| /* |
| * ALAC audio encoder |
| * Copyright (c) 2008 Jaikrishnan Menon <realityman@gmx.net> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "libavutil/opt.h" |
| |
| #include "avcodec.h" |
| #include "put_bits.h" |
| #include "internal.h" |
| #include "lpc.h" |
| #include "mathops.h" |
| #include "alac_data.h" |
| |
| #define DEFAULT_FRAME_SIZE 4096 |
| #define ALAC_EXTRADATA_SIZE 36 |
| #define ALAC_FRAME_HEADER_SIZE 55 |
| #define ALAC_FRAME_FOOTER_SIZE 3 |
| |
| #define ALAC_ESCAPE_CODE 0x1FF |
| #define ALAC_MAX_LPC_ORDER 30 |
| #define DEFAULT_MAX_PRED_ORDER 6 |
| #define DEFAULT_MIN_PRED_ORDER 4 |
| #define ALAC_MAX_LPC_PRECISION 9 |
| #define ALAC_MAX_LPC_SHIFT 9 |
| |
| #define ALAC_CHMODE_LEFT_RIGHT 0 |
| #define ALAC_CHMODE_LEFT_SIDE 1 |
| #define ALAC_CHMODE_RIGHT_SIDE 2 |
| #define ALAC_CHMODE_MID_SIDE 3 |
| |
| typedef struct RiceContext { |
| int history_mult; |
| int initial_history; |
| int k_modifier; |
| int rice_modifier; |
| } RiceContext; |
| |
| typedef struct AlacLPCContext { |
| int lpc_order; |
| int lpc_coeff[ALAC_MAX_LPC_ORDER+1]; |
| int lpc_quant; |
| } AlacLPCContext; |
| |
| typedef struct AlacEncodeContext { |
| const AVClass *class; |
| AVCodecContext *avctx; |
| int frame_size; /**< current frame size */ |
| int verbatim; /**< current frame verbatim mode flag */ |
| int compression_level; |
| int min_prediction_order; |
| int max_prediction_order; |
| int max_coded_frame_size; |
| int write_sample_size; |
| int extra_bits; |
| int32_t sample_buf[2][DEFAULT_FRAME_SIZE]; |
| int32_t predictor_buf[2][DEFAULT_FRAME_SIZE]; |
| int interlacing_shift; |
| int interlacing_leftweight; |
| PutBitContext pbctx; |
| RiceContext rc; |
| AlacLPCContext lpc[2]; |
| LPCContext lpc_ctx; |
| } AlacEncodeContext; |
| |
| |
| static void init_sample_buffers(AlacEncodeContext *s, int channels, |
| uint8_t const *samples[2]) |
| { |
| int ch, i; |
| int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 - |
| s->avctx->bits_per_raw_sample; |
| |
| #define COPY_SAMPLES(type) do { \ |
| for (ch = 0; ch < channels; ch++) { \ |
| int32_t *bptr = s->sample_buf[ch]; \ |
| const type *sptr = (const type *)samples[ch]; \ |
| for (i = 0; i < s->frame_size; i++) \ |
| bptr[i] = sptr[i] >> shift; \ |
| } \ |
| } while (0) |
| |
| if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P) |
| COPY_SAMPLES(int32_t); |
| else |
| COPY_SAMPLES(int16_t); |
| } |
| |
| static void encode_scalar(AlacEncodeContext *s, int x, |
| int k, int write_sample_size) |
| { |
| int divisor, q, r; |
| |
| k = FFMIN(k, s->rc.k_modifier); |
| divisor = (1<<k) - 1; |
| q = x / divisor; |
| r = x % divisor; |
| |
| if (q > 8) { |
| // write escape code and sample value directly |
| put_bits(&s->pbctx, 9, ALAC_ESCAPE_CODE); |
| put_bits(&s->pbctx, write_sample_size, x); |
| } else { |
| if (q) |
| put_bits(&s->pbctx, q, (1<<q) - 1); |
| put_bits(&s->pbctx, 1, 0); |
| |
| if (k != 1) { |
| if (r > 0) |
| put_bits(&s->pbctx, k, r+1); |
| else |
| put_bits(&s->pbctx, k-1, 0); |
| } |
| } |
| } |
| |
| static void write_element_header(AlacEncodeContext *s, |
| enum AlacRawDataBlockType element, |
| int instance) |
| { |
| int encode_fs = 0; |
| |
