blob: 89494bfd2a55493d05e122dee91cacc8e0910e05 [file] [log] [blame]
#![allow(bad_style)]
#![allow(unused)]
#![allow(
clippy::shadow_reuse,
clippy::cast_lossless,
clippy::match_same_arms,
clippy::nonminimal_bool,
clippy::print_stdout,
clippy::use_debug,
clippy::eq_op,
clippy::useless_format
)]
use std::collections::{BTreeMap, HashMap};
use serde::Deserialize;
const PRINT_INSTRUCTION_VIOLATIONS: bool = false;
const PRINT_MISSING_LISTS: bool = false;
const PRINT_MISSING_LISTS_MARKDOWN: bool = false;
struct Function {
name: &'static str,
arguments: &'static [&'static Type],
ret: Option<&'static Type>,
target_feature: Option<&'static str>,
instrs: &'static [&'static str],
file: &'static str,
required_const: &'static [usize],
has_test: bool,
}
static F32: Type = Type::PrimFloat(32);
static F64: Type = Type::PrimFloat(64);
static I8: Type = Type::PrimSigned(8);
static I16: Type = Type::PrimSigned(16);
static I32: Type = Type::PrimSigned(32);
static I64: Type = Type::PrimSigned(64);
static U8: Type = Type::PrimUnsigned(8);
static U16: Type = Type::PrimUnsigned(16);
static U32: Type = Type::PrimUnsigned(32);
static U64: Type = Type::PrimUnsigned(64);
static U128: Type = Type::PrimUnsigned(128);
static ORDERING: Type = Type::Ordering;
static M64: Type = Type::M64;
static M128: Type = Type::M128;
static M128BH: Type = Type::M128BH;
static M128I: Type = Type::M128I;
static M128D: Type = Type::M128D;
static M256: Type = Type::M256;
static M256BH: Type = Type::M256BH;
static M256I: Type = Type::M256I;
static M256D: Type = Type::M256D;
static M512: Type = Type::M512;
static M512BH: Type = Type::M512BH;
static M512I: Type = Type::M512I;
static M512D: Type = Type::M512D;
static MMASK8: Type = Type::MMASK8;
static MMASK16: Type = Type::MMASK16;
static MMASK32: Type = Type::MMASK32;
static MMASK64: Type = Type::MMASK64;
static MM_CMPINT_ENUM: Type = Type::MM_CMPINT_ENUM;
static MM_MANTISSA_NORM_ENUM: Type = Type::MM_MANTISSA_NORM_ENUM;
static MM_MANTISSA_SIGN_ENUM: Type = Type::MM_MANTISSA_SIGN_ENUM;
static MM_PERM_ENUM: Type = Type::MM_PERM_ENUM;
static TUPLE: Type = Type::Tuple;
static CPUID: Type = Type::CpuidResult;
static NEVER: Type = Type::Never;
#[derive(Debug)]
enum Type {
PrimFloat(u8),
PrimSigned(u8),
PrimUnsigned(u8),
MutPtr(&'static Type),
ConstPtr(&'static Type),
M64,
M128,
M128BH,
M128D,
M128I,
M256,
M256BH,
M256D,
M256I,
M512,
M512BH,
M512D,
M512I,
MMASK8,
MMASK16,
MMASK32,
MMASK64,
MM_CMPINT_ENUM,
MM_MANTISSA_NORM_ENUM,
MM_MANTISSA_SIGN_ENUM,
MM_PERM_ENUM,
Tuple,
CpuidResult,
Never,
Ordering,
}
stdarch_verify::x86_functions!(static FUNCTIONS);
#[derive(Deserialize)]
struct Data {
#[serde(rename = "intrinsic", default)]
intrinsics: Vec<Intrinsic>,
}
#[derive(Deserialize)]
struct Intrinsic {
#[serde(rename = "return")]
return_: Return,
name: String,
#[serde(rename = "CPUID", default)]
cpuid: Vec<String>,
#[serde(rename = "parameter", default)]
parameters: Vec<Parameter>,
#[serde(default)]
instruction: Vec<Instruction>,
}
#[derive(Deserialize)]
struct Parameter {
#[serde(rename = "type")]
type_: String,
#[serde(default)]
etype: String,
}
#[derive(Deserialize)]
struct Return {
#[serde(rename = "type")]
type_: String,
}
#[derive(Deserialize, Debug)]
struct Instruction {
name: String,
}
macro_rules! bail {
($($t:tt)*) => (return Err(format!($($t)*)))
}
#[test]
fn verify_all_signatures() {
// This XML document was downloaded from Intel's site. To update this you
// can visit intel's intrinsics guide online documentation:
//
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#
//
// Open up the network console and you'll see an xml file was downloaded
// (currently called data-3.4.xml). That's the file we downloaded
// here.
