| /* |
| * AAC encoder main-type prediction |
| * Copyright (C) 2015 Rostislav Pehlivanov |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * AAC encoder main-type prediction |
| * @author Rostislav Pehlivanov ( atomnuker gmail com ) |
| */ |
| |
| #include "aactab.h" |
| #include "aacenc_pred.h" |
| #include "aacenc_utils.h" |
| #include "aacenc_is.h" /* <- Needed for common window distortions */ |
| #include "aacenc_quantization.h" |
| |
| #define RESTORE_PRED(sce, sfb) \ |
| if (sce->ics.prediction_used[sfb]) {\ |
| sce->ics.prediction_used[sfb] = 0;\ |
| sce->band_type[sfb] = sce->band_alt[sfb];\ |
| } |
| |
| static inline float flt16_round(float pf) |
| { |
| union av_intfloat32 tmp; |
| tmp.f = pf; |
| tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U; |
| return tmp.f; |
| } |
| |
| static inline float flt16_even(float pf) |
| { |
| union av_intfloat32 tmp; |
| tmp.f = pf; |
| tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U; |
| return tmp.f; |
| } |
| |
| static inline float flt16_trunc(float pf) |
| { |
| union av_intfloat32 pun; |
| pun.f = pf; |
| pun.i &= 0xFFFF0000U; |
| return pun.f; |
| } |
| |
| static inline void predict(PredictorState *ps, float *coef, float *rcoef, int set) |
| { |
| float k2; |
| const float a = 0.953125; // 61.0 / 64 |
| const float alpha = 0.90625; // 29.0 / 32 |
| const float k1 = ps->k1; |
| const float r0 = ps->r0, r1 = ps->r1; |
| const float cor0 = ps->cor0, cor1 = ps->cor1; |
| const float var0 = ps->var0, var1 = ps->var1; |
| const float e0 = *coef - ps->x_est; |
| const float e1 = e0 - k1 * r0; |
| |
| if (set) |
| *coef = e0; |
| |
| ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1); |
| ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1)); |
| ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0); |
| ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0)); |
| ps->r1 = flt16_trunc(a * (r0 - k1 * e0)); |
| ps->r0 = flt16_trunc(a * e0); |
| |
| /* Prediction for next frame */ |
| ps->k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0; |
| k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0; |
| *rcoef = ps->x_est = flt16_round(ps->k1*ps->r0 + k2*ps->r1); |
| } |
| |
| static inline void reset_predict_state(PredictorState *ps) |
| { |
| ps->r0 = 0.0f; |
| ps->r1 = 0.0f; |
| ps->k1 = 0.0f; |
| ps->cor0 = 0.0f; |
| ps->cor1 = 0.0f; |
| ps->var0 = 1.0f; |
| ps->var1 = 1.0f; |
| ps->x_est = 0.0f; |
| } |
| |
| static inline void reset_all_predictors(PredictorState *ps) |
| { |
| int i; |
| for (i = 0; i < MAX_PREDICTORS; i++) |
| reset_predict_state(&ps[i]); |
| } |
| |
| static inline void reset_predictor_group(SingleChannelElement *sce, int group_num) |
| { |
| int i; |
| PredictorState *ps = sce->predictor_state; |
| for (i = group_num - 1; i < MAX_PREDICTORS; i += 30) |
| reset_predict_state(&ps[i]); |
| } |
| |
| void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce) |
| { |
| int sfb, k; |
| const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); |
| |
| if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { |
| for (sfb = 0; sfb < pmax; sfb++) { |
| for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) { |
| predict(&sce->predictor_state[k], &sce->coeffs[k], &sce->prcoeffs[k], |
| sce->ics.predictor_present && sce->ics.prediction_used[sfb]); |
| } |
| } |
| if (sce->ics.predictor_reset_group) { |
| reset_predictor_group(sce, sce->ics.predictor_reset_group); |
| } |
| } else { |
| reset_all_predictors(sce->predictor_state); |
| } |
| } |
| |
| /* If inc = 0 you can check if this returns 0 to see if you can reset freely */ |
| static inline int update_counters(IndividualChannelStream *ics, int inc) |
