blob: 57096f4397436359d84f12b354598eb7f673f48c [file] [log] [blame]
macro_rules! int_impl {
($SelfT:ty, $ActualT:ident, $UnsignedT:ty, $BITS:expr, $BITS_MINUS_ONE:expr, $Min:expr, $Max:expr,
$rot:expr, $rot_op:expr, $rot_result:expr, $swap_op:expr, $swapped:expr,
$reversed:expr, $le_bytes:expr, $be_bytes:expr,
$to_xe_bytes_doc:expr, $from_xe_bytes_doc:expr,
$bound_condition:expr) => {
/// The smallest value that can be represented by this integer type
#[doc = concat!("(&minus;2<sup>", $BITS_MINUS_ONE, "</sup>", $bound_condition, ")")]
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN, ", stringify!($Min), ");")]
/// ```
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN: Self = !0 ^ ((!0 as $UnsignedT) >> 1) as Self;
/// The largest value that can be represented by this integer type
#[doc = concat!("(2<sup>", $BITS_MINUS_ONE, "</sup> &minus; 1", $bound_condition, ")")]
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX, ", stringify!($Max), ");")]
/// ```
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX: Self = !Self::MIN;
/// The size of this integer type in bits.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::BITS, ", stringify!($BITS), ");")]
/// ```
#[stable(feature = "int_bits_const", since = "1.53.0")]
pub const BITS: u32 = $BITS;
/// Converts a string slice in a given base to an integer.
///
/// The string is expected to be an optional `+` or `-` sign followed by digits.
/// Leading and trailing whitespace represent an error. Digits are a subset of these characters,
/// depending on `radix`:
///
/// * `0-9`
/// * `a-z`
/// * `A-Z`
///
/// # Panics
///
/// This function panics if `radix` is not in the range from 2 to 36.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::from_str_radix(\"A\", 16), Ok(10));")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_str_radix(src: &str, radix: u32) -> Result<Self, ParseIntError> {
from_str_radix(src, radix)
}
/// Returns the number of ones in the binary representation of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0b100_0000", stringify!($SelfT), ";")]
///
/// assert_eq!(n.count_ones(), 1);
/// ```
///
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[doc(alias = "popcount")]
#[doc(alias = "popcnt")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn count_ones(self) -> u32 { (self as $UnsignedT).count_ones() }
/// Returns the number of zeros in the binary representation of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.count_zeros(), 1);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn count_zeros(self) -> u32 {
(!self).count_ones()
}
/// Returns the number of leading zeros in the binary representation of `self`.
///
/// Depending on what you're doing with the value, you might also be interested in the
/// [`ilog2`] function which returns a consistent number, even if the type widens.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = -1", stringify!($SelfT), ";")]
///
/// assert_eq!(n.leading_zeros(), 0);
/// ```
#[doc = concat!("[`ilog2`]: ", stringify!($SelfT), "::ilog2")]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn leading_zeros(self) -> u32 {
(self as $UnsignedT).leading_zeros()
}
/// Returns the number of trailing zeros in the binary representation of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = -4", stringify!($SelfT), ";")]
///
/// assert_eq!(n.trailing_zeros(), 2);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn trailing_zeros(self) -> u32 {
(self as $UnsignedT).trailing_zeros()
}
/// Returns the number of leading ones in the binary representation of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = -1", stringify!($SelfT), ";")]
///
#[doc = concat!("assert_eq!(n.leading_ones(), ", stringify!($BITS), ");")]
/// ```
#[stable(feature = "leading_trailing_ones", since = "1.46.0")]
#[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn leading_ones(self) -> u32 {
(self as $UnsignedT).leading_ones()
}
/// Returns the number of trailing ones in the binary representation of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 3", stringify!($SelfT), ";")]
///
/// assert_eq!(n.trailing_ones(), 2);
/// ```
#[stable(feature = "leading_trailing_ones", since = "1.46.0")]
#[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn trailing_ones(self) -> u32 {
(self as $UnsignedT).trailing_ones()
}
/// Shifts the bits to the left by a specified amount, `n`,
/// wrapping the truncated bits to the end of the resulting integer.
///
/// Please note this isn't the same operation as the `<<` shifting operator!
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = ", $rot_op, stringify!($SelfT), ";")]
#[doc = concat!("let m = ", $rot_result, ";")]
///
#[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn rotate_left(self, n: u32) -> Self {
(self as $UnsignedT).rotate_left(n) as Self
}
/// Shifts the bits to the right by a specified amount, `n`,
/// wrapping the truncated bits to the beginning of the resulting
/// integer.
///
/// Please note this isn't the same operation as the `>>` shifting operator!
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = ", $rot_result, stringify!($SelfT), ";")]
#[doc = concat!("let m = ", $rot_op, ";")]
///
#[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn rotate_right(self, n: u32) -> Self {
(self as $UnsignedT).rotate_right(n) as Self
}
/// Reverses the byte order of the integer.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
///
/// let m = n.swap_bytes();
///
#[doc = concat!("assert_eq!(m, ", $swapped, ");")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn swap_bytes(self) -> Self {
(self as $UnsignedT).swap_bytes() as Self
}
/// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,
/// second least-significant bit becomes second most-significant bit, etc.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
/// let m = n.reverse_bits();
///
#[doc = concat!("assert_eq!(m, ", $reversed, ");")]
#[doc = concat!("assert_eq!(0, 0", stringify!($SelfT), ".reverse_bits());")]
/// ```
#[stable(feature = "reverse_bits", since = "1.37.0")]
#[rustc_const_stable(feature = "reverse_bits", since = "1.37.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn reverse_bits(self) -> Self {
(self as $UnsignedT).reverse_bits() as Self
}
/// Converts an integer from big endian to the target's endianness.
///
/// On big endian this is a no-op. On little endian the bytes are swapped.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
///
/// if cfg!(target_endian = "big") {
#[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_be(n), n)")]
/// } else {
#[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_be(n), n.swap_bytes())")]
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
#[must_use]
#[inline]
pub const fn from_be(x: Self) -> Self {
#[cfg(target_endian = "big")]
{
x
}
#[cfg(not(target_endian = "big"))]
{
x.swap_bytes()
}
}
/// Converts an integer from little endian to the target's endianness.
///
/// On little endian this is a no-op. On big endian the bytes are swapped.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
///
/// if cfg!(target_endian = "little") {
#[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_le(n), n)")]
/// } else {
#[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_le(n), n.swap_bytes())")]
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
#[must_use]
#[inline]
pub const fn from_le(x: Self) -> Self {
#[cfg(target_endian = "little")]
{
x
}
#[cfg(not(target_endian = "little"))]
{
x.swap_bytes()
}
}
/// Converts `self` to big endian from the target's endianness.
///
/// On big endian this is a no-op. On little endian the bytes are swapped.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
///
/// if cfg!(target_endian = "big") {
/// assert_eq!(n.to_be(), n)
/// } else {
/// assert_eq!(n.to_be(), n.swap_bytes())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn to_be(self) -> Self { // or not to be?
#[cfg(target_endian = "big")]
{
self
}
#[cfg(not(target_endian = "big"))]
{
self.swap_bytes()
}
}
/// Converts `self` to little endian from the target's endianness.
