test_bop!(i8x16[i8; 16] | i8x16_le[i8x16_le_s_test]:
([0, 2, 2, 4, 4, 6, 6, 7, 8, 10, 10, 12, 12, 14, 14, -15],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
) =>
[-1, 0, -1, 0 ,-1, 0, -1, -1, -1, 0, -1, 0 ,-1, 0, -1, -1]);
test_bop!(i8x16[i8; 16] | u8x16_le[i8x16_le_u_test]:
([0, 2, 2, 4, 4, 6, 6, 7, 8, 10, 10, 12, 12, 14, 14, -15],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
) =>
[-1, 0, -1, 0 ,-1, 0, -1, -1, -1, 0, -1, 0 ,-1, 0, -1, 0]);
test_bop!(i16x8[i16; 8] | i16x8_le[i16x8_le_s_test]:
([0, 2, 2, 4, 4, 6, 6, -7], [0, 1, 2, 3, 4, 5, 6, 7]) =>
[-1, 0, -1, 0 ,-1, 0, -1, -1]);
test_bop!(i16x8[i16; 8] | u16x8_le[i16x8_le_u_test]:
([0, 2, 2, 4, 4, 6, 6, -7], [0, 1, 2, 3, 4, 5, 6, 7]) =>
[-1, 0, -1, 0 ,-1, 0, -1, 0]);
test_bop!(i32x4[i32; 4] | i32x4_le[i32x4_le_s_test]:
([0, 2, 2, -4], [0, 1, 2, 3]) => [-1, 0, -1, -1]);
test_bop!(i32x4[i32; 4] | u32x4_le[i32x4_le_u_test]:
([0, 2, 2, -4], [0, 1, 2, 3]) => [-1, 0, -1, 0]);
test_bop!(i64x2[i64; 2] | i64x2_le[i64x2_le_s_test]:
([0, 2], [0, 1]) => [-1, 0]);
test_bop!(f32x4[f32; 4] => i32 | f32x4_le[f32x4_le_test]:
([0., 2., 2., 4.], [0., 1., 2., 3.]) => [-1, 0, -1, -0]);
test_bop!(f64x2[f64; 2] => i64 | f64x2_le[f64x2_le_test]: ([0., 2.], [0., 1.]) => [-1, 0]);
test_uop!(f32x4[f32; 4] | f32x4_neg[f32x4_neg_test]: [0., 1., 2., 3.] => [ 0., -1., -2., -3.]);
test_uop!(f32x4[f32; 4] | f32x4_abs[f32x4_abs_test]: [0., -1., 2., -3.] => [ 0., 1., 2., 3.]);
test_bop!(f32x4[f32; 4] | f32x4_min[f32x4_min_test]:
([0., -1., 7., 8.], [1., -3., -4., 10.]) => [0., -3., -4., 8.]);
test_bop!(f32x4[f32; 4] | f32x4_min[f32x4_min_test_nan]:
([0., -1., 7., 8.], [1., -3., -4., std::f32::NAN])
=> [0., -3., -4., std::f32::NAN]);
test_bop!(f32x4[f32; 4] | f32x4_max[f32x4_max_test]:
([0., -1., 7., 8.], [1., -3., -4., 10.]) => [1., -1., 7., 10.]);
test_bop!(f32x4[f32; 4] | f32x4_max[f32x4_max_test_nan]:
([0., -1., 7., 8.], [1., -3., -4., std::f32::NAN])
=> [1., -1., 7., std::f32::NAN]);
test_bop!(f32x4[f32; 4] | f32x4_add[f32x4_add_test]:
([0., -1., 7., 8.], [1., -3., -4., 10.]) => [1., -4., 3., 18.]);
test_bop!(f32x4[f32; 4] | f32x4_sub[f32x4_sub_test]:
([0., -1., 7., 8.], [1., -3., -4., 10.]) => [-1., 2., 11., -2.]);
test_bop!(f32x4[f32; 4] | f32x4_mul[f32x4_mul_test]:
([0., -1., 7., 8.], [1., -3., -4., 10.]) => [0., 3., -28., 80.]);
test_bop!(f32x4[f32; 4] | f32x4_div[f32x4_div_test]:
([0., -8., 70., 8.], [1., 4., 10., 2.]) => [0., -2., 7., 4.]);
test_uop!(f64x2[f64; 2] | f64x2_neg[f64x2_neg_test]: [0., 1.] => [ 0., -1.]);
test_uop!(f64x2[f64; 2] | f64x2_abs[f64x2_abs_test]: [0., -1.] => [ 0., 1.]);
test_bop!(f64x2[f64; 2] | f64x2_min[f64x2_min_test]:
([0., -1.], [1., -3.]) => [0., -3.]);