let xml = include_bytes!("../x86-intel.xml");
let xml = &xml[..];
let data: Data = serde_xml_rs::from_reader(xml).expect("failed to deserialize xml");
let mut map = HashMap::new();
for intrinsic in &data.intrinsics {
map.entry(&intrinsic.name[..])
.or_insert_with(Vec::new)
.push(intrinsic);
}
let mut all_valid = true;
'outer: for rust in FUNCTIONS {
if !rust.has_test {
// FIXME: this list should be almost empty
let skip = [
"__readeflags",
"__readeflags",
"__writeeflags",
"__writeeflags",
"_mm_comige_ss",
"_mm_cvt_ss2si",
"_mm_cvtt_ss2si",
"_mm_cvt_si2ss",
"_mm_set_ps1",
"_mm_load_ps1",
"_mm_store_ps1",
"_mm_getcsr",
"_mm_setcsr",
"_MM_GET_EXCEPTION_MASK",
"_MM_GET_EXCEPTION_STATE",
"_MM_GET_FLUSH_ZERO_MODE",
"_MM_GET_ROUNDING_MODE",
"_MM_SET_EXCEPTION_MASK",
"_MM_SET_EXCEPTION_STATE",
"_MM_SET_FLUSH_ZERO_MODE",
"_MM_SET_ROUNDING_MODE",
"_mm_prefetch",
"_mm_undefined_ps",
"_m_pmaxsw",
"_m_pmaxub",
"_m_pminsw",
"_m_pminub",
"_m_pavgb",
"_m_pavgw",
"_m_psadbw",
"_mm_cvt_pi2ps",
"_m_maskmovq",
"_m_pextrw",
"_m_pinsrw",
"_m_pmovmskb",
"_m_pshufw",
"_mm_cvtt_ps2pi",
"_mm_cvt_ps2pi",
"__cpuid_count",
"__cpuid",
"__get_cpuid_max",
"_xsave",
"_xrstor",
"_xsetbv",
"_xgetbv",
"_xsaveopt",
"_xsavec",
"_xsaves",
"_xrstors",
"_mm_bslli_si128",
"_mm_bsrli_si128",
"_mm_undefined_pd",
"_mm_undefined_si128",
"_mm_cvtps_ph",
"_mm256_cvtps_ph",
"_rdtsc",
"__rdtscp",
"_mm256_castps128_ps256",
"_mm256_castpd128_pd256",
"_mm256_castsi128_si256",
"_mm256_undefined_ps",
"_mm256_undefined_pd",
"_mm256_undefined_si256",
"_bextr2_u32",
"_mm_tzcnt_32",
"_m_paddb",
"_m_paddw",
"_m_paddd",
"_m_paddsb",
"_m_paddsw",
"_m_paddusb",
"_m_paddusw",
"_m_psubb",
"_m_psubw",
"_m_psubd",
"_m_psubsb",
"_m_psubsw",
"_m_psubusb",
"_m_psubusw",
"_mm_set_pi16",
"_mm_set_pi32",
"_mm_set_pi8",
"_mm_set1_pi16",
"_mm_set1_pi32",
"_mm_set1_pi8",
"_mm_setr_pi16",
"_mm_setr_pi32",
"_mm_setr_pi8",
"ud2",
"_mm_min_epi8",
"_mm_min_epi32",
"_xbegin",
"_xend",
"_rdrand16_step",
"_rdrand32_step",
"_rdseed16_step",
"_rdseed32_step",
"_fxsave",
"_fxrstor",
"_t1mskc_u64",
"_mm256_shuffle_epi32",
"_mm256_bslli_epi128",
"_mm256_bsrli_epi128",
"_mm256_unpackhi_epi8",
"_mm256_unpacklo_epi8",
"_mm256_unpackhi_epi16",
