blob: ea5f595ec985fa61c886ccc41877f337a2afc309 [file] [log] [blame]
//! x86 run-time feature detection is OS independent.
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
use core::mem;
use crate::detect::{bit, cache, Feature};
/// Run-time feature detection on x86 works by using the CPUID instruction.
///
/// The [CPUID Wikipedia page][wiki_cpuid] contains
/// all the information about which flags to set to query which values, and in
/// which registers these are reported.
///
/// The definitive references are:
/// - [Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2:
/// Instruction Set Reference, A-Z][intel64_ref].
/// - [AMD64 Architecture Programmer's Manual, Volume 3: General-Purpose and
/// System Instructions][amd64_ref].
///
/// [wiki_cpuid]: https://en.wikipedia.org/wiki/CPUID
/// [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
/// [amd64_ref]: http://support.amd.com/TechDocs/24594.pdf
#[allow(clippy::similar_names)]
pub(crate) fn detect_features() -> cache::Initializer {
let mut value = cache::Initializer::default();
// If the x86 CPU does not support the CPUID instruction then it is too
// old to support any of the currently-detectable features.
if !has_cpuid() {
return value;
}
// Calling `__cpuid`/`__cpuid_count` from here on is safe because the CPU
// has `cpuid` support.
// 0. EAX = 0: Basic Information:
// - EAX returns the "Highest Function Parameter", that is, the maximum
// leaf value for subsequent calls of `cpuinfo` in range [0,
// 0x8000_0000]. - The vendor ID is stored in 12 u8 ascii chars,
// returned in EBX, EDX, and ECX (in that order):
let (max_basic_leaf, vendor_id) = unsafe {
let CpuidResult {
eax: max_basic_leaf,
ebx,
ecx,
edx,
} = __cpuid(0);
let vendor_id: [[u8; 4]; 3] = [
mem::transmute(ebx),
mem::transmute(edx),
mem::transmute(ecx),
];
let vendor_id: [u8; 12] = mem::transmute(vendor_id);
(max_basic_leaf, vendor_id)
};
if max_basic_leaf < 1 {
// Earlier Intel 486, CPUID not implemented
return value;
}
// EAX = 1, ECX = 0: Queries "Processor Info and Feature Bits";
// Contains information about most x86 features.
let CpuidResult {
ecx: proc_info_ecx,
edx: proc_info_edx,
..
} = unsafe { __cpuid(0x0000_0001_u32) };
// EAX = 7, ECX = 0: Queries "Extended Features";
// Contains information about bmi,bmi2, and avx2 support.
let (extended_features_ebx, extended_features_ecx) = if max_basic_leaf >= 7 {
let CpuidResult { ebx, ecx, .. } = unsafe { __cpuid(0x0000_0007_u32) };
(ebx, ecx)
} else {
(0, 0) // CPUID does not support "Extended Features"
};
// EAX = 0x8000_0000, ECX = 0: Get Highest Extended Function Supported
// - EAX returns the max leaf value for extended information, that is,
// `cpuid` calls in range [0x8000_0000; u32::MAX]:
let CpuidResult {
eax: extended_max_basic_leaf,
..
} = unsafe { __cpuid(0x8000_0000_u32) };
// EAX = 0x8000_0001, ECX=0: Queries "Extended Processor Info and Feature
// Bits"
let extended_proc_info_ecx = if extended_max_basic_leaf >= 1 {
let CpuidResult { ecx, .. } = unsafe { __cpuid(0x8000_0001_u32) };
ecx
} else {
0
};
{
// borrows value till the end of this scope:
let mut enable = |r, rb, f| {
if bit::test(r as usize, rb) {
value.set(f as u32);
}
};
enable(proc_info_ecx, 0, Feature::sse3);
enable(proc_info_ecx, 1, Feature::pclmulqdq);
enable(proc_info_ecx, 9, Feature::ssse3);
enable(proc_info_ecx, 13, Feature::cmpxchg16b);
enable(proc_info_ecx, 19, Feature::sse4_1);
enable(proc_info_ecx, 20, Feature::sse4_2);
enable(proc_info_ecx, 23, Feature::popcnt);
enable(proc_info_ecx, 25, Feature::aes);
enable(proc_info_ecx, 29, Feature::f16c);
enable(proc_info_ecx, 30, Feature::rdrand);
enable(extended_features_ebx, 18, Feature::rdseed);
enable(extended_features_ebx, 19, Feature::adx);
enable(extended_features_ebx, 11, Feature::rtm);
enable(proc_info_edx, 4, Feature::tsc);
enable(proc_info_edx, 23, Feature::mmx);
enable(proc_info_edx, 24, Feature::fxsr);
enable(proc_info_edx, 25, Feature::sse);
enable(proc_info_edx, 26, Feature::sse2);
enable(extended_features_ebx, 29, Feature::sha);
enable(extended_features_ebx, 3, Feature::bmi1);
enable(extended_features_ebx, 8, Feature::bmi2);
// `XSAVE` and `AVX` support:
let cpu_xsave = bit::test(proc_info_ecx as usize, 26);
if cpu_xsave {
// 0. Here the CPU supports `XSAVE`.
// 1. Detect `OSXSAVE`, that is, whether the OS is AVX enabled and
// supports saving the state of the AVX/AVX2 vector registers on
// context-switches, see:
//
// - [intel: is avx enabled?][is_avx_enabled],
// - [mozilla: sse.cpp][mozilla_sse_cpp].
//
// [is_avx_enabled]: https://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
// [mozilla_sse_cpp]: https://hg.mozilla.org/mozilla-central/file/64bab5cbb9b6/mozglue/build/SSE.cpp#l190
let cpu_osxsave = bit::test(proc_info_ecx as usize, 27);
if cpu_osxsave {
// 2. The OS must have signaled the CPU that it supports saving and
// restoring the:
//
// * SSE -> `XCR0.SSE[1]`
// * AVX -> `XCR0.AVX[2]`
// * AVX-512 -> `XCR0.AVX-512[7:5]`.
