blob: e5dea3387a24e5515a336b6b6fcc56caa59d824e [file] [log] [blame]
//! A library for acquiring a backtrace at runtime
//!
//! This library is meant to supplement the `RUST_BACKTRACE=1` support of the
//! standard library by allowing an acquisition of a backtrace at runtime
//! programmatically. The backtraces generated by this library do not need to be
//! parsed, for example, and expose the functionality of multiple backend
//! implementations.
//!
//! # Usage
//!
//! First, add this to your Cargo.toml
//!
//! ```toml
//! [dependencies]
//! backtrace = "0.3"
//! ```
//!
//! Next:
//!
//! ```
//! fn main() {
//! # // Unsafe here so test passes on no_std.
//! # #[cfg(feature = "std")] {
//! backtrace::trace(|frame| {
//! let ip = frame.ip();
//! let symbol_address = frame.symbol_address();
//!
//! // Resolve this instruction pointer to a symbol name
//! backtrace::resolve_frame(frame, |symbol| {
//! if let Some(name) = symbol.name() {
//! // ...
//! }
//! if let Some(filename) = symbol.filename() {
//! // ...
//! }
//! });
//!
//! true // keep going to the next frame
//! });
//! }
//! # }
//! ```
//!
//! # Backtrace accuracy
//!
//! This crate implements best-effort attempts to get the native backtrace. This
//! is not always guaranteed to work, and some platforms don't return any
//! backtrace at all. If your application requires accurate backtraces then it's
//! recommended to closely evaluate this crate to see whether it's suitable
//! for your use case on your target platforms.
//!
//! Even on supported platforms, there's a number of reasons that backtraces may
//! be less-than-accurate, including but not limited to:
//!
//! * Unwind information may not be available. This crate primarily implements
//! backtraces by unwinding the stack, but not all functions may have
//! unwinding information (e.g. DWARF unwinding information).
//!
//! * Rust code may be compiled without unwinding information for some
//! functions. This can also happen for Rust code compiled with
//! `-Cpanic=abort`. You can remedy this, however, with
//! `-Cforce-unwind-tables` as a compiler option.
//!
//! * Unwind information may be inaccurate or corrupt. In the worst case
//! inaccurate unwind information can lead this library to segfault. In the
//! best case inaccurate information will result in a truncated stack trace.
//!
//! * Backtraces may not report filenames/line numbers correctly due to missing
//! or corrupt debug information. This won't lead to segfaults unlike corrupt
//! unwinding information, but missing or malformed debug information will
//! mean that filenames and line numbers will not be available. This may be
//! because debug information wasn't generated by the compiler, or it's just
//! missing on the filesystem.
//!
//! * Not all platforms are supported. For example there's no way to get a
//! backtrace on WebAssembly at the moment.
//!
//! * Crate features may be disabled. Currently this crate supports using Gimli
//! libbacktrace on non-Windows platforms for reading debuginfo for
//! backtraces. If both crate features are disabled, however, then these
//! platforms will generate a backtrace but be unable to generate symbols for
//! it.
//!
//! In most standard workflows for most standard platforms you generally don't
//! need to worry about these caveats. We'll try to fix ones where we can over
//! time, but otherwise it's important to be aware of the limitations of
//! unwinding-based backtraces!
#![doc(html_root_url = "https://docs.rs/backtrace")]
#![deny(missing_docs)]
#![no_std]
#![cfg_attr(
all(feature = "std", target_env = "sgx", target_vendor = "fortanix"),
feature(sgx_platform)
)]
#![warn(rust_2018_idioms)]
// When we're building as part of libstd, silence all warnings since they're
// irrelevant as this crate is developed out-of-tree.
#![cfg_attr(backtrace_in_libstd, allow(warnings))]
#![cfg_attr(not(feature = "std"), allow(dead_code))]
// We know this is deprecated, it's only here for back-compat reasons.
#![cfg_attr(feature = "rustc-serialize", allow(deprecated))]
#[cfg(feature = "std")]
#[macro_use]
extern crate std;
// This is only used for gimli right now, which is only used on some platforms, and miri
// so don't worry if it's unused in other configurations.
#[allow(unused_extern_crates)]
extern crate alloc;
pub use self::backtrace::{trace_unsynchronized, Frame};
mod backtrace;
pub use self::symbolize::resolve_frame_unsynchronized;
pub use self::symbolize::{resolve_unsynchronized, Symbol, SymbolName};
mod symbolize;
pub use self::types::BytesOrWideString;
mod types;
#[cfg(feature = "std")]
pub use self::symbolize::clear_symbol_cache;
mod print;
pub use print::{BacktraceFmt, BacktraceFrameFmt, PrintFmt};
cfg_if::cfg_if! {
if #[cfg(feature = "std")] {
pub use self::backtrace::trace;
pub use self::symbolize::{resolve, resolve_frame};
pub use self::capture::{Backtrace, BacktraceFrame, BacktraceSymbol};
mod capture;
}
}
#[allow(dead_code)]
struct Bomb {
enabled: bool,
}
#[allow(dead_code)]
impl Drop for Bomb {
fn drop(&mut self) {
if self.enabled {
panic!("cannot panic during the backtrace function");
}
}
}
#[allow(dead_code)]
#[cfg(feature = "std")]
mod lock {
use std::boxed::Box;
use std::cell::Cell;
use std::sync::{Mutex, MutexGuard, Once};
pub struct LockGuard(Option<MutexGuard<'static, ()>>);
static mut LOCK: *mut Mutex<()> = 0 as *mut _;
static INIT: Once = Once::new();
thread_local!(static LOCK_HELD: Cell<bool> = Cell::new(false));
impl Drop for LockGuard {
fn drop(&mut self) {
if self.0.is_some() {
LOCK_HELD.with(|slot| {
assert!(slot.get());
slot.set(false);
});
}
}
}
pub fn lock() -> LockGuard {
if LOCK_HELD.with(|l| l.get()) {
return LockGuard(None);
}
LOCK_HELD.with(|s| s.set(true));
unsafe {
INIT.call_once(|| {
LOCK = Box::into_raw(Box::new(Mutex::new(())));
});
LockGuard(Some((*LOCK).lock().unwrap()))
}
}
}
#[cfg(all(windows, not(target_vendor = "uwp")))]
mod dbghelp;
#[cfg(windows)]
mod windows;