"_mm256_unpacklo_epi16",
"_mm256_unpackhi_epi32",
"_mm256_unpacklo_epi32",
"_mm256_unpackhi_epi64",
"_mm256_unpacklo_epi64",
"_xsave64",
"_xrstor64",
"_xsaveopt64",
"_xsavec64",
"_xsaves64",
"_xrstors64",
"_mm_cvtsi64x_si128",
"_mm_cvtsi128_si64x",
"_mm_cvtsi64x_sd",
"cmpxchg16b",
"_rdrand64_step",
"_rdseed64_step",
"_bextr2_u64",
"_mm_tzcnt_64",
"_fxsave64",
"_fxrstor64",
"_mm512_undefined_ps",
"_mm512_undefined_pd",
"_mm512_undefined_epi32",
"_mm512_undefined",
];
if !skip.contains(&rust.name) {
println!(
"missing run-time test named `test_{}` for `{}`",
{
let mut id = rust.name;
while id.starts_with('_') {
id = &id[1..];
}
id
},
rust.name
);
all_valid = false;
}
}
match rust.name {
// These aren't defined by Intel but they're defined by what appears
// to be all other compilers. For more information see
// rust-lang/stdarch#307, and otherwise these signatures
// have all been manually verified.
"__readeflags" |
"__writeeflags" |
"__cpuid_count" |
"__cpuid" |
"__get_cpuid_max" |
// Not listed with intel, but manually verified
"cmpxchg16b" |
// The UD2 intrinsic is not defined by Intel, but it was agreed on
// in the RFC Issue 2512:
// https://github.com/rust-lang/rfcs/issues/2512
"ud2"
=> continue,
// Intel requires the mask argument for _mm_shuffle_ps to be an
// unsigned integer, but all other _mm_shuffle_.. intrinsics
// take a signed-integer. This breaks `_MM_SHUFFLE` for
// `_mm_shuffle_ps`:
"_mm_shuffle_ps" => continue,
_ => {}
}
// these are all AMD-specific intrinsics
if let Some(feature) = rust.target_feature {
if feature.contains("sse4a") || feature.contains("tbm") {
continue;
}
}
let intel = match map.remove(rust.name) {
Some(i) => i,
None => panic!("missing intel definition for {}", rust.name),
};
let mut errors = Vec::new();
for intel in intel {
match matches(rust, intel) {
Ok(()) => continue 'outer,
Err(e) => errors.push(e),
}
}
println!("failed to verify `{}`", rust.name);
for error in errors {
println!(" * {}", error);
}
all_valid = false;
}
assert!(all_valid);
let mut missing = BTreeMap::new();
for (name, intel) in &map {
// currently focused mainly on missing SIMD intrinsics, but there's
// definitely some other assorted ones that we're missing.