test_bop!(f64x2[f64; 2] | f64x2_min[f64x2_min_test_nan]:
([7., 8.], [-4., std::f64::NAN])
=> [ -4., std::f64::NAN]);
test_bop!(f64x2[f64; 2] | f64x2_max[f64x2_max_test]:
([0., -1.], [1., -3.]) => [1., -1.]);
test_bop!(f64x2[f64; 2] | f64x2_max[f64x2_max_test_nan]:
([7., 8.], [ -4., std::f64::NAN])
=> [7., std::f64::NAN]);
test_bop!(f64x2[f64; 2] | f64x2_add[f64x2_add_test]:
([0., -1.], [1., -3.]) => [1., -4.]);
test_bop!(f64x2[f64; 2] | f64x2_sub[f64x2_sub_test]:
([0., -1.], [1., -3.]) => [-1., 2.]);
test_bop!(f64x2[f64; 2] | f64x2_mul[f64x2_mul_test]:
([0., -1.], [1., -3.]) => [0., 3.]);
test_bop!(f64x2[f64; 2] | f64x2_div[f64x2_div_test]:
([0., -8.], [1., 4.]) => [0., -2.]);
macro_rules! test_conv {
($test_id:ident | $conv_id:ident | $to_ty:ident | $from:expr, $to:expr) => {
#[test]
fn $test_id() {
unsafe {
let from: v128 = transmute($from);
let to: v128 = transmute($to);
let r: v128 = $conv_id(from);
compare_bytes(r, to);
}
}
};
}
test_conv!(
f32x4_convert_s_i32x4 | f32x4_convert_i32x4 | f32x4 | [1_i32, 2, 3, 4],
[1_f32, 2., 3., 4.]
);
test_conv!(
f32x4_convert_u_i32x4 | f32x4_convert_u32x4 | f32x4 | [u32::MAX, 2, 3, 4],
[u32::MAX as f32, 2., 3., 4.]
);
#[test]
fn test_conversions() {
compare_bytes(
i32x4_trunc_sat_f32x4(f32x4(1., f32::NEG_INFINITY, f32::INFINITY, f32::NAN)),
i32x4(1, i32::MIN, i32::MAX, 0),
);
compare_bytes(
u32x4_trunc_sat_f32x4(f32x4(1., f32::NEG_INFINITY, f32::INFINITY, f32::NAN)),
u32x4(1, 0, u32::MAX, 0),
);
compare_bytes(f64x2_convert_low_i32x4(i32x4(1, 2, 3, 4)), f64x2(1., 2.));
compare_bytes(
f64x2_convert_low_i32x4(i32x4(i32::MIN, i32::MAX, 3, 4)),
f64x2(f64::from(i32::MIN), f64::from(i32::MAX)),
);
compare_bytes(f64x2_convert_low_u32x4(u32x4(1, 2, 3, 4)), f64x2(1., 2.));
compare_bytes(
f64x2_convert_low_u32x4(u32x4(u32::MIN, u32::MAX, 3, 4)),
f64x2(f64::from(u32::MIN), f64::from(u32::MAX)),
);
compare_bytes(
i32x4_trunc_sat_f64x2_zero(f64x2(1., f64::NEG_INFINITY)),
i32x4(1, i32::MIN, 0, 0),
);
compare_bytes(
i32x4_trunc_sat_f64x2_zero(f64x2(f64::NAN, f64::INFINITY)),
i32x4(0, i32::MAX, 0, 0),
);
compare_bytes(
u32x4_trunc_sat_f64x2_zero(f64x2(1., f64::NEG_INFINITY)),
u32x4(1, 0, 0, 0),
);
compare_bytes(
u32x4_trunc_sat_f64x2_zero(f64x2(f64::NAN, f64::INFINITY)),
u32x4(0, u32::MAX, 0, 0),
);
}
#[test]
fn test_popcnt() {
unsafe {
for i in 0..=255 {
compare_bytes(
i8x16_popcnt(u8x16_splat(i)),
u8x16_splat(i.count_ones() as u8),
)
}
let vectors = [
[0u8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
[
100, 200, 50, 0, 10, 7, 38, 185, 192, 3, 34, 85, 93, 7, 31, 99,
],
];
for vector in vectors.iter() {
compare_bytes(
i8x16_popcnt(transmute(*vector)),
i8x16(
vector[0].count_ones() as i8,