///
/// On little endian this is a no-op. On big endian the bytes are swapped.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
///
/// if cfg!(target_endian = "little") {
/// assert_eq!(n.to_le(), n)
/// } else {
/// assert_eq!(n.to_le(), n.swap_bytes())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn to_le(self) -> Self {
#[cfg(target_endian = "little")]
{
self
}
#[cfg(not(target_endian = "little"))]
{
self.swap_bytes()
}
}
/// Checked integer addition. Computes `self + rhs`, returning `None`
/// if overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(1), Some(", stringify!($SelfT), "::MAX - 1));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(3), None);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_add(self, rhs: Self) -> Option<Self> {
let (a, b) = self.overflowing_add(rhs);
if unlikely!(b) {None} else {Some(a)}
}
/// Unchecked integer addition. Computes `self + rhs`, assuming overflow
/// cannot occur.
///
/// # Safety
///
/// This results in undefined behavior when
#[doc = concat!("`self + rhs > ", stringify!($SelfT), "::MAX` or `self + rhs < ", stringify!($SelfT), "::MIN`,")]
/// i.e. when [`checked_add`] would return `None`.
///
#[doc = concat!("[`checked_add`]: ", stringify!($SelfT), "::checked_add")]
#[unstable(
feature = "unchecked_math",
reason = "niche optimization path",
issue = "85122",
)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[rustc_const_unstable(feature = "const_inherent_unchecked_arith", issue = "85122")]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_add(self, rhs: Self) -> Self {
// SAFETY: the caller must uphold the safety contract for
// `unchecked_add`.
unsafe { intrinsics::unchecked_add(self, rhs) }
}
/// Checked addition with an unsigned integer. Computes `self + rhs`,
/// returning `None` if overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_unsigned(2), Some(3));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add_unsigned(3), None);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_add_unsigned(self, rhs: $UnsignedT) -> Option<Self> {
let (a, b) = self.overflowing_add_unsigned(rhs);
if unlikely!(b) {None} else {Some(a)}
}
/// Checked integer subtraction. Computes `self - rhs`, returning `None` if
/// overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub(1), Some(", stringify!($SelfT), "::MIN + 1));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub(3), None);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
let (a, b) = self.overflowing_sub(rhs);
if unlikely!(b) {None} else {Some(a)}
}
/// Unchecked integer subtraction. Computes `self - rhs`, assuming overflow
/// cannot occur.
///
/// # Safety
///
/// This results in undefined behavior when
#[doc = concat!("`self - rhs > ", stringify!($SelfT), "::MAX` or `self - rhs < ", stringify!($SelfT), "::MIN`,")]
/// i.e. when [`checked_sub`] would return `None`.
///
#[doc = concat!("[`checked_sub`]: ", stringify!($SelfT), "::checked_sub")]
#[unstable(
feature = "unchecked_math",
reason = "niche optimization path",
issue = "85122",
)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[rustc_const_unstable(feature = "const_inherent_unchecked_arith", issue = "85122")]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_sub(self, rhs: Self) -> Self {
// SAFETY: the caller must uphold the safety contract for
// `unchecked_sub`.
unsafe { intrinsics::unchecked_sub(self, rhs) }
}
/// Checked subtraction with an unsigned integer. Computes `self - rhs`,
/// returning `None` if overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_unsigned(2), Some(-1));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub_unsigned(3), None);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_sub_unsigned(self, rhs: $UnsignedT) -> Option<Self> {
let (a, b) = self.overflowing_sub_unsigned(rhs);
if unlikely!(b) {None} else {Some(a)}
}
/// Checked integer multiplication. Computes `self * rhs`, returning `None` if
/// overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(1), Some(", stringify!($SelfT), "::MAX));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(2), None);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_mul(self, rhs: Self) -> Option<Self> {
let (a, b) = self.overflowing_mul(rhs);
if unlikely!(b) {None} else {Some(a)}
}
/// Unchecked integer multiplication. Computes `self * rhs`, assuming overflow
/// cannot occur.
///
/// # Safety
///
/// This results in undefined behavior when
#[doc = concat!("`self * rhs > ", stringify!($SelfT), "::MAX` or `self * rhs < ", stringify!($SelfT), "::MIN`,")]
/// i.e. when [`checked_mul`] would return `None`.
///
#[doc = concat!("[`checked_mul`]: ", stringify!($SelfT), "::checked_mul")]
#[unstable(
feature = "unchecked_math",
reason = "niche optimization path",
issue = "85122",
)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[rustc_const_unstable(feature = "const_inherent_unchecked_arith", issue = "85122")]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_mul(self, rhs: Self) -> Self {
// SAFETY: the caller must uphold the safety contract for
// `unchecked_mul`.
unsafe { intrinsics::unchecked_mul(self, rhs) }
}
/// Checked integer division. Computes `self / rhs`, returning `None` if `rhs == 0`
/// or the division results in overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).checked_div(-1), Some(", stringify!($Max), "));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_div(-1), None);")]
#[doc = concat!("assert_eq!((1", stringify!($SelfT), ").checked_div(0), None);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_div(self, rhs: Self) -> Option<Self> {
if unlikely!(rhs == 0 || ((self == Self::MIN) && (rhs == -1))) {
None
} else {
// SAFETY: div by zero and by INT_MIN have been checked above
Some(unsafe { intrinsics::unchecked_div(self, rhs) })
}
}
/// Checked Euclidean division. Computes `self.div_euclid(rhs)`,
/// returning `None` if `rhs == 0` or the division results in overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).checked_div_euclid(-1), Some(", stringify!($Max), "));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_div_euclid(-1), None);")]
#[doc = concat!("assert_eq!((1", stringify!($SelfT), ").checked_div_euclid(0), None);")]
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
// Using `&` helps LLVM see that it is the same check made in division.
if unlikely!(rhs == 0 || ((self == Self::MIN) & (rhs == -1))) {
None
} else {
Some(self.div_euclid(rhs))
}
}
/// Checked integer remainder. Computes `self % rhs`, returning `None` if
/// `rhs == 0` or the division results in overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(2), Some(1));")]
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(0), None);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_rem(-1), None);")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_rem(self, rhs: Self) -> Option<Self> {
if unlikely!(rhs == 0 || ((self == Self::MIN) && (rhs == -1))) {
None
} else {
// SAFETY: div by zero and by INT_MIN have been checked above
Some(unsafe { intrinsics::unchecked_rem(self, rhs) })
}
}
/// Checked Euclidean remainder. Computes `self.rem_euclid(rhs)`, returning `None`
/// if `rhs == 0` or the division results in overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(2), Some(1));")]
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(0), None);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_rem_euclid(-1), None);")]
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
// Using `&` helps LLVM see that it is the same check made in division.
if unlikely!(rhs == 0 || ((self == Self::MIN) & (rhs == -1))) {
None
} else {
Some(self.rem_euclid(rhs))
}
}
/// Checked negation. Computes `-self`, returning `None` if `self == MIN`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_neg(), Some(-5));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_neg(), None);")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_neg(self) -> Option<Self> {
let (a, b) = self.overflowing_neg();
if unlikely!(b) {None} else {Some(a)}
}
/// Checked shift left. Computes `self << rhs`, returning `None` if `rhs` is larger
/// than or equal to the number of bits in `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(4), Some(0x10));")]
#[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(129), None);")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_shl(self, rhs: u32) -> Option<Self> {
let (a, b) = self.overflowing_shl(rhs);
if unlikely!(b) {None} else {Some(a)}
}
/// Unchecked shift left. Computes `self << rhs`, assuming that
/// `rhs` is less than the number of bits in `self`.
///
/// # Safety
///
/// This results in undefined behavior if `rhs` is larger than
/// or equal to the number of bits in `self`,
/// i.e. when [`checked_shl`] would return `None`.
