| /* |
| * Copyright (C) 2016 foo86 |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "dcadec.h" |
| #include "dcadata.h" |
| #include "dcahuff.h" |
| #include "dcamath.h" |
| #include "dca_syncwords.h" |
| |
| #if ARCH_ARM |
| #include "arm/dca.h" |
| #endif |
| |
| enum HeaderType { |
| HEADER_CORE, |
| HEADER_XCH, |
| HEADER_XXCH |
| }; |
| |
| enum AudioMode { |
| AMODE_MONO, // Mode 0: A (mono) |
| AMODE_MONO_DUAL, // Mode 1: A + B (dual mono) |
| AMODE_STEREO, // Mode 2: L + R (stereo) |
| AMODE_STEREO_SUMDIFF, // Mode 3: (L+R) + (L-R) (sum-diff) |
| AMODE_STEREO_TOTAL, // Mode 4: LT + RT (left and right total) |
| AMODE_3F, // Mode 5: C + L + R |
| AMODE_2F1R, // Mode 6: L + R + S |
| AMODE_3F1R, // Mode 7: C + L + R + S |
| AMODE_2F2R, // Mode 8: L + R + SL + SR |
| AMODE_3F2R, // Mode 9: C + L + R + SL + SR |
| |
| AMODE_COUNT |
| }; |
| |
| enum ExtAudioType { |
| EXT_AUDIO_XCH = 0, |
| EXT_AUDIO_X96 = 2, |
| EXT_AUDIO_XXCH = 6 |
| }; |
| |
| enum LFEFlag { |
| LFE_FLAG_NONE, |
| LFE_FLAG_128, |
| LFE_FLAG_64, |
| LFE_FLAG_INVALID |
| }; |
| |
| static const int8_t prm_ch_to_spkr_map[AMODE_COUNT][5] = { |
| { DCA_SPEAKER_C, -1, -1, -1, -1 }, |
| { DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 }, |
| { DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 }, |
| { DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 }, |
| { DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 }, |
| { DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R , -1, -1 }, |
| { DCA_SPEAKER_L, DCA_SPEAKER_R, DCA_SPEAKER_Cs, -1, -1 }, |
| { DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R , DCA_SPEAKER_Cs, -1 }, |
| { DCA_SPEAKER_L, DCA_SPEAKER_R, DCA_SPEAKER_Ls, DCA_SPEAKER_Rs, -1 }, |
| { DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R, DCA_SPEAKER_Ls, DCA_SPEAKER_Rs } |
| }; |
| |
| static const uint8_t audio_mode_ch_mask[AMODE_COUNT] = { |
| DCA_SPEAKER_LAYOUT_MONO, |
| DCA_SPEAKER_LAYOUT_STEREO, |
| DCA_SPEAKER_LAYOUT_STEREO, |
| DCA_SPEAKER_LAYOUT_STEREO, |
| DCA_SPEAKER_LAYOUT_STEREO, |
| DCA_SPEAKER_LAYOUT_3_0, |
| DCA_SPEAKER_LAYOUT_2_1, |
| DCA_SPEAKER_LAYOUT_3_1, |
| DCA_SPEAKER_LAYOUT_2_2, |
| DCA_SPEAKER_LAYOUT_5POINT0 |
| }; |
| |
| static const uint8_t block_code_nbits[7] = { |
| 7, 10, 12, 13, 15, 17, 19 |
| }; |
| |
| static const uint8_t quant_index_sel_nbits[DCA_CODE_BOOKS] = { |
| 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 |
| }; |
| |
| static const uint8_t quant_index_group_size[DCA_CODE_BOOKS] = { |
| 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 |
| }; |
| |
| typedef struct DCAVLC { |
| int offset; ///< Code values offset |
| int max_depth; ///< Parameter for get_vlc2() |
| VLC vlc[7]; ///< Actual codes |
| } DCAVLC; |
| |
| static DCAVLC vlc_bit_allocation; |
| static DCAVLC vlc_transition_mode; |
| static DCAVLC vlc_scale_factor; |
| static DCAVLC vlc_quant_index[DCA_CODE_BOOKS]; |
| |
| static av_cold void dca_init_vlcs(void) |
| { |
| static VLC_TYPE dca_table[23622][2]; |
| static int vlcs_initialized = 0; |
| int i, j, k; |
| |
| if (vlcs_initialized) |
| return; |
| |
| #define DCA_INIT_VLC(vlc, a, b, c, d) \ |
| do { \ |
| vlc.table = &dca_table[ff_dca_vlc_offs[k]]; \ |
| vlc.table_allocated = ff_dca_vlc_offs[k + 1] - ff_dca_vlc_offs[k]; \ |
| init_vlc(&vlc, a, b, c, 1, 1, d, 2, 2, INIT_VLC_USE_NEW_STATIC); \ |
| } while (0) |
| |
| vlc_bit_allocation.offset = 1; |
| vlc_bit_allocation.max_depth = 2; |
| for (i = 0, k = 0; i < 5; i++, k++) |
| DCA_INIT_VLC(vlc_bit_allocation.vlc[i], bitalloc_12_vlc_bits[i], 12, |
| bitalloc_12_bits[i], bitalloc_12_codes[i]); |
| |
| vlc_scale_factor.offset = -64; |
| vlc_scale_factor.max_depth = 2; |
| for (i = 0; i < 5; i++, k++) |
| DCA_INIT_VLC(vlc_scale_factor.vlc[i], SCALES_VLC_BITS, 129, |