| if (s->frame_size < DEFAULT_FRAME_SIZE) |
| encode_fs = 1; |
| |
| put_bits(&s->pbctx, 3, element); // element type |
| put_bits(&s->pbctx, 4, instance); // element instance |
| put_bits(&s->pbctx, 12, 0); // unused header bits |
| put_bits(&s->pbctx, 1, encode_fs); // Sample count is in the header |
| put_bits(&s->pbctx, 2, s->extra_bits >> 3); // Extra bytes (for 24-bit) |
| put_bits(&s->pbctx, 1, s->verbatim); // Audio block is verbatim |
| if (encode_fs) |
| put_bits32(&s->pbctx, s->frame_size); // No. of samples in the frame |
| } |
| |
| static void calc_predictor_params(AlacEncodeContext *s, int ch) |
| { |
| int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER]; |
| int shift[MAX_LPC_ORDER]; |
| int opt_order; |
| |
| if (s->compression_level == 1) { |
| s->lpc[ch].lpc_order = 6; |
| s->lpc[ch].lpc_quant = 6; |
| s->lpc[ch].lpc_coeff[0] = 160; |
| s->lpc[ch].lpc_coeff[1] = -190; |
| s->lpc[ch].lpc_coeff[2] = 170; |
| s->lpc[ch].lpc_coeff[3] = -130; |
| s->lpc[ch].lpc_coeff[4] = 80; |
| s->lpc[ch].lpc_coeff[5] = -25; |
| } else { |
| opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, s->sample_buf[ch], |
| s->frame_size, |
| s->min_prediction_order, |
| s->max_prediction_order, |
| ALAC_MAX_LPC_PRECISION, coefs, shift, |
| FF_LPC_TYPE_LEVINSON, 0, |
| ORDER_METHOD_EST, ALAC_MAX_LPC_SHIFT, 1); |
| |
| s->lpc[ch].lpc_order = opt_order; |
| s->lpc[ch].lpc_quant = shift[opt_order-1]; |
| memcpy(s->lpc[ch].lpc_coeff, coefs[opt_order-1], opt_order*sizeof(int)); |
| } |
| } |
| |
| static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n) |
| { |
| int i, best; |
| int32_t lt, rt; |
| uint64_t sum[4]; |
| uint64_t score[4]; |
| |
| /* calculate sum of 2nd order residual for each channel */ |
| sum[0] = sum[1] = sum[2] = sum[3] = 0; |
| for (i = 2; i < n; i++) { |
| lt = left_ch[i] - 2 * left_ch[i - 1] + left_ch[i - 2]; |
| rt = right_ch[i] - 2 * right_ch[i - 1] + right_ch[i - 2]; |
| sum[2] += FFABS((lt + rt) >> 1); |
| sum[3] += FFABS(lt - rt); |
| sum[0] += FFABS(lt); |
| sum[1] += FFABS(rt); |
| } |
| |
| /* calculate score for each mode */ |
| score[0] = sum[0] + sum[1]; |
| score[1] = sum[0] + sum[3]; |
| score[2] = sum[1] + sum[3]; |
| score[3] = sum[2] + sum[3]; |
| |
| /* return mode with lowest score */ |
| best = 0; |
| for (i = 1; i < 4; i++) { |
| if (score[i] < score[best]) |
| best = i; |
| } |
| return best; |
| } |
| |
| static void alac_stereo_decorrelation(AlacEncodeContext *s) |
| { |
| int32_t *left = s->sample_buf[0], *right = s->sample_buf[1]; |
| int i, mode, n = s->frame_size; |
| int32_t tmp; |
| |
| mode = estimate_stereo_mode(left, right, n); |
| |
| switch (mode) { |
| case ALAC_CHMODE_LEFT_RIGHT: |
| s->interlacing_leftweight = 0; |
| s->interlacing_shift = 0; |
| break; |
| case ALAC_CHMODE_LEFT_SIDE: |
| for (i = 0; i < n; i++) |
| right[i] = left[i] - right[i]; |
| s->interlacing_leftweight = 1; |
| s->interlacing_shift = 0; |
| break; |
| case ALAC_CHMODE_RIGHT_SIDE: |
| for (i = 0; i < n; i++) { |
| tmp = right[i]; |
| right[i] = left[i] - right[i]; |
| left[i] = tmp + (right[i] >> 31); |
| } |
| s->interlacing_leftweight = 1; |
| s->interlacing_shift = 31; |
| break; |
| default: |
| for (i = 0; i < n; i++) { |