///
#[doc = concat!("[`checked_shl`]: ", stringify!($SelfT), "::checked_shl")]
#[unstable(
feature = "unchecked_math",
reason = "niche optimization path",
issue = "85122",
)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[rustc_const_unstable(feature = "const_inherent_unchecked_arith", issue = "85122")]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_shl(self, rhs: u32) -> Self {
// SAFETY: the caller must uphold the safety contract for
// `unchecked_shl`.
// Any legal shift amount is losslessly representable in the self type.
unsafe { intrinsics::unchecked_shl(self, rhs.try_into().ok().unwrap_unchecked()) }
}
/// Checked shift right. Computes `self >> rhs`, returning `None` if `rhs` is
/// larger than or equal to the number of bits in `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(4), Some(0x1));")]
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(128), None);")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_shr(self, rhs: u32) -> Option<Self> {
let (a, b) = self.overflowing_shr(rhs);
if unlikely!(b) {None} else {Some(a)}
}
/// Unchecked shift right. Computes `self >> rhs`, assuming that
/// `rhs` is less than the number of bits in `self`.
///
/// # Safety
///
/// This results in undefined behavior if `rhs` is larger than
/// or equal to the number of bits in `self`,
/// i.e. when [`checked_shr`] would return `None`.
///
#[doc = concat!("[`checked_shr`]: ", stringify!($SelfT), "::checked_shr")]
#[unstable(
feature = "unchecked_math",
reason = "niche optimization path",
issue = "85122",
)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[rustc_const_unstable(feature = "const_inherent_unchecked_arith", issue = "85122")]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_shr(self, rhs: u32) -> Self {
// SAFETY: the caller must uphold the safety contract for
// `unchecked_shr`.
// Any legal shift amount is losslessly representable in the self type.
unsafe { intrinsics::unchecked_shr(self, rhs.try_into().ok().unwrap_unchecked()) }
}
/// Checked absolute value. Computes `self.abs()`, returning `None` if
/// `self == MIN`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((-5", stringify!($SelfT), ").checked_abs(), Some(5));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_abs(), None);")]
/// ```
#[stable(feature = "no_panic_abs", since = "1.13.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_abs(self) -> Option<Self> {
if self.is_negative() {
self.checked_neg()
} else {
Some(self)
}
}
/// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
/// overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(8", stringify!($SelfT), ".checked_pow(2), Some(64));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_pow(2), None);")]
/// ```
#[stable(feature = "no_panic_pow", since = "1.34.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
if exp == 0 {
return Some(1);
}
let mut base = self;
let mut acc: Self = 1;
while exp > 1 {
if (exp & 1) == 1 {
acc = try_opt!(acc.checked_mul(base));
}
exp /= 2;
base = try_opt!(base.checked_mul(base));
}
// since exp!=0, finally the exp must be 1.
// Deal with the final bit of the exponent separately, since
// squaring the base afterwards is not necessary and may cause a
// needless overflow.
acc.checked_mul(base)
}
/// Saturating integer addition. Computes `self + rhs`, saturating at the numeric
/// bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_add(1), 101);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add(100), ", stringify!($SelfT), "::MAX);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_add(-1), ", stringify!($SelfT), "::MIN);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn saturating_add(self, rhs: Self) -> Self {
intrinsics::saturating_add(self, rhs)
}
/// Saturating addition with an unsigned integer. Computes `self + rhs`,
/// saturating at the numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_unsigned(2), 3);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add_unsigned(100), ", stringify!($SelfT), "::MAX);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_add_unsigned(self, rhs: $UnsignedT) -> Self {
// Overflow can only happen at the upper bound
// We cannot use `unwrap_or` here because it is not `const`
match self.checked_add_unsigned(rhs) {
Some(x) => x,
None => Self::MAX,
}
}
/// Saturating integer subtraction. Computes `self - rhs`, saturating at the
/// numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub(127), -27);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_sub(100), ", stringify!($SelfT), "::MIN);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_sub(-1), ", stringify!($SelfT), "::MAX);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn saturating_sub(self, rhs: Self) -> Self {
intrinsics::saturating_sub(self, rhs)
}
/// Saturating subtraction with an unsigned integer. Computes `self - rhs`,
/// saturating at the numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub_unsigned(127), -27);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_sub_unsigned(100), ", stringify!($SelfT), "::MIN);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_sub_unsigned(self, rhs: $UnsignedT) -> Self {
// Overflow can only happen at the lower bound
// We cannot use `unwrap_or` here because it is not `const`
match self.checked_sub_unsigned(rhs) {
Some(x) => x,
None => Self::MIN,
}
}
/// Saturating integer negation. Computes `-self`, returning `MAX` if `self == MIN`
/// instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_neg(), -100);")]
#[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").saturating_neg(), 100);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_neg(), ", stringify!($SelfT), "::MAX);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_neg(), ", stringify!($SelfT), "::MIN + 1);")]
/// ```
#[stable(feature = "saturating_neg", since = "1.45.0")]
#[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn saturating_neg(self) -> Self {
intrinsics::saturating_sub(0, self)
}
/// Saturating absolute value. Computes `self.abs()`, returning `MAX` if `self ==
/// MIN` instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_abs(), 100);")]
#[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").saturating_abs(), 100);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_abs(), ", stringify!($SelfT), "::MAX);")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).saturating_abs(), ", stringify!($SelfT), "::MAX);")]
/// ```
#[stable(feature = "saturating_neg", since = "1.45.0")]
#[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_abs(self) -> Self {
if self.is_negative() {
self.saturating_neg()
} else {
self
}
}
/// Saturating integer multiplication. Computes `self * rhs`, saturating at the
/// numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".saturating_mul(12), 120);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_mul(10), ", stringify!($SelfT), "::MAX);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_mul(10), ", stringify!($SelfT), "::MIN);")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_mul(self, rhs: Self) -> Self {
match self.checked_mul(rhs) {
Some(x) => x,
None => if (self < 0) == (rhs < 0) {
Self::MAX
} else {
Self::MIN
}
}
}
/// Saturating integer division. Computes `self / rhs`, saturating at the
/// numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".saturating_div(2), 2);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_div(-1), ", stringify!($SelfT), "::MIN + 1);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_div(-1), ", stringify!($SelfT), "::MAX);")]
///
/// ```
///
/// ```should_panic
#[doc = concat!("let _ = 1", stringify!($SelfT), ".saturating_div(0);")]
///
/// ```
#[stable(feature = "saturating_div", since = "1.58.0")]
#[rustc_const_stable(feature = "saturating_div", since = "1.58.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_div(self, rhs: Self) -> Self {
match self.overflowing_div(rhs) {
(result, false) => result,
(_result, true) => Self::MAX, // MIN / -1 is the only possible saturating overflow
}
}
/// Saturating integer exponentiation. Computes `self.pow(exp)`,
/// saturating at the numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((-4", stringify!($SelfT), ").saturating_pow(3), -64);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_pow(2), ", stringify!($SelfT), "::MAX);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_pow(3), ", stringify!($SelfT), "::MIN);")]
/// ```
#[stable(feature = "no_panic_pow", since = "1.34.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_pow(self, exp: u32) -> Self {
match self.checked_pow(exp) {
Some(x) => x,
None if self < 0 && exp % 2 == 1 => Self::MIN,
None => Self::MAX,
}
}
/// Wrapping (modular) addition. Computes `self + rhs`, wrapping around at the
/// boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_add(27), 127);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_add(2), ", stringify!($SelfT), "::MIN + 1);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_add(self, rhs: Self) -> Self {
intrinsics::wrapping_add(self, rhs)
}
/// Wrapping (modular) addition with an unsigned integer. Computes
/// `self + rhs`, wrapping around at the boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_add_unsigned(27), 127);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_add_unsigned(2), ", stringify!($SelfT), "::MIN + 1);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_add_unsigned(self, rhs: $UnsignedT) -> Self {
self.wrapping_add(rhs as Self)
}
/// Wrapping (modular) subtraction. Computes `self - rhs`, wrapping around at the
/// boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".wrapping_sub(127), -127);")]
#[doc = concat!("assert_eq!((-2", stringify!($SelfT), ").wrapping_sub(", stringify!($SelfT), "::MAX), ", stringify!($SelfT), "::MAX);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_sub(self, rhs: Self) -> Self {
intrinsics::wrapping_sub(self, rhs)
}
/// Wrapping (modular) subtraction with an unsigned integer. Computes
/// `self - rhs`, wrapping around at the boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".wrapping_sub_unsigned(127), -127);")]
#[doc = concat!("assert_eq!((-2", stringify!($SelfT), ").wrapping_sub_unsigned(", stringify!($UnsignedT), "::MAX), -1);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_sub_unsigned(self, rhs: $UnsignedT) -> Self {
self.wrapping_sub(rhs as Self)
}
/// Wrapping (modular) multiplication. Computes `self * rhs`, wrapping around at
/// the boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".wrapping_mul(12), 120);")]
/// assert_eq!(11i8.wrapping_mul(12), -124);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_mul(self, rhs: Self) -> Self {
intrinsics::wrapping_mul(self, rhs)
}
/// Wrapping (modular) division. Computes `self / rhs`, wrapping around at the
/// boundary of the type.