if !name.starts_with("_mm") {
continue;
}
// we'll get to avx-512 later
// let avx512 = intel.iter().any(|i| {
// i.name.starts_with("_mm512") || i.cpuid.iter().any(|c| {
// c.contains("512")
// })
// });
// if avx512 {
// continue
// }
for intel in intel {
missing
.entry(&intel.cpuid)
.or_insert_with(Vec::new)
.push(intel);
}
}
// generate a bulleted list of missing intrinsics
if PRINT_MISSING_LISTS || PRINT_MISSING_LISTS_MARKDOWN {
for (k, v) in missing {
if PRINT_MISSING_LISTS_MARKDOWN {
println!("\n<details><summary>{:?}</summary><p>\n", k);
for intel in v {
let url = format!(
"https://software.intel.com/sites/landingpage\
/IntrinsicsGuide/#text={}&expand=5236",
intel.name
);
println!(" * [ ] [`{}`]({})", intel.name, url);
}
println!("</p></details>\n");
} else {
println!("\n{:?}\n", k);
for intel in v {
println!("\t{}", intel.name);
}
}
}
}
}
fn matches(rust: &Function, intel: &Intrinsic) -> Result<(), String> {
// Verify that all `#[target_feature]` annotations are correct,
// ensuring that we've actually enabled the right instruction
// set for this intrinsic.
match rust.name {
"_bswap" | "_bswap64" => {}
// These don't actually have a target feature unlike their brethren with
// the `x` inside the name which requires adx
"_addcarry_u32" | "_addcarry_u64" | "_subborrow_u32" | "_subborrow_u64" => {}
"_bittest"
| "_bittestandset"
| "_bittestandreset"
| "_bittestandcomplement"
| "_bittest64"
| "_bittestandset64"
| "_bittestandreset64"
| "_bittestandcomplement64" => {}
_ => {
if intel.cpuid.is_empty() {
bail!("missing cpuid for {}", rust.name);
}
}
}
for cpuid in &intel.cpuid {
// The pause intrinsic is in the SSE2 module, but it is backwards
// compatible with CPUs without SSE2, and it therefore does not need the
// target-feature attribute.
if rust.name == "_mm_pause" {
continue;
}
// this is needed by _xsave and probably some related intrinsics,
// but let's just skip it for now.
if *cpuid == "XSS" {
continue;
}
// these flags on the rdtsc/rtdscp intrinsics we don't test for right
// now, but we may wish to add these one day!
//
// For more info see #308
if *cpuid == "TSC" || *cpuid == "RDTSCP" {
continue;
}
let cpuid = cpuid
.chars()
.flat_map(|c| c.to_lowercase())
.collect::<String>();
// Fix mismatching feature names:
let fixup_cpuid = |cpuid: String| match cpuid.as_ref() {
// The XML file names IFMA as "avx512ifma52", while Rust calls
// it "avx512ifma".
"avx512ifma52" => String::from("avx512ifma"),
// The XML file names BITALG as "avx512_bitalg", while Rust calls
// it "avx512bitalg".
"avx512_bitalg" => String::from("avx512bitalg"),
// The XML file names VBMI as "avx512_vbmi", while Rust calls
// it "avx512vbmi".
"avx512_vbmi" => String::from("avx512vbmi"),
// The XML file names VBMI2 as "avx512_vbmi2", while Rust calls
// it "avx512vbmi2".
"avx512_vbmi2" => String::from("avx512vbmi2"),
// The XML file names VNNI as "avx512_vnni", while Rust calls
// it "avx512vnni".
"avx512_vnni" => String::from("avx512vnni"),
// Some AVX512f intrinsics are also supported by Knight's Corner.
// The XML lists them as avx512f/kncni, but we are solely gating
// them behind avx512f since we don't have a KNC feature yet.
"avx512f/kncni" => String::from("avx512f"),
// See: https://github.com/rust-lang/stdarch/issues/738
// The intrinsics guide calls `f16c` `fp16c` in disagreement with
// Intel's architecture manuals.
"fp16c" => String::from("f16c"),
"avx512_bf16" => String::from("avx512bf16"),
// The XML file names VNNI as "avx512_bf16", while Rust calls
// it "avx512bf16".