| { |
| int i; |
| for (i = 1; i < 31; i++) { |
| ics->predictor_reset_count[i] += inc; |
| if (ics->predictor_reset_count[i] > PRED_RESET_FRAME_MIN) |
| return i; /* Reset this immediately */ |
| } |
| return 0; |
| } |
| |
| void ff_aac_adjust_common_pred(AACEncContext *s, ChannelElement *cpe) |
| { |
| int start, w, w2, g, i, count = 0; |
| SingleChannelElement *sce0 = &cpe->ch[0]; |
| SingleChannelElement *sce1 = &cpe->ch[1]; |
| const int pmax0 = FFMIN(sce0->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); |
| const int pmax1 = FFMIN(sce1->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); |
| const int pmax = FFMIN(pmax0, pmax1); |
| |
| if (!cpe->common_window || |
| sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE || |
| sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) |
| return; |
| |
| for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) { |
| start = 0; |
| for (g = 0; g < sce0->ics.num_swb; g++) { |
| int sfb = w*16+g; |
| int sum = sce0->ics.prediction_used[sfb] + sce1->ics.prediction_used[sfb]; |
| float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f; |
| struct AACISError ph_err1, ph_err2, *erf; |
| if (sfb < PRED_SFB_START || sfb > pmax || sum != 2) { |
| RESTORE_PRED(sce0, sfb); |
| RESTORE_PRED(sce1, sfb); |
| start += sce0->ics.swb_sizes[g]; |
| continue; |
| } |
| for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { |
| for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { |
| float coef0 = sce0->pcoeffs[start+(w+w2)*128+i]; |
| float coef1 = sce1->pcoeffs[start+(w+w2)*128+i]; |
| ener0 += coef0*coef0; |
| ener1 += coef1*coef1; |
| ener01 += (coef0 + coef1)*(coef0 + coef1); |
| } |
| } |
| ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g, |
| ener0, ener1, ener01, 1, -1); |
| ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g, |
| ener0, ener1, ener01, 1, +1); |
| erf = ph_err1.error < ph_err2.error ? &ph_err1 : &ph_err2; |
| if (erf->pass) { |
| sce0->ics.prediction_used[sfb] = 1; |
| sce1->ics.prediction_used[sfb] = 1; |
| count++; |
| } else { |
| RESTORE_PRED(sce0, sfb); |
| RESTORE_PRED(sce1, sfb); |
| } |
| start += sce0->ics.swb_sizes[g]; |
| } |
| } |
| |
| sce1->ics.predictor_present = sce0->ics.predictor_present = !!count; |
| } |
| |
| static void update_pred_resets(SingleChannelElement *sce) |
| { |
| int i, max_group_id_c, max_frame = 0; |
| float avg_frame = 0.0f; |
| IndividualChannelStream *ics = &sce->ics; |
| |
| /* Update the counters and immediately update any frame behind schedule */ |
| if ((ics->predictor_reset_group = update_counters(&sce->ics, 1))) |
| return; |
| |
| for (i = 1; i < 31; i++) { |
| /* Count-based */ |
| if (ics->predictor_reset_count[i] > max_frame) { |
| max_group_id_c = i; |
| max_frame = ics->predictor_reset_count[i]; |
| } |
| avg_frame = (ics->predictor_reset_count[i] + avg_frame)/2; |
| } |
| |
| if (max_frame > PRED_RESET_MIN) { |
| ics->predictor_reset_group = max_group_id_c; |
| } else { |
| ics->predictor_reset_group = 0; |
| } |
| } |
| |
| void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce) |
| { |
| int sfb, i, count = 0, cost_coeffs = 0, cost_pred = 0; |
| const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); |
| float *O34 = &s->scoefs[128*0], *P34 = &s->scoefs[128*1]; |
| float *SENT = &s->scoefs[128*2], *S34 = &s->scoefs[128*3]; |
| float *QERR = &s->scoefs[128*4]; |
| |
| if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
| sce->ics.predictor_present = 0; |
| return; |
| } |
| |
| if (!sce->ics.predictor_initialized) { |
| reset_all_predictors(sce->predictor_state); |
| sce->ics.predictor_initialized = 1; |
| memcpy(sce->prcoeffs, sce->coeffs, 1024*sizeof(float)); |