///
/// The only case where such wrapping can occur is when one divides `MIN / -1` on a signed type (where
/// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
/// that is too large to represent in the type. In such a case, this function returns `MIN` itself.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div(10), 10);")]
/// assert_eq!((-128i8).wrapping_div(-1), -128);
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn wrapping_div(self, rhs: Self) -> Self {
self.overflowing_div(rhs).0
}
/// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`,
/// wrapping around at the boundary of the type.
///
/// Wrapping will only occur in `MIN / -1` on a signed type (where `MIN` is the negative minimal value
/// for the type). This is equivalent to `-MIN`, a positive value that is too large to represent in the
/// type. In this case, this method returns `MIN` itself.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div_euclid(10), 10);")]
/// assert_eq!((-128i8).wrapping_div_euclid(-1), -128);
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn wrapping_div_euclid(self, rhs: Self) -> Self {
self.overflowing_div_euclid(rhs).0
}
/// Wrapping (modular) remainder. Computes `self % rhs`, wrapping around at the
/// boundary of the type.
///
/// Such wrap-around never actually occurs mathematically; implementation artifacts make `x % y`
/// invalid for `MIN / -1` on a signed type (where `MIN` is the negative minimal value). In such a case,
/// this function returns `0`.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem(10), 0);")]
/// assert_eq!((-128i8).wrapping_rem(-1), 0);
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn wrapping_rem(self, rhs: Self) -> Self {
self.overflowing_rem(rhs).0
}
/// Wrapping Euclidean remainder. Computes `self.rem_euclid(rhs)`, wrapping around
/// at the boundary of the type.
///
/// Wrapping will only occur in `MIN % -1` on a signed type (where `MIN` is the negative minimal value
/// for the type). In this case, this method returns 0.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem_euclid(10), 0);")]
/// assert_eq!((-128i8).wrapping_rem_euclid(-1), 0);
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self {
self.overflowing_rem_euclid(rhs).0
}
/// Wrapping (modular) negation. Computes `-self`, wrapping around at the boundary
/// of the type.
///
/// The only case where such wrapping can occur is when one negates `MIN` on a signed type (where `MIN`
/// is the negative minimal value for the type); this is a positive value that is too large to represent
/// in the type. In such a case, this function returns `MIN` itself.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_neg(), -100);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.wrapping_neg(), ", stringify!($SelfT), "::MIN);")]
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_neg(self) -> Self {
(0 as $SelfT).wrapping_sub(self)
}
/// Panic-free bitwise shift-left; yields `self << mask(rhs)`, where `mask` removes
/// any high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
///
/// Note that this is *not* the same as a rotate-left; the RHS of a wrapping shift-left is restricted to
/// the range of the type, rather than the bits shifted out of the LHS being returned to the other end.
/// The primitive integer types all implement a [`rotate_left`](Self::rotate_left) function,
/// which may be what you want instead.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").wrapping_shl(7), -128);")]
#[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").wrapping_shl(128), -1);")]
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[rustc_allow_const_fn_unstable(const_inherent_unchecked_arith)]
pub const fn wrapping_shl(self, rhs: u32) -> Self {
// SAFETY: the masking by the bitsize of the type ensures that we do not shift
// out of bounds
unsafe {
self.unchecked_shl(rhs & ($BITS - 1))
}
}
/// Panic-free bitwise shift-right; yields `self >> mask(rhs)`, where `mask`
/// removes any high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
///
/// Note that this is *not* the same as a rotate-right; the RHS of a wrapping shift-right is restricted
/// to the range of the type, rather than the bits shifted out of the LHS being returned to the other
/// end. The primitive integer types all implement a [`rotate_right`](Self::rotate_right) function,
/// which may be what you want instead.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((-128", stringify!($SelfT), ").wrapping_shr(7), -1);")]
/// assert_eq!((-128i16).wrapping_shr(64), -128);
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[rustc_allow_const_fn_unstable(const_inherent_unchecked_arith)]
pub const fn wrapping_shr(self, rhs: u32) -> Self {
// SAFETY: the masking by the bitsize of the type ensures that we do not shift
// out of bounds
unsafe {
self.unchecked_shr(rhs & ($BITS - 1))
}
}
/// Wrapping (modular) absolute value. Computes `self.abs()`, wrapping around at
/// the boundary of the type.
///
/// The only case where such wrapping can occur is when one takes the absolute value of the negative
/// minimal value for the type; this is a positive value that is too large to represent in the type. In
/// such a case, this function returns `MIN` itself.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_abs(), 100);")]
#[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").wrapping_abs(), 100);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.wrapping_abs(), ", stringify!($SelfT), "::MIN);")]
/// assert_eq!((-128i8).wrapping_abs() as u8, 128);
/// ```
#[stable(feature = "no_panic_abs", since = "1.13.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[allow(unused_attributes)]
#[inline]
pub const fn wrapping_abs(self) -> Self {
if self.is_negative() {
self.wrapping_neg()
} else {
self
}
}
/// Computes the absolute value of `self` without any wrapping
/// or panicking.
///
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".unsigned_abs(), 100", stringify!($UnsignedT), ");")]
#[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").unsigned_abs(), 100", stringify!($UnsignedT), ");")]
/// assert_eq!((-128i8).unsigned_abs(), 128u8);
/// ```
#[stable(feature = "unsigned_abs", since = "1.51.0")]
#[rustc_const_stable(feature = "unsigned_abs", since = "1.51.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn unsigned_abs(self) -> $UnsignedT {
self.wrapping_abs() as $UnsignedT
}
/// Wrapping (modular) exponentiation. Computes `self.pow(exp)`,
/// wrapping around at the boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_pow(4), 81);")]
/// assert_eq!(3i8.wrapping_pow(5), -13);
/// assert_eq!(3i8.wrapping_pow(6), -39);
/// ```
#[stable(feature = "no_panic_pow", since = "1.34.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn wrapping_pow(self, mut exp: u32) -> Self {
if exp == 0 {
return 1;
}
let mut base = self;
let mut acc: Self = 1;
while exp > 1 {
if (exp & 1) == 1 {
acc = acc.wrapping_mul(base);
}
exp /= 2;
base = base.wrapping_mul(base);
}
// since exp!=0, finally the exp must be 1.