| scales_bits[i], scales_codes[i]); |
| |
| vlc_transition_mode.offset = 0; |
| vlc_transition_mode.max_depth = 1; |
| for (i = 0; i < 4; i++, k++) |
| DCA_INIT_VLC(vlc_transition_mode.vlc[i], tmode_vlc_bits[i], 4, |
| tmode_bits[i], tmode_codes[i]); |
| |
| for (i = 0; i < DCA_CODE_BOOKS; i++) { |
| vlc_quant_index[i].offset = bitalloc_offsets[i]; |
| vlc_quant_index[i].max_depth = 1 + (i > 4); |
| for (j = 0; j < quant_index_group_size[i]; j++, k++) |
| DCA_INIT_VLC(vlc_quant_index[i].vlc[j], bitalloc_maxbits[i][j], |
| bitalloc_sizes[i], bitalloc_bits[i][j], bitalloc_codes[i][j]); |
| } |
| |
| vlcs_initialized = 1; |
| } |
| |
| static int dca_get_vlc(GetBitContext *s, DCAVLC *v, int i) |
| { |
| return get_vlc2(s, v->vlc[i].table, v->vlc[i].bits, v->max_depth) + v->offset; |
| } |
| |
| static void get_array(GetBitContext *s, int32_t *array, int size, int n) |
| { |
| int i; |
| |
| for (i = 0; i < size; i++) |
| array[i] = get_sbits(s, n); |
| } |
| |
| // 5.3.1 - Bit stream header |
| static int parse_frame_header(DCACoreDecoder *s) |
| { |
| int normal_frame, pcmr_index; |
| |
| // Frame type |
| normal_frame = get_bits1(&s->gb); |
| |
| // Deficit sample count |
| if (get_bits(&s->gb, 5) != DCA_PCMBLOCK_SAMPLES - 1) { |
| av_log(s->avctx, AV_LOG_ERROR, "Deficit samples are not supported\n"); |
| return normal_frame ? AVERROR_INVALIDDATA : AVERROR_PATCHWELCOME; |
| } |
| |
| // CRC present flag |
| s->crc_present = get_bits1(&s->gb); |
| |
| // Number of PCM sample blocks |
| s->npcmblocks = get_bits(&s->gb, 7) + 1; |
| if (s->npcmblocks & (DCA_SUBBAND_SAMPLES - 1)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Unsupported number of PCM sample blocks (%d)\n", s->npcmblocks); |
| return (s->npcmblocks < 6 || normal_frame) ? AVERROR_INVALIDDATA : AVERROR_PATCHWELCOME; |
| } |
| |
| // Primary frame byte size |
| s->frame_size = get_bits(&s->gb, 14) + 1; |
| if (s->frame_size < 96) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid core frame size (%d bytes)\n", s->frame_size); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // Audio channel arrangement |
| s->audio_mode = get_bits(&s->gb, 6); |
| if (s->audio_mode >= AMODE_COUNT) { |
| av_log(s->avctx, AV_LOG_ERROR, "Unsupported audio channel arrangement (%d)\n", s->audio_mode); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| // Core audio sampling frequency |
| s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)]; |
| if (!s->sample_rate) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid core audio sampling frequency\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // Transmission bit rate |
| s->bit_rate = ff_dca_bit_rates[get_bits(&s->gb, 5)]; |
| |
| // Reserved field |
| skip_bits1(&s->gb); |
| |
| // Embedded dynamic range flag |
| s->drc_present = get_bits1(&s->gb); |
| |
| // Embedded time stamp flag |
| s->ts_present = get_bits1(&s->gb); |
| |
| // Auxiliary data flag |
| s->aux_present = get_bits1(&s->gb); |
| |
| // HDCD mastering flag |
| skip_bits1(&s->gb); |
| |
| // Extension audio descriptor flag |
| s->ext_audio_type = get_bits(&s->gb, 3); |
| |
| // Extended coding flag |
| s->ext_audio_present = get_bits1(&s->gb); |
| |
| // Audio sync word insertion flag |
| s->sync_ssf = get_bits1(&s->gb); |
| |
| // Low frequency effects flag |
| s->lfe_present = get_bits(&s->gb, 2); |
| if (s->lfe_present == LFE_FLAG_INVALID) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid low frequency effects flag\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // Predictor history flag switch |
| s->predictor_history = get_bits1(&s->gb); |
| |
| // Header CRC check bytes |
| if (s->crc_present) |
| skip_bits(&s->gb, 16); |
| |
| // Multirate interpolator switch |