vector[1].count_ones() as i8,
vector[2].count_ones() as i8,
vector[3].count_ones() as i8,
vector[4].count_ones() as i8,
vector[5].count_ones() as i8,
vector[6].count_ones() as i8,
vector[7].count_ones() as i8,
vector[8].count_ones() as i8,
vector[9].count_ones() as i8,
vector[10].count_ones() as i8,
vector[11].count_ones() as i8,
vector[12].count_ones() as i8,
vector[13].count_ones() as i8,
vector[14].count_ones() as i8,
vector[15].count_ones() as i8,
),
)
}
}
}
#[test]
fn test_promote_demote() {
let tests = [
[1., 2.],
[f64::NAN, f64::INFINITY],
[100., 201.],
[0., -0.],
[f64::NEG_INFINITY, 0.],
];
for [a, b] in tests {
compare_bytes(
f32x4_demote_f64x2_zero(f64x2(a, b)),
f32x4(a as f32, b as f32, 0., 0.),
);
compare_bytes(
f64x2_promote_low_f32x4(f32x4(a as f32, b as f32, 0., 0.)),
f64x2(a, b),
);
}
}
#[test]
fn test_extmul() {
macro_rules! test {
($(
$ctor:ident {
from: $from:ident,
to: $to:ident,
low: $low:ident,
high: $high:ident,
} => {
$(([$($a:tt)*] * [$($b:tt)*]))*
}
)*) => ($(
$(unsafe {
let a: [$from; 16 / mem::size_of::<$from>()] = [$($a)*];
let b: [$from; 16 / mem::size_of::<$from>()] = [$($b)*];
let low = mem::transmute::<_, [$to; 16 / mem::size_of::<$to>()]>($low($ctor($($a)*), $ctor($($b)*)));
let high = mem::transmute::<_, [$to; 16 / mem::size_of::<$to>()]>($high($ctor($($a)*), $ctor($($b)*)));
let half = a.len() / 2;
for i in 0..half {
assert_eq!(
(a[i] as $to).wrapping_mul((b[i] as $to)),
low[i],
"expected {} * {}", a[i] as $to, b[i] as $to,
);
assert_eq!(
(a[half + i] as $to).wrapping_mul((b[half + i] as $to)),
high[i],
"expected {} * {}", a[half + i] as $to, b[half + i] as $to,
);
}
})*
)*)
}
test! {
i8x16 {
from: i8,
to: i16,
low: i16x8_extmul_low_i8x16,
high: i16x8_extmul_high_i8x16,
} => {
(
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
*
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
)
(
[-1, -2, 3, 100, 124, -38, 33, 87, 92, 108, 22, 8, -43, -128, 22, 0]
*
[-5, -2, 6, 10, 45, -4, 4, -2, 0, 88, 92, -102, -98, 83, 73, 54]
)
}
u8x16 {
from: u8,
to: u16,
low: u16x8_extmul_low_u8x16,
high: u16x8_extmul_high_u8x16,
} => {
(
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
*
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
)
(
[1, 2, 3, 100, 124, 38, 33, 87, 92, 198, 22, 8, 43, 128, 22, 0]
*
[5, 200, 6, 10, 45, 248, 4, 2, 0, 2, 92, 102, 234, 83, 73, 54]
)
}
i16x8 {
from: i16,
to: i32,
low: i32x4_extmul_low_i16x8,
high: i32x4_extmul_high_i16x8,
} => {
(
[0, 0, 0, 0, 0, 0, 0, 0]
*
[0, 0, 0, 0, 0, 0, 0, 0]
)
(
[-1, 0, i16::MAX, 19931, -2259, 64, 200, 87]
*
[1, 1, i16::MIN, 29391, 105, 2, 100, -2]
)
}
u16x8 {
from: u16,
to: u32,
low: u32x4_extmul_low_u16x8,
high: u32x4_extmul_high_u16x8,
} => {
(