// Deal with the final bit of the exponent separately, since
// squaring the base afterwards is not necessary and may cause a
// needless overflow.
acc.wrapping_mul(base)
}
/// Calculates `self` + `rhs`
///
/// Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would
/// occur. If an overflow would have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_add(2), (7, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.overflowing_add(1), (", stringify!($SelfT), "::MIN, true));")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
let (a, b) = intrinsics::add_with_overflow(self as $ActualT, rhs as $ActualT);
(a as Self, b)
}
/// Calculates `self + rhs + carry` without the ability to overflow.
///
/// Performs "signed ternary addition" which takes in an extra bit to add, and may return an
/// additional bit of overflow. This signed function is used only on the highest-ordered data,
/// for which the signed overflow result indicates whether the big integer overflowed or not.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(bigint_helper_methods)]
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".carrying_add(2, false), (7, false));")]
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".carrying_add(2, true), (8, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.carrying_add(1, false), (", stringify!($SelfT), "::MIN, true));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.carrying_add(0, true), (", stringify!($SelfT), "::MIN, true));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.carrying_add(1, true), (", stringify!($SelfT), "::MIN + 1, true));")]
#[doc = concat!("assert_eq!(",
stringify!($SelfT), "::MAX.carrying_add(", stringify!($SelfT), "::MAX, true), ",
"(-1, true));"
)]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.carrying_add(-1, true), (", stringify!($SelfT), "::MIN, false));")]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".carrying_add(", stringify!($SelfT), "::MAX, true), (", stringify!($SelfT), "::MIN, true));")]
/// ```
///
/// If `carry` is false, this method is equivalent to [`overflowing_add`](Self::overflowing_add):
///
/// ```
/// #![feature(bigint_helper_methods)]
#[doc = concat!("assert_eq!(5_", stringify!($SelfT), ".carrying_add(2, false), 5_", stringify!($SelfT), ".overflowing_add(2));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.carrying_add(1, false), ", stringify!($SelfT), "::MAX.overflowing_add(1));")]
/// ```
#[unstable(feature = "bigint_helper_methods", issue = "85532")]
#[rustc_const_unstable(feature = "const_bigint_helper_methods", issue = "85532")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
// note: longer-term this should be done via an intrinsic.
// note: no intermediate overflow is required (https://github.com/rust-lang/rust/issues/85532#issuecomment-1032214946).
let (a, b) = self.overflowing_add(rhs);
let (c, d) = a.overflowing_add(carry as $SelfT);
(c, b != d)
}
/// Calculates `self` + `rhs` with an unsigned `rhs`
///
/// Returns a tuple of the addition along with a boolean indicating
/// whether an arithmetic overflow would occur. If an overflow would
/// have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_unsigned(2), (3, false));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN).overflowing_add_unsigned(", stringify!($UnsignedT), "::MAX), (", stringify!($SelfT), "::MAX, false));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_add_unsigned(3), (", stringify!($SelfT), "::MIN, true));")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_add_unsigned(self, rhs: $UnsignedT) -> (Self, bool) {
let rhs = rhs as Self;
let (res, overflowed) = self.overflowing_add(rhs);
(res, overflowed ^ (rhs < 0))
}
/// Calculates `self` - `rhs`
///
/// Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow
/// would occur. If an overflow would have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_sub(2), (3, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_sub(1), (", stringify!($SelfT), "::MAX, true));")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
let (a, b) = intrinsics::sub_with_overflow(self as $ActualT, rhs as $ActualT);
(a as Self, b)
}
/// Calculates `self - rhs - borrow` without the ability to overflow.
///
/// Performs "signed ternary subtraction" which takes in an extra bit to subtract, and may return an
/// additional bit of overflow. This signed function is used only on the highest-ordered data,
/// for which the signed overflow result indicates whether the big integer overflowed or not.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(bigint_helper_methods)]
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".borrowing_sub(2, false), (3, false));")]
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".borrowing_sub(2, true), (2, false));")]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".borrowing_sub(1, false), (-1, false));")]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".borrowing_sub(1, true), (-2, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.borrowing_sub(1, true), (", stringify!($SelfT), "::MAX - 1, true));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.borrowing_sub(-1, false), (", stringify!($SelfT), "::MIN, true));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.borrowing_sub(-1, true), (", stringify!($SelfT), "::MAX, false));")]
/// ```
#[unstable(feature = "bigint_helper_methods", issue = "85532")]
#[rustc_const_unstable(feature = "const_bigint_helper_methods", issue = "85532")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
// note: longer-term this should be done via an intrinsic.
// note: no intermediate overflow is required (https://github.com/rust-lang/rust/issues/85532#issuecomment-1032214946).
let (a, b) = self.overflowing_sub(rhs);
let (c, d) = a.overflowing_sub(borrow as $SelfT);
(c, b != d)
}
/// Calculates `self` - `rhs` with an unsigned `rhs`
///
/// Returns a tuple of the subtraction along with a boolean indicating
/// whether an arithmetic overflow would occur. If an overflow would
/// have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_unsigned(2), (-1, false));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX).overflowing_sub_unsigned(", stringify!($UnsignedT), "::MAX), (", stringify!($SelfT), "::MIN, false));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).overflowing_sub_unsigned(3), (", stringify!($SelfT), "::MAX, true));")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_sub_unsigned(self, rhs: $UnsignedT) -> (Self, bool) {
let rhs = rhs as Self;
let (res, overflowed) = self.overflowing_sub(rhs);
(res, overflowed ^ (rhs < 0))
}
/// Calculates the multiplication of `self` and `rhs`.
///
/// Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow
/// would occur. If an overflow would have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_mul(2), (10, false));")]
/// assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
let (a, b) = intrinsics::mul_with_overflow(self as $ActualT, rhs as $ActualT);
(a as Self, b)
}
/// Calculates the divisor when `self` is divided by `rhs`.
///
/// Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
/// occur. If an overflow would occur then self is returned.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div(2), (2, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_div(-1), (", stringify!($SelfT), "::MIN, true));")]
/// ```
#[inline]
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
pub const fn overflowing_div(self, rhs: Self) -> (Self, bool) {
// Using `&` helps LLVM see that it is the same check made in division.
if unlikely!((self == Self::MIN) & (rhs == -1)) {
(self, true)
} else {
(self / rhs, false)
}
}
/// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
///
/// Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
/// occur. If an overflow would occur then `self` is returned.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div_euclid(2), (2, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_div_euclid(-1), (", stringify!($SelfT), "::MIN, true));")]
/// ```
#[inline]
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
// Using `&` helps LLVM see that it is the same check made in division.
if unlikely!((self == Self::MIN) & (rhs == -1)) {
(self, true)
} else {
(self.div_euclid(rhs), false)
}
}
/// Calculates the remainder when `self` is divided by `rhs`.
///
/// Returns a tuple of the remainder after dividing along with a boolean indicating whether an
/// arithmetic overflow would occur. If an overflow would occur then 0 is returned.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem(2), (1, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_rem(-1), (0, true));")]
/// ```
#[inline]
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
if unlikely!(rhs == -1) {
(0, self == Self::MIN)
} else {
(self % rhs, false)
}
}
/// Overflowing Euclidean remainder. Calculates `self.rem_euclid(rhs)`.