_ => cpuid,
};
let fixed_cpuid = fixup_cpuid(cpuid);
let rust_feature = rust
.target_feature
.unwrap_or_else(|| panic!("no target feature listed for {}", rust.name));
if rust_feature.contains(&fixed_cpuid) {
continue;
}
bail!(
"intel cpuid `{}` not in `{}` for {}",
fixed_cpuid,
rust_feature,
rust.name
)
}
if PRINT_INSTRUCTION_VIOLATIONS {
if rust.instrs.is_empty() {
if !intel.instruction.is_empty() {
println!(
"instruction not listed for `{}`, but intel lists {:?}",
rust.name, intel.instruction
);
}
// If intel doesn't list any instructions and we do then don't
// bother trying to look for instructions in intel, we've just got
// some extra assertions on our end.
} else if !intel.instruction.is_empty() {
for instr in rust.instrs {
let asserting = intel.instruction.iter().any(|a| a.name.starts_with(instr));
if !asserting {
println!(
"intel failed to list `{}` as an instruction for `{}`",
instr, rust.name
);
}
}
}
}
// Make sure we've got the right return type.
if let Some(t) = rust.ret {
equate(t, &intel.return_.type_, "", rust.name, false)?;
} else if intel.return_.type_ != "" && intel.return_.type_ != "void" {
bail!(
"{} returns `{}` with intel, void in rust",
rust.name,
intel.return_.type_
)
}
// If there's no arguments on Rust's side intel may list one "void"
// argument, so handle that here.
if rust.arguments.is_empty() && intel.parameters.len() == 1 {
if intel.parameters[0].type_ != "void" {
bail!("rust has 0 arguments, intel has one for")
}
} else {
// Otherwise we want all parameters to be exactly the same
if rust.arguments.len() != intel.parameters.len() {
bail!("wrong number of arguments on {}", rust.name)
}
for (i, (a, b)) in intel.parameters.iter().zip(rust.arguments).enumerate() {
let is_const = rust.required_const.contains(&i);
equate(b, &a.type_, &a.etype, &intel.name, is_const)?;
}
}
let any_i64 = rust
.arguments
.iter()
.cloned()
.chain(rust.ret)
.any(|arg| matches!(*arg, Type::PrimSigned(64) | Type::PrimUnsigned(64)));
let any_i64_exempt = match rust.name {
// These intrinsics have all been manually verified against Clang's
// headers to be available on x86, and the u64 arguments seem
// spurious I guess?
"_xsave" | "_xrstor" | "_xsetbv" | "_xgetbv" | "_xsaveopt" | "_xsavec" | "_xsaves"
| "_xrstors" => true,
// Apparently all of clang/msvc/gcc accept these intrinsics on
// 32-bit, so let's do the same
"_mm_set_epi64x"
| "_mm_set1_epi64x"
| "_mm256_set_epi64x"
| "_mm256_setr_epi64x"
| "_mm256_set1_epi64x"
| "_mm512_set1_epi64"
| "_mm256_mask_set1_epi64"
| "_mm256_maskz_set1_epi64"
| "_mm_mask_set1_epi64"
| "_mm_maskz_set1_epi64"
| "_mm512_set4_epi64"
| "_mm512_setr4_epi64"
| "_mm512_set_epi64"
| "_mm512_setr_epi64"
| "_mm512_reduce_add_epi64"
| "_mm512_mask_reduce_add_epi64"
| "_mm512_reduce_mul_epi64"
| "_mm512_mask_reduce_mul_epi64"
| "_mm512_reduce_max_epi64"
| "_mm512_mask_reduce_max_epi64"
| "_mm512_reduce_max_epu64"