[0, 0, 0, 0, 0, 0, 0, 0]
*
[0, 0, 0, 0, 0, 0, 0, 0]
)
(
[1, 0, u16::MAX, 19931, 2259, 64, 200, 87]
*
[1, 1, 3, 29391, 105, 2, 100, 2]
)
}
i32x4 {
from: i32,
to: i64,
low: i64x2_extmul_low_i32x4,
high: i64x2_extmul_high_i32x4,
} => {
(
[0, 0, 0, 0]
*
[0, 0, 0, 0]
)
(
[-1, 0, i32::MAX, 19931]
*
[1, 1, i32::MIN, 29391]
)
(
[i32::MAX, 3003183, 3 << 20, 0xffffff]
*
[i32::MAX, i32::MIN, -40042, 300]
)
}
u32x4 {
from: u32,
to: u64,
low: u64x2_extmul_low_u32x4,
high: u64x2_extmul_high_u32x4,
} => {
(
[0, 0, 0, 0]
*
[0, 0, 0, 0]
)
(
[1, 0, u32::MAX, 19931]
*
[1, 1, 3, 29391]
)
(
[u32::MAX, 3003183, 3 << 20, 0xffffff]
*
[u32::MAX, 3000, 40042, 300]
)
}
}
}
#[test]
fn test_q15mulr_sat_s() {
fn test(a: [i16; 8], b: [i16; 8]) {
let a_v = i16x8(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7]);
let b_v = i16x8(b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7]);
let result = i16x8_q15mulr_sat(a_v, b_v);
let result = unsafe { mem::transmute::<v128, [i16; 8]>(result) };
for (i, (a, b)) in a.iter().zip(&b).enumerate() {
assert_eq!(
result[i],
(((*a as i32) * (*b as i32) + 0x4000) >> 15) as i16
);
}
}
test([0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]);
test([1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]);
test(
[-1, 100, 2003, -29494, 12, 128, 994, 1],
[-4049, 8494, -10483, 0, 5, 2222, 883, -9],
);
}
#[test]
fn test_extadd() {
macro_rules! test {
($(
$func:ident {
from: $from:ident,
to: $to:ident,
} => {
$([$($a:tt)*])*
}
)*) => ($(
$(unsafe {
let a: [$from; 16 / mem::size_of::<$from>()] = [$($a)*];
let a_v = mem::transmute::<_, v128>(a);
let r = mem::transmute::<v128, [$to; 16 / mem::size_of::<$to>()]>($func(a_v));
let half = a.len() / 2;
for i in 0..half {
assert_eq!(
(a[2 * i] as $to).wrapping_add((a[2 * i + 1] as $to)),
r[i],
"failed {} + {} != {}",
a[2 * i] as $to,
a[2 * i + 1] as $to,
r[i],
);
}
})*
)*)
}
test! {
i16x8_extadd_pairwise_i8x16 {
from: i8,
to: i16,
} => {
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[-1, -2, 3, 100, 124, -38, 33, 87, 92, 108, 22, 8, -43, -128, 22, 0]
[-5, -2, 6, 10, 45, -4, 4, -2, 0, 88, 92, -102, -98, 83, 73, 54]
}
i16x8_extadd_pairwise_u8x16 {
from: u8,
to: i16,
} => {
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 2, 3, 100, 124, 38, 33, 87, 92, 198, 22, 8, 43, 128, 22, 0]
[5, 200, 6, 10, 45, 248, 4, 2, 0, 2, 92, 102, 234, 83, 73, 54]
}
i32x4_extadd_pairwise_i16x8 {
from: i16,
to: i32,
} => {
[0, 0, 0, 0, 0, 0, 0, 0]
[-1, 0, i16::MAX, 19931, -2259, 64, 200, 87]
[1, 1, i16::MIN, 29391, 105, 2, 100, -2]
}
i32x4_extadd_pairwise_u16x8 {
from: u16,
to: i32,
} => {
[0, 0, 0, 0, 0, 0, 0, 0]
[1, 0, u16::MAX, 19931, 2259, 64, 200, 87]
[1, 1, 3, 29391, 105, 2, 100, 2]
}
}
}
}