| s->filter_perfect = get_bits1(&s->gb); |
| |
| // Encoder software revision |
| skip_bits(&s->gb, 4); |
| |
| // Copy history |
| skip_bits(&s->gb, 2); |
| |
| // Source PCM resolution |
| s->source_pcm_res = ff_dca_bits_per_sample[pcmr_index = get_bits(&s->gb, 3)]; |
| if (!s->source_pcm_res) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid source PCM resolution\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| s->es_format = pcmr_index & 1; |
| |
| // Front sum/difference flag |
| s->sumdiff_front = get_bits1(&s->gb); |
| |
| // Surround sum/difference flag |
| s->sumdiff_surround = get_bits1(&s->gb); |
| |
| // Dialog normalization / unspecified |
| skip_bits(&s->gb, 4); |
| |
| return 0; |
| } |
| |
| // 5.3.2 - Primary audio coding header |
| static int parse_coding_header(DCACoreDecoder *s, enum HeaderType header, int xch_base) |
| { |
| int n, ch, nchannels, header_size = 0, header_pos = get_bits_count(&s->gb); |
| unsigned int mask, index; |
| |
| if (get_bits_left(&s->gb) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| switch (header) { |
| case HEADER_CORE: |
| // Number of subframes |
| s->nsubframes = get_bits(&s->gb, 4) + 1; |
| |
| // Number of primary audio channels |
| s->nchannels = get_bits(&s->gb, 3) + 1; |
| if (s->nchannels != ff_dca_channels[s->audio_mode]) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid number of primary audio channels (%d) for audio channel arrangement (%d)\n", s->nchannels, s->audio_mode); |
| return AVERROR_INVALIDDATA; |
| } |
| av_assert1(s->nchannels <= DCA_CHANNELS - 2); |
| |
| s->ch_mask = audio_mode_ch_mask[s->audio_mode]; |
| |
| // Add LFE channel if present |
| if (s->lfe_present) |
| s->ch_mask |= DCA_SPEAKER_MASK_LFE1; |
| break; |
| |
| case HEADER_XCH: |
| s->nchannels = ff_dca_channels[s->audio_mode] + 1; |
| av_assert1(s->nchannels <= DCA_CHANNELS - 1); |
| s->ch_mask |= DCA_SPEAKER_MASK_Cs; |
| break; |
| |
| case HEADER_XXCH: |
| // Channel set header length |
| header_size = get_bits(&s->gb, 7) + 1; |
| |
| // Check CRC |
| if (s->xxch_crc_present |
| && (s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) |
| && ff_dca_check_crc(&s->gb, header_pos, header_pos + header_size * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH channel set header checksum\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // Number of channels in a channel set |
| nchannels = get_bits(&s->gb, 3) + 1; |
| if (nchannels > DCA_XXCH_CHANNELS_MAX) { |
| avpriv_request_sample(s->avctx, "%d XXCH channels", nchannels); |
| return AVERROR_PATCHWELCOME; |
| } |
| s->nchannels = ff_dca_channels[s->audio_mode] + nchannels; |
| av_assert1(s->nchannels <= DCA_CHANNELS); |
| |
| // Loudspeaker layout mask |
| mask = get_bits_long(&s->gb, s->xxch_mask_nbits - DCA_SPEAKER_Cs); |
| s->xxch_spkr_mask = mask << DCA_SPEAKER_Cs; |
| |
| if (av_popcount(s->xxch_spkr_mask) != nchannels) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH speaker layout mask (%#x)\n", s->xxch_spkr_mask); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (s->xxch_core_mask & s->xxch_spkr_mask) { |
| av_log(s->avctx, AV_LOG_ERROR, "XXCH speaker layout mask (%#x) overlaps with core (%#x)\n", s->xxch_spkr_mask, s->xxch_core_mask); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // Combine core and XXCH masks together |
| s->ch_mask = s->xxch_core_mask | s->xxch_spkr_mask; |
| |
| // Downmix coefficients present in stream |
| if (get_bits1(&s->gb)) { |
| int *coeff_ptr = s->xxch_dmix_coeff; |
| |
| // Downmix already performed by encoder |
| s->xxch_dmix_embedded = get_bits1(&s->gb); |
| |
| // Downmix scale factor |
| index = get_bits(&s->gb, 6) * 4 - FF_DCA_DMIXTABLE_OFFSET - 3; |