| tmp = left[i]; |
| left[i] = (tmp + right[i]) >> 1; |
| right[i] = tmp - right[i]; |
| } |
| s->interlacing_leftweight = 1; |
| s->interlacing_shift = 1; |
| break; |
| } |
| } |
| |
| static void alac_linear_predictor(AlacEncodeContext *s, int ch) |
| { |
| int i; |
| AlacLPCContext lpc = s->lpc[ch]; |
| int32_t *residual = s->predictor_buf[ch]; |
| |
| if (lpc.lpc_order == 31) { |
| residual[0] = s->sample_buf[ch][0]; |
| |
| for (i = 1; i < s->frame_size; i++) { |
| residual[i] = s->sample_buf[ch][i ] - |
| s->sample_buf[ch][i - 1]; |
| } |
| |
| return; |
| } |
| |
| // generalised linear predictor |
| |
| if (lpc.lpc_order > 0) { |
| int32_t *samples = s->sample_buf[ch]; |
| |
| // generate warm-up samples |
| residual[0] = samples[0]; |
| for (i = 1; i <= lpc.lpc_order; i++) |
| residual[i] = sign_extend(samples[i] - samples[i-1], s->write_sample_size); |
| |
| // perform lpc on remaining samples |
| for (i = lpc.lpc_order + 1; i < s->frame_size; i++) { |
| int sum = 1 << (lpc.lpc_quant - 1), res_val, j; |
| |
| for (j = 0; j < lpc.lpc_order; j++) { |
| sum += (samples[lpc.lpc_order-j] - samples[0]) * |
| lpc.lpc_coeff[j]; |
| } |
| |
| sum >>= lpc.lpc_quant; |
| sum += samples[0]; |
| residual[i] = sign_extend(samples[lpc.lpc_order+1] - sum, |
| s->write_sample_size); |
| res_val = residual[i]; |
| |
| if (res_val) { |
| int index = lpc.lpc_order - 1; |
| int neg = (res_val < 0); |
| |
| while (index >= 0 && (neg ? (res_val < 0) : (res_val > 0))) { |
| int val = samples[0] - samples[lpc.lpc_order - index]; |
| int sign = (val ? FFSIGN(val) : 0); |
| |
| if (neg) |
| sign *= -1; |
| |
| lpc.lpc_coeff[index] -= sign; |
| val *= sign; |
| res_val -= (val >> lpc.lpc_quant) * (lpc.lpc_order - index); |
| index--; |
| } |
| } |
| samples++; |
| } |
| } |
| } |
| |
| static void alac_entropy_coder(AlacEncodeContext *s, int ch) |
| { |
| unsigned int history = s->rc.initial_history; |
| int sign_modifier = 0, i, k; |
| int32_t *samples = s->predictor_buf[ch]; |
| |
| for (i = 0; i < s->frame_size;) { |
| int x; |
| |
| k = av_log2((history >> 9) + 3); |
| |
| x = -2 * (*samples) -1; |
| x ^= x >> 31; |
| |
| samples++; |
| i++; |
| |
| encode_scalar(s, x - sign_modifier, k, s->write_sample_size); |
| |
| history += x * s->rc.history_mult - |
| ((history * s->rc.history_mult) >> 9); |
| |
| sign_modifier = 0; |
| if (x > 0xFFFF) |
| history = 0xFFFF; |
| |
| if (history < 128 && i < s->frame_size) { |
| unsigned int block_size = 0; |
| |
| k = 7 - av_log2(history) + ((history + 16) >> 6); |
| |
| while (*samples == 0 && i < s->frame_size) { |
| samples++; |
| i++; |
| block_size++; |
| } |
| encode_scalar(s, block_size, k, 16); |
| sign_modifier = (block_size <= 0xFFFF); |
| history = 0; |
| } |
| |
| } |
| } |
| |
| static void write_element(AlacEncodeContext *s, |
| enum AlacRawDataBlockType element, int instance, |
| const uint8_t *samples0, const uint8_t *samples1) |
| { |
| uint8_t const *samples[2] = { samples0, samples1 }; |
| int i, j, channels; |
| int prediction_type = 0; |
| PutBitContext *pb = &s->pbctx; |
| |
| channels = element == TYPE_CPE ? 2 : 1; |
| |
| if (s->verbatim) { |
| write_element_header(s, element, instance); |
