| /* |
| * AAC encoder utilities |
| * Copyright (C) 2015 Rostislav Pehlivanov |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * AAC encoder utilities |
| * @author Rostislav Pehlivanov ( atomnuker gmail com ) |
| */ |
| |
| #ifndef AVCODEC_AACENC_UTILS_H |
| #define AVCODEC_AACENC_UTILS_H |
| |
| #include "aac.h" |
| #include "aacenctab.h" |
| #include "aactab.h" |
| |
| #define ROUND_STANDARD 0.4054f |
| #define ROUND_TO_ZERO 0.1054f |
| #define C_QUANT 0.4054f |
| |
| static inline void abs_pow34_v(float *out, const float *in, const int size) |
| { |
| int i; |
| for (i = 0; i < size; i++) { |
| float a = fabsf(in[i]); |
| out[i] = sqrtf(a * sqrtf(a)); |
| } |
| } |
| |
| static inline float pos_pow34(float a) |
| { |
| return sqrtf(a * sqrtf(a)); |
| } |
| |
| /** |
| * Quantize one coefficient. |
| * @return absolute value of the quantized coefficient |
| * @see 3GPP TS26.403 5.6.2 "Scalefactor determination" |
| */ |
| static inline int quant(float coef, const float Q, const float rounding) |
| { |
| float a = coef * Q; |
| return sqrtf(a * sqrtf(a)) + rounding; |
| } |
| |
| static inline void quantize_bands(int *out, const float *in, const float *scaled, |
| int size, float Q34, int is_signed, int maxval, |
| const float rounding) |
| { |
| int i; |
| double qc; |
| for (i = 0; i < size; i++) { |
| qc = scaled[i] * Q34; |
| out[i] = (int)FFMIN(qc + rounding, (double)maxval); |
| if (is_signed && in[i] < 0.0f) { |
| out[i] = -out[i]; |
| } |
| } |
| } |
| |
| static inline float find_max_val(int group_len, int swb_size, const float *scaled) |
| { |
| float maxval = 0.0f; |
| int w2, i; |
| for (w2 = 0; w2 < group_len; w2++) { |
| for (i = 0; i < swb_size; i++) { |
| maxval = FFMAX(maxval, scaled[w2*128+i]); |
| } |
| } |
| return maxval; |
| } |
| |
| static inline int find_min_book(float maxval, int sf) |
| { |
| float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512]; |
| float Q34 = sqrtf(Q * sqrtf(Q)); |
| int qmaxval, cb; |
| qmaxval = maxval * Q34 + C_QUANT; |
| if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb))) |
| cb = 11; |
| else |
| cb = aac_maxval_cb[qmaxval]; |
| return cb; |
| } |
| |
| static inline float find_form_factor(int group_len, int swb_size, float thresh, |
| const float *scaled, float nzslope) { |
| const float iswb_size = 1.0f / swb_size; |
| const float iswb_sizem1 = 1.0f / (swb_size - 1); |
| const float ethresh = thresh; |
| float form = 0.0f, weight = 0.0f; |
| int w2, i; |
| for (w2 = 0; w2 < group_len; w2++) { |
| float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f; |
| float nzl = 0; |
| for (i = 0; i < swb_size; i++) { |
| float s = fabsf(scaled[w2*128+i]); |
| maxval = FFMAX(maxval, s); |
| e += s; |
| e2 += s *= s; |
| /* We really don't want a hard non-zero-line count, since |
| * even below-threshold lines do add up towards band spectral power. |
| * So, fall steeply towards zero, but smoothly |
| */ |
| if (s >= ethresh) { |
| nzl += 1.0f; |
| } else { |
| nzl += powf(s / ethresh, nzslope); |
| } |
| } |
| if (e2 > thresh) { |
| float frm; |
| e *= iswb_size; |
| |
| /** compute variance */ |
| for (i = 0; i < swb_size; i++) { |
| float d = fabsf(scaled[w2*128+i]) - e; |
| var += d*d; |
| } |
| var = sqrtf(var * iswb_sizem1); |
| |
| e2 *= iswb_size; |
| frm = e / FFMIN(e+4*var,maxval); |
| form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl); |
| weight += e2; |
| } |
| } |
| if (weight > 0) { |
| return form / weight; |
| } else { |
| return 1.0f; |
| } |
| } |
| |
| /** Return the minimum scalefactor where the quantized coef does not clip. */ |
| static inline uint8_t coef2minsf(float coef) |
| { |