| "_mm512_mask_reduce_max_epu64"
| "_mm512_reduce_min_epi64"
| "_mm512_mask_reduce_min_epi64"
| "_mm512_reduce_min_epu64"
| "_mm512_mask_reduce_min_epu64"
| "_mm512_reduce_and_epi64"
| "_mm512_mask_reduce_and_epi64"
| "_mm512_reduce_or_epi64"
| "_mm512_mask_reduce_or_epi64"
| "_mm512_mask_set1_epi64"
| "_mm512_maskz_set1_epi64"
| "_mm_cvt_roundss_si64"
| "_mm_cvt_roundss_i64"
| "_mm_cvt_roundss_u64"
| "_mm_cvtss_i64"
| "_mm_cvtss_u64"
| "_mm_cvt_roundsd_si64"
| "_mm_cvt_roundsd_i64"
| "_mm_cvt_roundsd_u64"
| "_mm_cvtsd_i64"
| "_mm_cvtsd_u64"
| "_mm_cvt_roundi64_ss"
| "_mm_cvt_roundi64_sd"
| "_mm_cvt_roundsi64_ss"
| "_mm_cvt_roundsi64_sd"
| "_mm_cvt_roundu64_ss"
| "_mm_cvt_roundu64_sd"
| "_mm_cvti64_ss"
| "_mm_cvti64_sd"
| "_mm_cvtt_roundss_si64"
| "_mm_cvtt_roundss_i64"
| "_mm_cvtt_roundss_u64"
| "_mm_cvttss_i64"
| "_mm_cvttss_u64"
| "_mm_cvtt_roundsd_si64"
| "_mm_cvtt_roundsd_i64"
| "_mm_cvtt_roundsd_u64"
| "_mm_cvttsd_i64"
| "_mm_cvttsd_u64"
| "_mm_cvtu64_ss"
| "_mm_cvtu64_sd" => true,
// These return a 64-bit argument but they're assembled from other
// 32-bit registers, so these work on 32-bit just fine. See #308 for
// more info.
"_rdtsc" | "__rdtscp" => true,
_ => false,
};
if any_i64 && !any_i64_exempt && !rust.file.contains("x86_64") {
bail!(
"intrinsic `{}` uses a 64-bit bare type but may be \
available on 32-bit platforms",
rust.name
)
}
Ok(())
}
fn equate(
t: &Type,
intel: &str,
etype: &str,
intrinsic: &str,
is_const: bool,
) -> Result<(), String> {
// Make pointer adjacent to the type: float * foo => float* foo
let mut intel = intel.replace(" *", "*");
// Make mutability modifier adjacent to the pointer:
// float const * foo => float const* foo
intel = intel.replace("const *", "const*");
// Normalize mutability modifier to after the type:
// const float* foo => float const*
if intel.starts_with("const") && intel.ends_with('*') {
intel = intel.replace("const ", "");
intel = intel.replace("*", " const*");
}
if etype == "IMM" {
// The _bittest intrinsics claim to only accept immediates but actually
// accept run-time values as well.
if !is_const && !intrinsic.starts_with("_bittest") {
return bail!("argument required to be const but isn't");
}
} else {
// const int must be an IMM
assert_ne!(intel, "const int");
if is_const {
return bail!("argument is const but shouldn't be");
}
}
match (t, &intel[..]) {
(&Type::PrimFloat(32), "float") => {}
(&Type::PrimFloat(64), "double") => {}
(&Type::PrimSigned(16), "__int16") => {}
(&Type::PrimSigned(16), "short") => {}
(&Type::PrimSigned(32), "__int32") => {}
(&Type::PrimSigned(32), "const int") => {}
(&Type::PrimSigned(32), "int") => {}
(&Type::PrimSigned(64), "__int64") => {}
(&Type::PrimSigned(64), "long long") => {}
(&Type::PrimSigned(8), "__int8") => {}
(&Type::PrimSigned(8), "char") => {}
(&Type::PrimUnsigned(16), "unsigned short") => {}
(&Type::PrimUnsigned(32), "unsigned int") => {}