| /* samples are channel-interleaved in verbatim mode */ |
| if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P) { |
| int shift = 32 - s->avctx->bits_per_raw_sample; |
| int32_t const *samples_s32[2] = { (const int32_t *)samples0, |
| (const int32_t *)samples1 }; |
| for (i = 0; i < s->frame_size; i++) |
| for (j = 0; j < channels; j++) |
| put_sbits(pb, s->avctx->bits_per_raw_sample, |
| samples_s32[j][i] >> shift); |
| } else { |
| int16_t const *samples_s16[2] = { (const int16_t *)samples0, |
| (const int16_t *)samples1 }; |
| for (i = 0; i < s->frame_size; i++) |
| for (j = 0; j < channels; j++) |
| put_sbits(pb, s->avctx->bits_per_raw_sample, |
| samples_s16[j][i]); |
| } |
| } else { |
| s->write_sample_size = s->avctx->bits_per_raw_sample - s->extra_bits + |
| channels - 1; |
| |
| init_sample_buffers(s, channels, samples); |
| write_element_header(s, element, instance); |
| |
| // extract extra bits if needed |
| if (s->extra_bits) { |
| uint32_t mask = (1 << s->extra_bits) - 1; |
| for (j = 0; j < channels; j++) { |
| int32_t *extra = s->predictor_buf[j]; |
| int32_t *smp = s->sample_buf[j]; |
| for (i = 0; i < s->frame_size; i++) { |
| extra[i] = smp[i] & mask; |
| smp[i] >>= s->extra_bits; |
| } |
| } |
| } |
| |
| if (channels == 2) |
| alac_stereo_decorrelation(s); |
| else |
| s->interlacing_shift = s->interlacing_leftweight = 0; |
| put_bits(pb, 8, s->interlacing_shift); |
| put_bits(pb, 8, s->interlacing_leftweight); |
| |
| for (i = 0; i < channels; i++) { |
| calc_predictor_params(s, i); |
| |
| put_bits(pb, 4, prediction_type); |
| put_bits(pb, 4, s->lpc[i].lpc_quant); |
| |
| put_bits(pb, 3, s->rc.rice_modifier); |
| put_bits(pb, 5, s->lpc[i].lpc_order); |
| // predictor coeff. table |
| for (j = 0; j < s->lpc[i].lpc_order; j++) |
| put_sbits(pb, 16, s->lpc[i].lpc_coeff[j]); |
| } |
| |
| // write extra bits if needed |
| if (s->extra_bits) { |
| for (i = 0; i < s->frame_size; i++) { |
| for (j = 0; j < channels; j++) { |
| put_bits(pb, s->extra_bits, s->predictor_buf[j][i]); |
| } |
| } |
| } |
| |
| // apply lpc and entropy coding to audio samples |
| for (i = 0; i < channels; i++) { |
| alac_linear_predictor(s, i); |
| |
| // TODO: determine when this will actually help. for now it's not used. |
| if (prediction_type == 15) { |
| // 2nd pass 1st order filter |
| int32_t *residual = s->predictor_buf[i]; |
| for (j = s->frame_size - 1; j > 0; j--) |
| residual[j] -= residual[j - 1]; |
| } |
| alac_entropy_coder(s, i); |
| } |
| } |
| } |
| |
| static int write_frame(AlacEncodeContext *s, AVPacket *avpkt, |
| uint8_t * const *samples) |
| { |
| PutBitContext *pb = &s->pbctx; |
| const enum AlacRawDataBlockType *ch_elements = ff_alac_channel_elements[s->avctx->channels - 1]; |
| const uint8_t *ch_map = ff_alac_channel_layout_offsets[s->avctx->channels - 1]; |
| int ch, element, sce, cpe; |
| |
| init_put_bits(pb, avpkt->data, avpkt->size); |
| |
| ch = element = sce = cpe = 0; |
| while (ch < s->avctx->channels) { |
| if (ch_elements[element] == TYPE_CPE) { |
| write_element(s, TYPE_CPE, cpe, samples[ch_map[ch]], |
| samples[ch_map[ch + 1]]); |
| cpe++; |
| ch += 2; |
| } else { |