| return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); |
| } |
| |
| /** Return the maximum scalefactor where the quantized coef is not zero. */ |
| static inline uint8_t coef2maxsf(float coef) |
| { |
| return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); |
| } |
| |
| /* |
| * Returns the closest possible index to an array of float values, given a value. |
| */ |
| static inline int quant_array_idx(const float val, const float *arr, const int num) |
| { |
| int i, index = 0; |
| float quant_min_err = INFINITY; |
| for (i = 0; i < num; i++) { |
| float error = (val - arr[i])*(val - arr[i]); |
| if (error < quant_min_err) { |
| quant_min_err = error; |
| index = i; |
| } |
| } |
| return index; |
| } |
| |
| /** |
| * approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f))) |
| */ |
| static av_always_inline float bval2bmax(float b) |
| { |
| return 0.001f + 0.0035f * (b*b*b) / (15.5f*15.5f*15.5f); |
| } |
| |
| /* |
| * Compute a nextband map to be used with SF delta constraint utilities. |
| * The nextband array should contain 128 elements, and positions that don't |
| * map to valid, nonzero bands of the form w*16+g (with w being the initial |
| * window of the window group, only) are left indetermined. |
| */ |
| static inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband) |
| { |
| unsigned char prevband = 0; |
| int w, g; |
| /** Just a safe default */ |
| for (g = 0; g < 128; g++) |
| nextband[g] = g; |
| |
| /** Now really navigate the nonzero band chain */ |
| for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
| for (g = 0; g < sce->ics.num_swb; g++) { |
| if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT) |
| prevband = nextband[prevband] = w*16+g; |
| } |
| } |
| nextband[prevband] = prevband; /* terminate */ |
| } |
| |
| /* |
| * Updates nextband to reflect a removed band (equivalent to |
| * calling ff_init_nextband_map after marking a band as zero) |
| */ |
| static inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band) |
| { |
| nextband[prevband] = nextband[band]; |
| } |
| |
| /* |
| * Checks whether the specified band could be removed without inducing |
| * scalefactor delta that violates SF delta encoding constraints. |
| * prev_sf has to be the scalefactor of the previous nonzero, nonspecial |
| * band, in encoding order, or negative if there was no such band. |
| */ |
| static inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce, |
| const uint8_t *nextband, int prev_sf, int band) |
| { |
| return prev_sf >= 0 |
| && sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF) |
| && sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF); |
| } |
| |
| /* |
| * Checks whether the specified band's scalefactor could be replaced |
| * with another one without violating SF delta encoding constraints. |
| * prev_sf has to be the scalefactor of the previous nonzero, nonsepcial |
| * band, in encoding order, or negative if there was no such band. |
| */ |
| static inline int ff_sfdelta_can_replace(const SingleChannelElement *sce, |
| const uint8_t *nextband, int prev_sf, int new_sf, int band) |
| { |
| return new_sf >= (prev_sf - SCALE_MAX_DIFF) |
| && new_sf <= (prev_sf + SCALE_MAX_DIFF) |
| && sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF) |
| && sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF); |
| } |
| |
| #define ERROR_IF(cond, ...) \ |
| if (cond) { \ |
| av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \ |
| return AVERROR(EINVAL); \ |
| } |
| |
| #define WARN_IF(cond, ...) \ |
| if (cond) { \ |
| av_log(avctx, AV_LOG_WARNING, __VA_ARGS__); \ |
| } |
| |
| #endif /* AVCODEC_AACENC_UTILS_H */ |