(&Type::PrimUnsigned(32), "const unsigned int") => {}
(&Type::PrimUnsigned(64), "unsigned __int64") => {}
(&Type::PrimUnsigned(8), "unsigned char") => {}
(&Type::M64, "__m64") => {}
(&Type::M128, "__m128") => {}
(&Type::M128BH, "__m128bh") => {}
(&Type::M128I, "__m128i") => {}
(&Type::M128D, "__m128d") => {}
(&Type::M256, "__m256") => {}
(&Type::M256BH, "__m256bh") => {}
(&Type::M256I, "__m256i") => {}
(&Type::M256D, "__m256d") => {}
(&Type::M512, "__m512") => {}
(&Type::M512BH, "__m512bh") => {}
(&Type::M512I, "__m512i") => {}
(&Type::M512D, "__m512d") => {}
(&Type::MMASK64, "__mmask64") => {}
(&Type::MMASK32, "__mmask32") => {}
(&Type::MMASK16, "__mmask16") => {}
(&Type::MMASK8, "__mmask8") => {}
(&Type::MutPtr(&Type::PrimFloat(32)), "float*") => {}
(&Type::MutPtr(&Type::PrimFloat(64)), "double*") => {}
(&Type::MutPtr(&Type::PrimFloat(32)), "void*") => {}
(&Type::MutPtr(&Type::PrimFloat(64)), "void*") => {}
(&Type::MutPtr(&Type::PrimSigned(32)), "void*") => {}
(&Type::MutPtr(&Type::PrimSigned(16)), "void*") => {}
(&Type::MutPtr(&Type::PrimSigned(8)), "void*") => {}
(&Type::MutPtr(&Type::PrimSigned(32)), "int*") => {}
(&Type::MutPtr(&Type::PrimSigned(32)), "__int32*") => {}
(&Type::MutPtr(&Type::PrimSigned(64)), "void*") => {}
(&Type::MutPtr(&Type::PrimSigned(64)), "__int64*") => {}
(&Type::MutPtr(&Type::PrimSigned(8)), "char*") => {}
(&Type::MutPtr(&Type::PrimUnsigned(16)), "unsigned short*") => {}
(&Type::MutPtr(&Type::PrimUnsigned(32)), "unsigned int*") => {}
(&Type::MutPtr(&Type::PrimUnsigned(64)), "unsigned __int64*") => {}
(&Type::MutPtr(&Type::PrimUnsigned(8)), "void*") => {}
(&Type::MutPtr(&Type::PrimUnsigned(32)), "__mmask32*") => {}
(&Type::MutPtr(&Type::PrimUnsigned(64)), "__mmask64*") => {}
(&Type::MutPtr(&Type::M64), "__m64*") => {}
(&Type::MutPtr(&Type::M128), "__m128*") => {}
(&Type::MutPtr(&Type::M128BH), "__m128bh*") => {}
(&Type::MutPtr(&Type::M128I), "__m128i*") => {}
(&Type::MutPtr(&Type::M128D), "__m128d*") => {}
(&Type::MutPtr(&Type::M256), "__m256*") => {}
(&Type::MutPtr(&Type::M256BH), "__m256bh*") => {}
(&Type::MutPtr(&Type::M256I), "__m256i*") => {}
(&Type::MutPtr(&Type::M256D), "__m256d*") => {}
(&Type::MutPtr(&Type::M512), "__m512*") => {}
(&Type::MutPtr(&Type::M512BH), "__m512bh*") => {}
(&Type::MutPtr(&Type::M512I), "__m512i*") => {}
(&Type::MutPtr(&Type::M512D), "__m512d*") => {}
(&Type::ConstPtr(&Type::PrimFloat(32)), "float const*") => {}
(&Type::ConstPtr(&Type::PrimFloat(64)), "double const*") => {}
(&Type::ConstPtr(&Type::PrimFloat(32)), "void const*") => {}
(&Type::ConstPtr(&Type::PrimFloat(64)), "void const*") => {}
(&Type::ConstPtr(&Type::PrimSigned(32)), "int const*") => {}
(&Type::ConstPtr(&Type::PrimSigned(32)), "__int32 const*") => {}
(&Type::ConstPtr(&Type::PrimSigned(8)), "void const*") => {}
(&Type::ConstPtr(&Type::PrimSigned(16)), "void const*") => {}
(&Type::ConstPtr(&Type::PrimSigned(32)), "void const*") => {}