//
// by setting the corresponding bits of `XCR0` to `1`.
//
// This is safe because the CPU supports `xsave`
// and the OS has set `osxsave`.
let xcr0 = unsafe { _xgetbv(0) };
// Test `XCR0.SSE[1]` and `XCR0.AVX[2]` with the mask `0b110 == 6`:
let os_avx_support = xcr0 & 6 == 6;
// Test `XCR0.AVX-512[7:5]` with the mask `0b1110_0000 == 224`:
let os_avx512_support = xcr0 & 224 == 224;
// Only if the OS and the CPU support saving/restoring the AVX
// registers we enable `xsave` support:
if os_avx_support {
// See "13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED
// FEATURES" in the "Intel® 64 and IA-32 Architectures Software
// Developer’s Manual, Volume 1: Basic Architecture":
//
// "Software enables the XSAVE feature set by setting
// CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4
// instruction). If this bit is 0, execution of any of XGETBV,
// XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV
// causes an invalid-opcode exception (#UD)"
//
enable(proc_info_ecx, 26, Feature::xsave);
// For `xsaveopt`, `xsavec`, and `xsaves` we need to query:
// Processor Extended State Enumeration Sub-leaf (EAX = 0DH,
// ECX = 1):
if max_basic_leaf >= 0xd {
let CpuidResult {
eax: proc_extended_state1_eax,
..
} = unsafe { __cpuid_count(0xd_u32, 1) };
enable(proc_extended_state1_eax, 0, Feature::xsaveopt);
enable(proc_extended_state1_eax, 1, Feature::xsavec);
enable(proc_extended_state1_eax, 3, Feature::xsaves);
}
// FMA (uses 256-bit wide registers):
enable(proc_info_ecx, 12, Feature::fma);
// And AVX/AVX2:
enable(proc_info_ecx, 28, Feature::avx);
enable(extended_features_ebx, 5, Feature::avx2);
// For AVX-512 the OS also needs to support saving/restoring
// the extended state, only then we enable AVX-512 support:
if os_avx512_support {
enable(extended_features_ebx, 16, Feature::avx512f);
enable(extended_features_ebx, 17, Feature::avx512dq);
enable(extended_features_ebx, 21, Feature::avx512ifma);
enable(extended_features_ebx, 26, Feature::avx512pf);
enable(extended_features_ebx, 27, Feature::avx512er);
enable(extended_features_ebx, 28, Feature::avx512cd);
enable(extended_features_ebx, 30, Feature::avx512bw);
enable(extended_features_ebx, 31, Feature::avx512vl);
enable(extended_features_ecx, 1, Feature::avx512vbmi);
enable(extended_features_ecx, 5, Feature::avx512bf16);
enable(extended_features_ecx, 6, Feature::avx512vbmi2);
enable(extended_features_ecx, 8, Feature::avx512gfni);
enable(extended_features_ecx, 8, Feature::avx512vp2intersect);
enable(extended_features_ecx, 9, Feature::avx512vaes);
enable(extended_features_ecx, 10, Feature::avx512vpclmulqdq);
enable(extended_features_ecx, 11, Feature::avx512vnni);
enable(extended_features_ecx, 12, Feature::avx512bitalg);
enable(extended_features_ecx, 14, Feature::avx512vpopcntdq);
}
}
}
}
// This detects ABM on AMD CPUs and LZCNT on Intel CPUs.
// On intel CPUs with popcnt, lzcnt implements the
// "missing part" of ABM, so we map both to the same
// internal feature.
//
// The `is_x86_feature_detected!("lzcnt")` macro then
// internally maps to Feature::abm.
enable(extended_proc_info_ecx, 5, Feature::lzcnt);
// As Hygon Dhyana originates from AMD technology and shares most of the architecture with
// AMD's family 17h, but with different CPU Vendor ID("HygonGenuine")/Family series
// number(Family 18h).
//
// For CPUID feature bits, Hygon Dhyana(family 18h) share the same definition with AMD
// family 17h.
//
// Related AMD CPUID specification is https://www.amd.com/system/files/TechDocs/25481.pdf.
// Related Hygon kernel patch can be found on
// http://lkml.kernel.org/r/5ce86123a7b9dad925ac583d88d2f921040e859b.1538583282.git.puwen@hygon.cn
if vendor_id == *b"AuthenticAMD" || vendor_id == *b"HygonGenuine" {
// These features are available on AMD arch CPUs:
enable(extended_proc_info_ecx, 6, Feature::sse4a);
enable(extended_proc_info_ecx, 21, Feature::tbm);
}
}
// Unfortunately, some Skylake chips erroneously report support for BMI1 and
// BMI2 without actual support. These chips don't support AVX, and it seems
// that all Intel chips with non-erroneous support BMI do (I didn't check
// other vendors), so we can disable these flags for chips that don't also
// report support for AVX.
//
// It's possible this will pessimize future chips that do support BMI and
// not AVX, but this seems minor compared to a hard crash you get when
// executing an unsupported instruction (to put it another way, it's safe
// for us to under-report CPU features, but not to over-report them). Still,
// to limit any impact this may have in the future, we only do this for
// Intel chips, as it's a bug only present in their chips.
//
// This bug is documented as `SKL052` in the errata section of this document:
// http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/desktop-6th-gen-core-family-spec-update.pdf
if vendor_id == *b"GenuineIntel" && !value.test(Feature::avx as u32) {
value.unset(Feature::bmi1 as u32);
value.unset(Feature::bmi2 as u32);
}
value
}