blob: 8a78bc1fd739904141deda9cafaba58b91a8f624 [file] [log] [blame]
use crate::cell::UnsafeCell;
use crate::mem::{forget, MaybeUninit};
use crate::sys::cvt_nz;
use crate::sys_common::lazy_box::{LazyBox, LazyInit};
struct AllocatedMutex(UnsafeCell<libc::pthread_mutex_t>);
pub struct Mutex {
inner: LazyBox<AllocatedMutex>,
}
#[inline]
pub unsafe fn raw(m: &Mutex) -> *mut libc::pthread_mutex_t {
m.inner.0.get()
}
unsafe impl Send for AllocatedMutex {}
unsafe impl Sync for AllocatedMutex {}
impl LazyInit for AllocatedMutex {
fn init() -> Box<Self> {
let mutex = Box::new(AllocatedMutex(UnsafeCell::new(libc::PTHREAD_MUTEX_INITIALIZER)));
// Issue #33770
//
// A pthread mutex initialized with PTHREAD_MUTEX_INITIALIZER will have
// a type of PTHREAD_MUTEX_DEFAULT, which has undefined behavior if you
// try to re-lock it from the same thread when you already hold a lock
// (https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_init.html).
// This is the case even if PTHREAD_MUTEX_DEFAULT == PTHREAD_MUTEX_NORMAL
// (https://github.com/rust-lang/rust/issues/33770#issuecomment-220847521) -- in that
// case, `pthread_mutexattr_settype(PTHREAD_MUTEX_DEFAULT)` will of course be the same
// as setting it to `PTHREAD_MUTEX_NORMAL`, but not setting any mode will result in
// a Mutex where re-locking is UB.
//
// In practice, glibc takes advantage of this undefined behavior to
// implement hardware lock elision, which uses hardware transactional
// memory to avoid acquiring the lock. While a transaction is in
// progress, the lock appears to be unlocked. This isn't a problem for
// other threads since the transactional memory will abort if a conflict
// is detected, however no abort is generated when re-locking from the
// same thread.
//
// Since locking the same mutex twice will result in two aliasing &mut
// references, we instead create the mutex with type
// PTHREAD_MUTEX_NORMAL which is guaranteed to deadlock if we try to
// re-lock it from the same thread, thus avoiding undefined behavior.
unsafe {
let mut attr = MaybeUninit::<libc::pthread_mutexattr_t>::uninit();
cvt_nz(libc::pthread_mutexattr_init(attr.as_mut_ptr())).unwrap();
let attr = PthreadMutexAttr(&mut attr);
cvt_nz(libc::pthread_mutexattr_settype(
attr.0.as_mut_ptr(),
libc::PTHREAD_MUTEX_NORMAL,
))
.unwrap();
cvt_nz(libc::pthread_mutex_init(mutex.0.get(), attr.0.as_ptr())).unwrap();
}
mutex
}
fn destroy(mutex: Box<Self>) {
// We're not allowed to pthread_mutex_destroy a locked mutex,
// so check first if it's unlocked.
if unsafe { libc::pthread_mutex_trylock(mutex.0.get()) == 0 } {
unsafe { libc::pthread_mutex_unlock(mutex.0.get()) };
drop(mutex);
} else {
// The mutex is locked. This happens if a MutexGuard is leaked.
// In this case, we just leak the Mutex too.
forget(mutex);
}
}
fn cancel_init(_: Box<Self>) {
// In this case, we can just drop it without any checks,
// since it cannot have been locked yet.
}
}
impl Drop for AllocatedMutex {
#[inline]
fn drop(&mut self) {
let r = unsafe { libc::pthread_mutex_destroy(self.0.get()) };
if cfg!(target_os = "dragonfly") {
// On DragonFly pthread_mutex_destroy() returns EINVAL if called on a
// mutex that was just initialized with libc::PTHREAD_MUTEX_INITIALIZER.
// Once it is used (locked/unlocked) or pthread_mutex_init() is called,
// this behaviour no longer occurs.
debug_assert!(r == 0 || r == libc::EINVAL);
} else {
debug_assert_eq!(r, 0);
}
}
}
impl Mutex {
#[inline]
pub const fn new() -> Mutex {
Mutex { inner: LazyBox::new() }
}
#[inline]
pub unsafe fn lock(&self) {
let r = libc::pthread_mutex_lock(raw(self));
debug_assert_eq!(r, 0);
}
#[inline]
pub unsafe fn unlock(&self) {
let r = libc::pthread_mutex_unlock(raw(self));
debug_assert_eq!(r, 0);
}
#[inline]
pub unsafe fn try_lock(&self) -> bool {
libc::pthread_mutex_trylock(raw(self)) == 0
}
}
pub(super) struct PthreadMutexAttr<'a>(pub &'a mut MaybeUninit<libc::pthread_mutexattr_t>);
impl Drop for PthreadMutexAttr<'_> {
fn drop(&mut self) {
unsafe {
let result = libc::pthread_mutexattr_destroy(self.0.as_mut_ptr());
debug_assert_eq!(result, 0);
}
}
}