| for (i = 1; i < 31; i++) |
| sce->ics.predictor_reset_count[i] = i; |
| } |
| |
| update_pred_resets(sce); |
| memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type)); |
| |
| for (sfb = PRED_SFB_START; sfb < pmax; sfb++) { |
| int cost1, cost2, cb_p; |
| float dist1, dist2, dist_spec_err = 0.0f; |
| const int cb_n = sce->zeroes[sfb] ? 0 : sce->band_type[sfb]; |
| const int cb_min = sce->zeroes[sfb] ? 0 : 1; |
| const int cb_max = sce->zeroes[sfb] ? 0 : RESERVED_BT; |
| const int start_coef = sce->ics.swb_offset[sfb]; |
| const int num_coeffs = sce->ics.swb_offset[sfb + 1] - start_coef; |
| const FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[sfb]; |
| |
| if (start_coef + num_coeffs > MAX_PREDICTORS || |
| (s->cur_channel && sce->band_type[sfb] >= INTENSITY_BT2) || |
| sce->band_type[sfb] == NOISE_BT) |
| continue; |
| |
| /* Normal coefficients */ |
| abs_pow34_v(O34, &sce->coeffs[start_coef], num_coeffs); |
| dist1 = quantize_and_encode_band_cost(s, NULL, &sce->coeffs[start_coef], NULL, |
| O34, num_coeffs, sce->sf_idx[sfb], |
| cb_n, s->lambda / band->threshold, INFINITY, &cost1, NULL, 0); |
| cost_coeffs += cost1; |
| |
| /* Encoded coefficients - needed for #bits, band type and quant. error */ |
| for (i = 0; i < num_coeffs; i++) |
| SENT[i] = sce->coeffs[start_coef + i] - sce->prcoeffs[start_coef + i]; |
| abs_pow34_v(S34, SENT, num_coeffs); |
| if (cb_n < RESERVED_BT) |
| cb_p = av_clip(find_min_book(find_max_val(1, num_coeffs, S34), sce->sf_idx[sfb]), cb_min, cb_max); |
| else |
| cb_p = cb_n; |
| quantize_and_encode_band_cost(s, NULL, SENT, QERR, S34, num_coeffs, |
| sce->sf_idx[sfb], cb_p, s->lambda / band->threshold, INFINITY, |
| &cost2, NULL, 0); |
| |
| /* Reconstructed coefficients - needed for distortion measurements */ |
| for (i = 0; i < num_coeffs; i++) |
| sce->prcoeffs[start_coef + i] += QERR[i] != 0.0f ? (sce->prcoeffs[start_coef + i] - QERR[i]) : 0.0f; |
| abs_pow34_v(P34, &sce->prcoeffs[start_coef], num_coeffs); |
| if (cb_n < RESERVED_BT) |
| cb_p = av_clip(find_min_book(find_max_val(1, num_coeffs, P34), sce->sf_idx[sfb]), cb_min, cb_max); |
| else |
| cb_p = cb_n; |
| dist2 = quantize_and_encode_band_cost(s, NULL, &sce->prcoeffs[start_coef], NULL, |
| P34, num_coeffs, sce->sf_idx[sfb], |
| cb_p, s->lambda / band->threshold, INFINITY, NULL, NULL, 0); |
| for (i = 0; i < num_coeffs; i++) |
| dist_spec_err += (O34[i] - P34[i])*(O34[i] - P34[i]); |
| dist_spec_err *= s->lambda / band->threshold; |
| dist2 += dist_spec_err; |
| |
| if (dist2 <= dist1 && cb_p <= cb_n) { |
| cost_pred += cost2; |
| sce->ics.prediction_used[sfb] = 1; |
| sce->band_alt[sfb] = cb_n; |
| sce->band_type[sfb] = cb_p; |
| count++; |
| } else { |
| cost_pred += cost1; |
| sce->band_alt[sfb] = cb_p; |
| } |
| } |
| |
| if (count && cost_coeffs < cost_pred) { |
| count = 0; |
| for (sfb = PRED_SFB_START; sfb < pmax; sfb++) |
| RESTORE_PRED(sce, sfb); |
| memset(&sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used)); |
| } |
| |
| sce->ics.predictor_present = !!count; |
| } |
| |
| /** |
| * Encoder predictors data. |
| */ |
| void ff_aac_encode_main_pred(AACEncContext *s, SingleChannelElement *sce) |
| { |
| int sfb; |
| IndividualChannelStream *ics = &sce->ics; |
| const int pmax = FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); |
| |
| if (s->profile != FF_PROFILE_AAC_MAIN || |
| !ics->predictor_present) |
| return; |
| |
| put_bits(&s->pb, 1, !!ics->predictor_reset_group); |
| if (ics->predictor_reset_group) |
| put_bits(&s->pb, 5, ics->predictor_reset_group); |
| for (sfb = 0; sfb < pmax; sfb++) |
| put_bits(&s->pb, 1, ics->prediction_used[sfb]); |
| } |