///
/// Returns a tuple of the remainder after dividing along with a boolean indicating whether an
/// arithmetic overflow would occur. If an overflow would occur then 0 is returned.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem_euclid(2), (1, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_rem_euclid(-1), (0, true));")]
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
if unlikely!(rhs == -1) {
(0, self == Self::MIN)
} else {
(self.rem_euclid(rhs), false)
}
}
/// Negates self, overflowing if this is equal to the minimum value.
///
/// Returns a tuple of the negated version of self along with a boolean indicating whether an overflow
/// happened. If `self` is the minimum value (e.g., `i32::MIN` for values of type `i32`), then the
/// minimum value will be returned again and `true` will be returned for an overflow happening.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".overflowing_neg(), (-2, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_neg(), (", stringify!($SelfT), "::MIN, true));")]
/// ```
#[inline]
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[allow(unused_attributes)]
pub const fn overflowing_neg(self) -> (Self, bool) {
if unlikely!(self == Self::MIN) {
(Self::MIN, true)
} else {
(-self, false)
}
}
/// Shifts self left by `rhs` bits.
///
/// Returns a tuple of the shifted version of self along with a boolean indicating whether the shift
/// value was larger than or equal to the number of bits. If the shift value is too large, then value is
/// masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0x1", stringify!($SelfT),".overflowing_shl(4), (0x10, false));")]
/// assert_eq!(0x1i32.overflowing_shl(36), (0x10, true));
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool) {
(self.wrapping_shl(rhs), (rhs > ($BITS - 1)))
}
/// Shifts self right by `rhs` bits.
///
/// Returns a tuple of the shifted version of self along with a boolean indicating whether the shift
/// value was larger than or equal to the number of bits. If the shift value is too large, then value is
/// masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(4), (0x1, false));")]
/// assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool) {
(self.wrapping_shr(rhs), (rhs > ($BITS - 1)))
}
/// Computes the absolute value of `self`.
///
/// Returns a tuple of the absolute version of self along with a boolean indicating whether an overflow
/// happened. If self is the minimum value
#[doc = concat!("(e.g., ", stringify!($SelfT), "::MIN for values of type ", stringify!($SelfT), "),")]
/// then the minimum value will be returned again and true will be returned
/// for an overflow happening.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".overflowing_abs(), (10, false));")]
#[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").overflowing_abs(), (10, false));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN).overflowing_abs(), (", stringify!($SelfT), "::MIN, true));")]
/// ```
#[stable(feature = "no_panic_abs", since = "1.13.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_abs(self) -> (Self, bool) {
(self.wrapping_abs(), self == Self::MIN)
}
/// Raises self to the power of `exp`, using exponentiation by squaring.
///
/// Returns a tuple of the exponentiation along with a bool indicating
/// whether an overflow happened.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(3", stringify!($SelfT), ".overflowing_pow(4), (81, false));")]
/// assert_eq!(3i8.overflowing_pow(5), (-13, true));
/// ```
#[stable(feature = "no_panic_pow", since = "1.34.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_pow(self, mut exp: u32) -> (Self, bool) {
if exp == 0 {
return (1,false);
}
let mut base = self;
let mut acc: Self = 1;
let mut overflown = false;
// Scratch space for storing results of overflowing_mul.
let mut r;
while exp > 1 {
if (exp & 1) == 1 {
r = acc.overflowing_mul(base);
acc = r.0;
overflown |= r.1;
}
exp /= 2;
r = base.overflowing_mul(base);
base = r.0;
overflown |= r.1;
}
// since exp!=0, finally the exp must be 1.
// Deal with the final bit of the exponent separately, since
// squaring the base afterwards is not necessary and may cause a
// needless overflow.
r = acc.overflowing_mul(base);
r.1 |= overflown;
r
}
/// Raises self to the power of `exp`, using exponentiation by squaring.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let x: ", stringify!($SelfT), " = 2; // or any other integer type")]
///
/// assert_eq!(x.pow(5), 32);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[rustc_inherit_overflow_checks]
pub const fn pow(self, mut exp: u32) -> Self {
if exp == 0 {
return 1;
}
let mut base = self;
let mut acc = 1;
while exp > 1 {
if (exp & 1) == 1 {
acc = acc * base;
}
exp /= 2;
base = base * base;
}
// since exp!=0, finally the exp must be 1.
// Deal with the final bit of the exponent separately, since
// squaring the base afterwards is not necessary and may cause a
// needless overflow.
acc * base
}
/// Calculates the quotient of Euclidean division of `self` by `rhs`.
///
/// This computes the integer `q` such that `self = q * rhs + r`, with
/// `r = self.rem_euclid(rhs)` and `0 <= r < abs(rhs)`.
///
/// In other words, the result is `self / rhs` rounded to the integer `q`
/// such that `self >= q * rhs`.
/// If `self > 0`, this is equal to round towards zero (the default in Rust);
/// if `self < 0`, this is equal to round towards +/- infinity.
///
/// # Panics
///
/// This function will panic if `rhs` is 0 or the division results in overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let a: ", stringify!($SelfT), " = 7; // or any other integer type")]
/// let b = 4;
///
/// assert_eq!(a.div_euclid(b), 1); // 7 >= 4 * 1
/// assert_eq!(a.div_euclid(-b), -1); // 7 >= -4 * -1
/// assert_eq!((-a).div_euclid(b), -2); // -7 >= 4 * -2
/// assert_eq!((-a).div_euclid(-b), 2); // -7 >= -4 * 2
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[rustc_inherit_overflow_checks]
pub const fn div_euclid(self, rhs: Self) -> Self {
let q = self / rhs;
if self % rhs < 0 {
return if rhs > 0 { q - 1 } else { q + 1 }
}
q
}
/// Calculates the least nonnegative remainder of `self (mod rhs)`.
///
/// This is done as if by the Euclidean division algorithm -- given
/// `r = self.rem_euclid(rhs)`, `self = rhs * self.div_euclid(rhs) + r`, and
/// `0 <= r < abs(rhs)`.
///
/// # Panics
///
/// This function will panic if `rhs` is 0 or the division results in overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let a: ", stringify!($SelfT), " = 7; // or any other integer type")]
/// let b = 4;
///
/// assert_eq!(a.rem_euclid(b), 3);
/// assert_eq!((-a).rem_euclid(b), 1);
/// assert_eq!(a.rem_euclid(-b), 3);
/// assert_eq!((-a).rem_euclid(-b), 1);
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[rustc_inherit_overflow_checks]
pub const fn rem_euclid(self, rhs: Self) -> Self {
let r = self % rhs;
if r < 0 {
// Semantically equivalent to `if rhs < 0 { r - rhs } else { r + rhs }`.
// If `rhs` is not `Self::MIN`, then `r + abs(rhs)` will not overflow
// and is clearly equivalent, because `r` is negative.