| if (index >= FF_DCA_INV_DMIXTABLE_SIZE) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix scale index (%d)\n", index); |
| return AVERROR_INVALIDDATA; |
| } |
| s->xxch_dmix_scale_inv = ff_dca_inv_dmixtable[index]; |
| |
| // Downmix channel mapping mask |
| for (ch = 0; ch < nchannels; ch++) { |
| mask = get_bits_long(&s->gb, s->xxch_mask_nbits); |
| if ((mask & s->xxch_core_mask) != mask) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix channel mapping mask (%#x)\n", mask); |
| return AVERROR_INVALIDDATA; |
| } |
| s->xxch_dmix_mask[ch] = mask; |
| } |
| |
| // Downmix coefficients |
| for (ch = 0; ch < nchannels; ch++) { |
| for (n = 0; n < s->xxch_mask_nbits; n++) { |
| if (s->xxch_dmix_mask[ch] & (1U << n)) { |
| int code = get_bits(&s->gb, 7); |
| int sign = (code >> 6) - 1; |
| if (code &= 63) { |
| index = code * 4 - 3; |
| if (index >= FF_DCA_DMIXTABLE_SIZE) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix coefficient index (%d)\n", index); |
| return AVERROR_INVALIDDATA; |
| } |
| *coeff_ptr++ = (ff_dca_dmixtable[index] ^ sign) - sign; |
| } else { |
| *coeff_ptr++ = 0; |
| } |
| } |
| } |
| } |
| } else { |
| s->xxch_dmix_embedded = 0; |
| } |
| |
| break; |
| } |
| |
| // Subband activity count |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| s->nsubbands[ch] = get_bits(&s->gb, 5) + 2; |
| if (s->nsubbands[ch] > DCA_SUBBANDS) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid subband activity count\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| // High frequency VQ start subband |
| for (ch = xch_base; ch < s->nchannels; ch++) |
| s->subband_vq_start[ch] = get_bits(&s->gb, 5) + 1; |
| |
| // Joint intensity coding index |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| if ((n = get_bits(&s->gb, 3)) && header == HEADER_XXCH) |
| n += xch_base - 1; |
| if (n > s->nchannels) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid joint intensity coding index\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| s->joint_intensity_index[ch] = n; |
| } |
| |
| // Transient mode code book |
| for (ch = xch_base; ch < s->nchannels; ch++) |
| s->transition_mode_sel[ch] = get_bits(&s->gb, 2); |
| |
| // Scale factor code book |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| s->scale_factor_sel[ch] = get_bits(&s->gb, 3); |
| if (s->scale_factor_sel[ch] == 7) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor code book\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| // Bit allocation quantizer select |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| s->bit_allocation_sel[ch] = get_bits(&s->gb, 3); |
| if (s->bit_allocation_sel[ch] == 7) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid bit allocation quantizer select\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| // Quantization index codebook select |
| for (n = 0; n < DCA_CODE_BOOKS; n++) |
| for (ch = xch_base; ch < s->nchannels; ch++) |
| s->quant_index_sel[ch][n] = get_bits(&s->gb, quant_index_sel_nbits[n]); |
| |
| // Scale factor adjustment index |
| for (n = 0; n < DCA_CODE_BOOKS; n++) |
| for (ch = xch_base; ch < s->nchannels; ch++) |
| if (s->quant_index_sel[ch][n] < quant_index_group_size[n]) |
| s->scale_factor_adj[ch][n] = ff_dca_scale_factor_adj[get_bits(&s->gb, 2)]; |
| |
| if (header == HEADER_XXCH) { |
| // Reserved |
| // Byte align |
| // CRC16 of channel set header |
| if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH channel set header\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } else { |
| // Audio header CRC check word |
| if (s->crc_present) |
| skip_bits(&s->gb, 16); |
| } |
| |
| return 0; |
| } |
| |
| static inline int parse_scale(DCACoreDecoder *s, int *scale_index, int sel) |
| { |
| const uint32_t *scale_table; |
| unsigned int scale_size; |