| write_element(s, TYPE_SCE, sce, samples[ch_map[ch]], NULL); |
| sce++; |
| ch++; |
| } |
| element++; |
| } |
| |
| put_bits(pb, 3, TYPE_END); |
| flush_put_bits(pb); |
| |
| return put_bits_count(pb) >> 3; |
| } |
| |
| static av_always_inline int get_max_frame_size(int frame_size, int ch, int bps) |
| { |
| int header_bits = 23 + 32 * (frame_size < DEFAULT_FRAME_SIZE); |
| return FFALIGN(header_bits + bps * ch * frame_size + 3, 8) / 8; |
| } |
| |
| static av_cold int alac_encode_close(AVCodecContext *avctx) |
| { |
| AlacEncodeContext *s = avctx->priv_data; |
| ff_lpc_end(&s->lpc_ctx); |
| av_freep(&avctx->extradata); |
| avctx->extradata_size = 0; |
| return 0; |
| } |
| |
| static av_cold int alac_encode_init(AVCodecContext *avctx) |
| { |
| AlacEncodeContext *s = avctx->priv_data; |
| int ret; |
| uint8_t *alac_extradata; |
| |
| avctx->frame_size = s->frame_size = DEFAULT_FRAME_SIZE; |
| |
| if (avctx->sample_fmt == AV_SAMPLE_FMT_S32P) { |
| if (avctx->bits_per_raw_sample != 24) |
| av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n"); |
| avctx->bits_per_raw_sample = 24; |
| } else { |
| avctx->bits_per_raw_sample = 16; |
| s->extra_bits = 0; |
| } |
| |
| // Set default compression level |
| if (avctx->compression_level == FF_COMPRESSION_DEFAULT) |
| s->compression_level = 2; |
| else |
| s->compression_level = av_clip(avctx->compression_level, 0, 2); |
| |
| // Initialize default Rice parameters |
| s->rc.history_mult = 40; |
| s->rc.initial_history = 10; |
| s->rc.k_modifier = 14; |
| s->rc.rice_modifier = 4; |
| |
| s->max_coded_frame_size = get_max_frame_size(avctx->frame_size, |
| avctx->channels, |
| avctx->bits_per_raw_sample); |
| |
| avctx->extradata = av_mallocz(ALAC_EXTRADATA_SIZE + AV_INPUT_BUFFER_PADDING_SIZE); |
| if (!avctx->extradata) { |
| ret = AVERROR(ENOMEM); |
| goto error; |
| } |
| avctx->extradata_size = ALAC_EXTRADATA_SIZE; |
| |
| alac_extradata = avctx->extradata; |
| AV_WB32(alac_extradata, ALAC_EXTRADATA_SIZE); |
| AV_WB32(alac_extradata+4, MKBETAG('a','l','a','c')); |
| AV_WB32(alac_extradata+12, avctx->frame_size); |
| AV_WB8 (alac_extradata+17, avctx->bits_per_raw_sample); |
| AV_WB8 (alac_extradata+21, avctx->channels); |
| AV_WB32(alac_extradata+24, s->max_coded_frame_size); |
| AV_WB32(alac_extradata+28, |
| avctx->sample_rate * avctx->channels * avctx->bits_per_raw_sample); // average bitrate |
| AV_WB32(alac_extradata+32, avctx->sample_rate); |
| |
| // Set relevant extradata fields |
| if (s->compression_level > 0) { |
| AV_WB8(alac_extradata+18, s->rc.history_mult); |
| AV_WB8(alac_extradata+19, s->rc.initial_history); |
| AV_WB8(alac_extradata+20, s->rc.k_modifier); |
| } |
| |
| #if FF_API_PRIVATE_OPT |
| FF_DISABLE_DEPRECATION_WARNINGS |
| if (avctx->min_prediction_order >= 0) { |
| if (avctx->min_prediction_order < MIN_LPC_ORDER || |
| avctx->min_prediction_order > ALAC_MAX_LPC_ORDER) { |
| av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n", |
| avctx->min_prediction_order); |
| ret = AVERROR(EINVAL); |
| goto error; |
| } |
| |
| s->min_prediction_order = avctx->min_prediction_order; |
| } |
| |
| if (avctx->max_prediction_order >= 0) { |
| if (avctx->max_prediction_order < MIN_LPC_ORDER || |