// Otherwise, `rhs` is `Self::MIN`, then we have
// `r.wrapping_add(Self::MIN.wrapping_abs())`, which evaluates
// to `r.wrapping_add(Self::MIN)`, which is equivalent to
// `r - Self::MIN`, which is what we wanted (and will not overflow
// for negative `r`).
r.wrapping_add(rhs.wrapping_abs())
} else {
r
}
}
/// Calculates the quotient of `self` and `rhs`, rounding the result towards negative infinity.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// ## Overflow behavior
///
/// On overflow, this function will panic if overflow checks are enabled (default in debug
/// mode) and wrap if overflow checks are disabled (default in release mode).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(int_roundings)]
#[doc = concat!("let a: ", stringify!($SelfT)," = 8;")]
/// let b = 3;
///
/// assert_eq!(a.div_floor(b), 2);
/// assert_eq!(a.div_floor(-b), -3);
/// assert_eq!((-a).div_floor(b), -3);
/// assert_eq!((-a).div_floor(-b), 2);
/// ```
#[unstable(feature = "int_roundings", issue = "88581")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[rustc_inherit_overflow_checks]
pub const fn div_floor(self, rhs: Self) -> Self {
let d = self / rhs;
let r = self % rhs;
if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
d - 1
} else {
d
}
}
/// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// ## Overflow behavior
///
/// On overflow, this function will panic if overflow checks are enabled (default in debug
/// mode) and wrap if overflow checks are disabled (default in release mode).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(int_roundings)]
#[doc = concat!("let a: ", stringify!($SelfT)," = 8;")]
/// let b = 3;
///
/// assert_eq!(a.div_ceil(b), 3);
/// assert_eq!(a.div_ceil(-b), -2);
/// assert_eq!((-a).div_ceil(b), -2);
/// assert_eq!((-a).div_ceil(-b), 3);
/// ```
#[unstable(feature = "int_roundings", issue = "88581")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[rustc_inherit_overflow_checks]
pub const fn div_ceil(self, rhs: Self) -> Self {
let d = self / rhs;
let r = self % rhs;
if (r > 0 && rhs > 0) || (r < 0 && rhs < 0) {
d + 1
} else {
d
}
}
/// If `rhs` is positive, calculates the smallest value greater than or
/// equal to `self` that is a multiple of `rhs`. If `rhs` is negative,
/// calculates the largest value less than or equal to `self` that is a
/// multiple of `rhs`.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// ## Overflow behavior
///
/// On overflow, this function will panic if overflow checks are enabled (default in debug
/// mode) and wrap if overflow checks are disabled (default in release mode).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(int_roundings)]
#[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(8), 16);")]
#[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(8), 24);")]
#[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(-8), 16);")]
#[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(-8), 16);")]
#[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").next_multiple_of(8), -16);")]
#[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").next_multiple_of(8), -16);")]
#[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").next_multiple_of(-8), -16);")]
#[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").next_multiple_of(-8), -24);")]
/// ```
#[unstable(feature = "int_roundings", issue = "88581")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[rustc_inherit_overflow_checks]
pub const fn next_multiple_of(self, rhs: Self) -> Self {
// This would otherwise fail when calculating `r` when self == T::MIN.
if rhs == -1 {
return self;
}
let r = self % rhs;
let m = if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
r + rhs
} else {
r
};
if m == 0 {
self
} else {
self + (rhs - m)
}
}
/// If `rhs` is positive, calculates the smallest value greater than or
/// equal to `self` that is a multiple of `rhs`. If `rhs` is negative,
/// calculates the largest value less than or equal to `self` that is a
/// multiple of `rhs`. Returns `None` if `rhs` is zero or the operation
/// would result in overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(int_roundings)]
#[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(16));")]
#[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(24));")]
#[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(-8), Some(16));")]
#[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(-8), Some(16));")]
#[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").checked_next_multiple_of(8), Some(-16));")]
#[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").checked_next_multiple_of(8), Some(-16));")]
#[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").checked_next_multiple_of(-8), Some(-16));")]
#[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").checked_next_multiple_of(-8), Some(-24));")]
#[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".checked_next_multiple_of(0), None);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_multiple_of(2), None);")]
/// ```
#[unstable(feature = "int_roundings", issue = "88581")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
// This would otherwise fail when calculating `r` when self == T::MIN.
if rhs == -1 {
return Some(self);
}
let r = try_opt!(self.checked_rem(rhs));
let m = if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
// r + rhs cannot overflow because they have opposite signs
r + rhs
} else {
r
};
if m == 0 {
Some(self)
} else {
// rhs - m cannot overflow because m has the same sign as rhs
self.checked_add(rhs - m)
}
}
/// Returns the logarithm of the number with respect to an arbitrary base,
/// rounded down.
///
/// This method might not be optimized owing to implementation details;
/// `ilog2` can produce results more efficiently for base 2, and `ilog10`
/// can produce results more efficiently for base 10.
///
/// # Panics
///
/// This function will panic if `self` is less than or equal to zero,
/// or if `base` is less than 2.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[rustc_allow_const_fn_unstable(const_option)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn ilog(self, base: Self) -> u32 {
assert!(base >= 2, "base of integer logarithm must be at least 2");
self.checked_ilog(base).expect("argument of integer logarithm must be positive")
}
/// Returns the base 2 logarithm of the number, rounded down.
///
/// # Panics
///
/// This function will panic if `self` is less than or equal to zero.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[rustc_allow_const_fn_unstable(const_option)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn ilog2(self) -> u32 {
self.checked_ilog2().expect("argument of integer logarithm must be positive")
}
/// Returns the base 10 logarithm of the number, rounded down.
///
/// # Panics
///
/// This function will panic if `self` is less than or equal to zero.
///
/// # Example
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[rustc_allow_const_fn_unstable(const_option)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn ilog10(self) -> u32 {
self.checked_ilog10().expect("argument of integer logarithm must be positive")
}
/// Returns the logarithm of the number with respect to an arbitrary base,
/// rounded down.
///
/// Returns `None` if the number is negative or zero, or if the base is not at least 2.
///
/// This method might not be optimized owing to implementation details;
/// `checked_ilog2` can produce results more efficiently for base 2, and
/// `checked_ilog10` can produce results more efficiently for base 10.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_ilog(self, base: Self) -> Option<u32> {
if self <= 0 || base <= 1 {
None
} else {
let mut n = 0;
let mut r = self;
// Optimization for 128 bit wide integers.
if Self::BITS == 128 {
let b = Self::ilog2(self) / (Self::ilog2(base) + 1);
n += b;
r /= base.pow(b as u32);
}
while r >= base {
r /= base;
n += 1;
}
Some(n)
}
}
/// Returns the base 2 logarithm of the number, rounded down.
///
/// Returns `None` if the number is negative or zero.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_ilog2(self) -> Option<u32> {
if self <= 0 {
None
} else {
// SAFETY: We just checked that this number is positive
let log = (Self::BITS - 1) - unsafe { intrinsics::ctlz_nonzero(self) as u32 };
Some(log)
}
}
/// Returns the base 10 logarithm of the number, rounded down.
///
/// Returns `None` if the number is negative or zero.
///
/// # Example
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_ilog10(self) -> Option<u32> {
if self > 0 {
Some(int_log10::$ActualT(self as $ActualT))
} else {
None
}
}
/// Computes the absolute value of `self`.
///
/// # Overflow behavior
///
/// The absolute value of
#[doc = concat!("`", stringify!($SelfT), "::MIN`")]
/// cannot be represented as an
#[doc = concat!("`", stringify!($SelfT), "`,")]
/// and attempting to calculate it will cause an overflow. This means
/// that code in debug mode will trigger a panic on this case and
/// optimized code will return
#[doc = concat!("`", stringify!($SelfT), "::MIN`")]
/// without a panic.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".abs(), 10);")]
#[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").abs(), 10);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[allow(unused_attributes)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[rustc_inherit_overflow_checks]
pub const fn abs(self) -> Self {
// Note that the #[rustc_inherit_overflow_checks] and #[inline]
// above mean that the overflow semantics of the subtraction
// depend on the crate we're being called from.
if self.is_negative() {
-self
} else {
self
}
}
/// Computes the absolute difference between `self` and `other`.