(&Type::ConstPtr(&Type::PrimSigned(64)), "void const*") => {}
(&Type::ConstPtr(&Type::PrimSigned(64)), "__int64 const*") => {}
(&Type::ConstPtr(&Type::PrimSigned(8)), "char const*") => {}
(&Type::ConstPtr(&Type::PrimUnsigned(16)), "unsigned short const*") => {}
(&Type::ConstPtr(&Type::PrimUnsigned(32)), "unsigned int const*") => {}
(&Type::ConstPtr(&Type::PrimUnsigned(64)), "unsigned __int64 const*") => {}
(&Type::ConstPtr(&Type::PrimUnsigned(8)), "void const*") => {}
(&Type::ConstPtr(&Type::PrimUnsigned(32)), "void const*") => {}
(&Type::ConstPtr(&Type::M64), "__m64 const*") => {}
(&Type::ConstPtr(&Type::M128), "__m128 const*") => {}
(&Type::ConstPtr(&Type::M128BH), "__m128bh const*") => {}
(&Type::ConstPtr(&Type::M128I), "__m128i const*") => {}
(&Type::ConstPtr(&Type::M128D), "__m128d const*") => {}
(&Type::ConstPtr(&Type::M256), "__m256 const*") => {}
(&Type::ConstPtr(&Type::M256BH), "__m256bh const*") => {}
(&Type::ConstPtr(&Type::M256I), "__m256i const*") => {}
(&Type::ConstPtr(&Type::M256D), "__m256d const*") => {}
(&Type::ConstPtr(&Type::M512), "__m512 const*") => {}
(&Type::ConstPtr(&Type::M512BH), "__m512bh const*") => {}
(&Type::ConstPtr(&Type::M512I), "__m512i const*") => {}
(&Type::ConstPtr(&Type::M512D), "__m512d const*") => {}
(&Type::ConstPtr(&Type::PrimUnsigned(32)), "__mmask32*") => {}
(&Type::ConstPtr(&Type::PrimUnsigned(64)), "__mmask64*") => {}
(&Type::MM_CMPINT_ENUM, "_MM_CMPINT_ENUM") => {}
(&Type::MM_MANTISSA_NORM_ENUM, "_MM_MANTISSA_NORM_ENUM") => {}
(&Type::MM_MANTISSA_SIGN_ENUM, "_MM_MANTISSA_SIGN_ENUM") => {}
(&Type::MM_PERM_ENUM, "_MM_PERM_ENUM") => {}
// This is a macro (?) in C which seems to mutate its arguments, but
// that means that we're taking pointers to arguments in rust
// as we're not exposing it as a macro.
(&Type::MutPtr(&Type::M128), "__m128") if intrinsic == "_MM_TRANSPOSE4_PS" => {}
// The _rdtsc intrinsic uses a __int64 return type, but this is a bug in
// the intrinsics guide: https://github.com/rust-lang/stdarch/issues/559
// We have manually fixed the bug by changing the return type to `u64`.
(&Type::PrimUnsigned(64), "__int64") if intrinsic == "_rdtsc" => {}
// The _bittest and _bittest64 intrinsics takes a mutable pointer in the
// intrinsics guide even though it never writes through the pointer:
(&Type::ConstPtr(&Type::PrimSigned(32)), "__int32*") if intrinsic == "_bittest" => {}
(&Type::ConstPtr(&Type::PrimSigned(64)), "__int64*") if intrinsic == "_bittest64" => {}
// The _xrstor, _fxrstor, _xrstor64, _fxrstor64 intrinsics take a
// mutable pointer in the intrinsics guide even though they never write
// through the pointer:
(&Type::ConstPtr(&Type::PrimUnsigned(8)), "void*")
if intrinsic == "_xrstor"
|| intrinsic == "_xrstor64"
|| intrinsic == "_fxrstor"
|| intrinsic == "_fxrstor64" => {}
_ => bail!(
"failed to equate: `{}` and {:?} for {}",
intel,
t,
intrinsic
),
}
Ok(())
}