| avctx->max_prediction_order > ALAC_MAX_LPC_ORDER) { |
| av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n", |
| avctx->max_prediction_order); |
| ret = AVERROR(EINVAL); |
| goto error; |
| } |
| |
| s->max_prediction_order = avctx->max_prediction_order; |
| } |
| FF_ENABLE_DEPRECATION_WARNINGS |
| #endif |
| |
| if (s->max_prediction_order < s->min_prediction_order) { |
| av_log(avctx, AV_LOG_ERROR, |
| "invalid prediction orders: min=%d max=%d\n", |
| s->min_prediction_order, s->max_prediction_order); |
| ret = AVERROR(EINVAL); |
| goto error; |
| } |
| |
| s->avctx = avctx; |
| |
| if ((ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size, |
| s->max_prediction_order, |
| FF_LPC_TYPE_LEVINSON)) < 0) { |
| goto error; |
| } |
| |
| return 0; |
| error: |
| alac_encode_close(avctx); |
| return ret; |
| } |
| |
| static int alac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, |
| const AVFrame *frame, int *got_packet_ptr) |
| { |
| AlacEncodeContext *s = avctx->priv_data; |
| int out_bytes, max_frame_size, ret; |
| |
| s->frame_size = frame->nb_samples; |
| |
| if (frame->nb_samples < DEFAULT_FRAME_SIZE) |
| max_frame_size = get_max_frame_size(s->frame_size, avctx->channels, |
| avctx->bits_per_raw_sample); |
| else |
| max_frame_size = s->max_coded_frame_size; |
| |
| if ((ret = ff_alloc_packet2(avctx, avpkt, 2 * max_frame_size, 0)) < 0) |
| return ret; |
| |
| /* use verbatim mode for compression_level 0 */ |
| if (s->compression_level) { |
| s->verbatim = 0; |
| s->extra_bits = avctx->bits_per_raw_sample - 16; |
| } else { |
| s->verbatim = 1; |
| s->extra_bits = 0; |
| } |
| |
| out_bytes = write_frame(s, avpkt, frame->extended_data); |
| |
| if (out_bytes > max_frame_size) { |
| /* frame too large. use verbatim mode */ |
| s->verbatim = 1; |
| s->extra_bits = 0; |
| out_bytes = write_frame(s, avpkt, frame->extended_data); |
| } |
| |
| avpkt->size = out_bytes; |
| *got_packet_ptr = 1; |
| return 0; |
| } |
| |
| #define OFFSET(x) offsetof(AlacEncodeContext, x) |
| #define AE AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_ENCODING_PARAM |
| static const AVOption options[] = { |
| { "min_prediction_order", NULL, OFFSET(min_prediction_order), AV_OPT_TYPE_INT, { .i64 = DEFAULT_MIN_PRED_ORDER }, MIN_LPC_ORDER, ALAC_MAX_LPC_ORDER, AE }, |
| { "max_prediction_order", NULL, OFFSET(max_prediction_order), AV_OPT_TYPE_INT, { .i64 = DEFAULT_MAX_PRED_ORDER }, MIN_LPC_ORDER, ALAC_MAX_LPC_ORDER, AE }, |
| |
| { NULL }, |
| }; |
| |
| static const AVClass alacenc_class = { |
| .class_name = "alacenc", |
| .item_name = av_default_item_name, |
| .option = options, |
| .version = LIBAVUTIL_VERSION_INT, |
| }; |
| |
| AVCodec ff_alac_encoder = { |
| .name = "alac", |
| .long_name = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_ALAC, |
| .priv_data_size = sizeof(AlacEncodeContext), |
| .priv_class = &alacenc_class, |
| .init = alac_encode_init, |
| .encode2 = alac_encode_frame, |
| .close = alac_encode_close, |
| .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME, |
| .channel_layouts = ff_alac_channel_layouts, |
| .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32P, |
| AV_SAMPLE_FMT_S16P, |
| AV_SAMPLE_FMT_NONE }, |
| }; |