///
/// This function always returns the correct answer without overflow or
/// panics by returning an unsigned integer.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(80), 20", stringify!($UnsignedT), ");")]
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(110), 10", stringify!($UnsignedT), ");")]
#[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").abs_diff(80), 180", stringify!($UnsignedT), ");")]
#[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").abs_diff(-120), 20", stringify!($UnsignedT), ");")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.abs_diff(", stringify!($SelfT), "::MAX), ", stringify!($UnsignedT), "::MAX);")]
/// ```
#[stable(feature = "int_abs_diff", since = "1.60.0")]
#[rustc_const_stable(feature = "int_abs_diff", since = "1.60.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn abs_diff(self, other: Self) -> $UnsignedT {
if self < other {
// Converting a non-negative x from signed to unsigned by using
// `x as U` is left unchanged, but a negative x is converted
// to value x + 2^N. Thus if `s` and `o` are binary variables
// respectively indicating whether `self` and `other` are
// negative, we are computing the mathematical value:
//
// (other + o*2^N) - (self + s*2^N) mod 2^N
// other - self + (o-s)*2^N mod 2^N
// other - self mod 2^N
//
// Finally, taking the mod 2^N of the mathematical value of
// `other - self` does not change it as it already is
// in the range [0, 2^N).
(other as $UnsignedT).wrapping_sub(self as $UnsignedT)
} else {
(self as $UnsignedT).wrapping_sub(other as $UnsignedT)
}
}
/// Returns a number representing sign of `self`.
///
/// - `0` if the number is zero
/// - `1` if the number is positive
/// - `-1` if the number is negative
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".signum(), 1);")]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".signum(), 0);")]
#[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").signum(), -1);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_sign", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn signum(self) -> Self {
match self {
n if n > 0 => 1,
0 => 0,
_ => -1,
}
}
/// Returns `true` if `self` is positive and `false` if the number is zero or
/// negative.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert!(10", stringify!($SelfT), ".is_positive());")]
#[doc = concat!("assert!(!(-10", stringify!($SelfT), ").is_positive());")]
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[inline(always)]
pub const fn is_positive(self) -> bool { self > 0 }
/// Returns `true` if `self` is negative and `false` if the number is zero or
/// positive.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert!((-10", stringify!($SelfT), ").is_negative());")]
#[doc = concat!("assert!(!10", stringify!($SelfT), ".is_negative());")]
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[inline(always)]
pub const fn is_negative(self) -> bool { self < 0 }
/// Return the memory representation of this integer as a byte array in
/// big-endian (network) byte order.
///
#[doc = $to_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_be_bytes();")]
#[doc = concat!("assert_eq!(bytes, ", $be_bytes, ");")]
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn to_be_bytes(self) -> [u8; mem::size_of::<Self>()] {
self.to_be().to_ne_bytes()
}
/// Return the memory representation of this integer as a byte array in
/// little-endian byte order.
///
#[doc = $to_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_le_bytes();")]
#[doc = concat!("assert_eq!(bytes, ", $le_bytes, ");")]
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn to_le_bytes(self) -> [u8; mem::size_of::<Self>()] {
self.to_le().to_ne_bytes()
}
/// Return the memory representation of this integer as a byte array in
/// native byte order.
///
/// As the target platform's native endianness is used, portable code
/// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate,
/// instead.
///
#[doc = $to_xe_bytes_doc]
///
/// [`to_be_bytes`]: Self::to_be_bytes
/// [`to_le_bytes`]: Self::to_le_bytes
///
/// # Examples
///
/// ```
#[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_ne_bytes();")]
/// assert_eq!(
/// bytes,
/// if cfg!(target_endian = "big") {
#[doc = concat!(" ", $be_bytes)]
/// } else {
#[doc = concat!(" ", $le_bytes)]
/// }
/// );
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
// SAFETY: const sound because integers are plain old datatypes so we can always
// transmute them to arrays of bytes
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn to_ne_bytes(self) -> [u8; mem::size_of::<Self>()] {
// SAFETY: integers are plain old datatypes so we can always transmute them to
// arrays of bytes
unsafe { mem::transmute(self) }
}
/// Create an integer value from its representation as a byte array in
/// big endian.
///
#[doc = $from_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let value = ", stringify!($SelfT), "::from_be_bytes(", $be_bytes, ");")]
#[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
/// ```
///
/// When starting from a slice rather than an array, fallible conversion APIs can be used:
///
/// ```
#[doc = concat!("fn read_be_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
#[doc = concat!(" let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
/// *input = rest;
#[doc = concat!(" ", stringify!($SelfT), "::from_be_bytes(int_bytes.try_into().unwrap())")]
/// }
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use]
#[inline]
pub const fn from_be_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
Self::from_be(Self::from_ne_bytes(bytes))
}
/// Create an integer value from its representation as a byte array in
/// little endian.
///
#[doc = $from_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let value = ", stringify!($SelfT), "::from_le_bytes(", $le_bytes, ");")]
#[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
/// ```
///
/// When starting from a slice rather than an array, fallible conversion APIs can be used:
///
/// ```
#[doc = concat!("fn read_le_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
#[doc = concat!(" let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
/// *input = rest;
#[doc = concat!(" ", stringify!($SelfT), "::from_le_bytes(int_bytes.try_into().unwrap())")]
/// }
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use]
#[inline]
pub const fn from_le_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
Self::from_le(Self::from_ne_bytes(bytes))
}
/// Create an integer value from its memory representation as a byte
/// array in native endianness.
///
/// As the target platform's native endianness is used, portable code
/// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
/// appropriate instead.
///
/// [`from_be_bytes`]: Self::from_be_bytes
/// [`from_le_bytes`]: Self::from_le_bytes
///
#[doc = $from_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let value = ", stringify!($SelfT), "::from_ne_bytes(if cfg!(target_endian = \"big\") {")]
#[doc = concat!(" ", $be_bytes)]
/// } else {
#[doc = concat!(" ", $le_bytes)]
/// });
#[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
/// ```
///
/// When starting from a slice rather than an array, fallible conversion APIs can be used:
///
/// ```
#[doc = concat!("fn read_ne_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
#[doc = concat!(" let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
/// *input = rest;
#[doc = concat!(" ", stringify!($SelfT), "::from_ne_bytes(int_bytes.try_into().unwrap())")]
/// }
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use]
// SAFETY: const sound because integers are plain old datatypes so we can always
// transmute to them
#[inline]
pub const fn from_ne_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
// SAFETY: integers are plain old datatypes so we can always transmute to them
unsafe { mem::transmute(bytes) }
}
/// New code should prefer to use
#[doc = concat!("[`", stringify!($SelfT), "::MIN", "`] instead.")]
///
/// Returns the smallest value that can be represented by this integer type.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline(always)]
#[rustc_promotable]
#[rustc_const_stable(feature = "const_min_value", since = "1.32.0")]
#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on this type")]
pub const fn min_value() -> Self {
Self::MIN
}
/// New code should prefer to use
#[doc = concat!("[`", stringify!($SelfT), "::MAX", "`] instead.")]
///
/// Returns the largest value that can be represented by this integer type.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline(always)]
#[rustc_promotable]
#[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on this type")]
pub const fn max_value() -> Self {
Self::MAX
}
}
}