| |
| // Select the root square table |
| if (sel > 5) { |
| scale_table = ff_dca_scale_factor_quant7; |
| scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7); |
| } else { |
| scale_table = ff_dca_scale_factor_quant6; |
| scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant6); |
| } |
| |
| // If Huffman code was used, the difference of scales was encoded |
| if (sel < 5) |
| *scale_index += dca_get_vlc(&s->gb, &vlc_scale_factor, sel); |
| else |
| *scale_index = get_bits(&s->gb, sel + 1); |
| |
| // Look up scale factor from the root square table |
| if ((unsigned int)*scale_index >= scale_size) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor index\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| return scale_table[*scale_index]; |
| } |
| |
| static inline int parse_joint_scale(DCACoreDecoder *s, int sel) |
| { |
| int scale_index; |
| |
| // Absolute value was encoded even when Huffman code was used |
| if (sel < 5) |
| scale_index = dca_get_vlc(&s->gb, &vlc_scale_factor, sel); |
| else |
| scale_index = get_bits(&s->gb, sel + 1); |
| |
| // Bias by 64 |
| scale_index += 64; |
| |
| // Look up joint scale factor |
| if ((unsigned int)scale_index >= FF_ARRAY_ELEMS(ff_dca_joint_scale_factors)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid joint scale factor index\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| return ff_dca_joint_scale_factors[scale_index]; |
| } |
| |
| // 5.4.1 - Primary audio coding side information |
| static int parse_subframe_header(DCACoreDecoder *s, int sf, |
| enum HeaderType header, int xch_base) |
| { |
| int ch, band, ret; |
| |
| if (get_bits_left(&s->gb) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| if (header == HEADER_CORE) { |
| // Subsubframe count |
| s->nsubsubframes[sf] = get_bits(&s->gb, 2) + 1; |
| |
| // Partial subsubframe sample count |
| skip_bits(&s->gb, 3); |
| } |
| |
| // Prediction mode |
| for (ch = xch_base; ch < s->nchannels; ch++) |
| for (band = 0; band < s->nsubbands[ch]; band++) |
| s->prediction_mode[ch][band] = get_bits1(&s->gb); |
| |
| // Prediction coefficients VQ address |
| for (ch = xch_base; ch < s->nchannels; ch++) |
| for (band = 0; band < s->nsubbands[ch]; band++) |
| if (s->prediction_mode[ch][band]) |
| s->prediction_vq_index[ch][band] = get_bits(&s->gb, 12); |
| |
| // Bit allocation index |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| int sel = s->bit_allocation_sel[ch]; |
| |
| for (band = 0; band < s->subband_vq_start[ch]; band++) { |
| int abits; |
| |
| if (sel < 5) |
| abits = dca_get_vlc(&s->gb, &vlc_bit_allocation, sel); |
| else |
| abits = get_bits(&s->gb, sel - 1); |
| |
| if (abits > DCA_ABITS_MAX) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid bit allocation index\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| s->bit_allocation[ch][band] = abits; |
| } |
| } |
| |
| // Transition mode |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| // Clear transition mode for all subbands |
| memset(s->transition_mode[sf][ch], 0, sizeof(s->transition_mode[0][0])); |
| |
| // Transient possible only if more than one subsubframe |
| if (s->nsubsubframes[sf] > 1) { |
| int sel = s->transition_mode_sel[ch]; |
| for (band = 0; band < s->subband_vq_start[ch]; band++) |
| if (s->bit_allocation[ch][band]) |
| s->transition_mode[sf][ch][band] = dca_get_vlc(&s->gb, &vlc_transition_mode, sel); |
| } |
| } |
| |
| // Scale factors |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| int sel = s->scale_factor_sel[ch]; |
| int scale_index = 0; |
| |
| // Extract scales for subbands up to VQ |
| for (band = 0; band < s->subband_vq_start[ch]; band++) { |
| if (s->bit_allocation[ch][band]) { |
| if ((ret = parse_scale(s, &scale_index, sel)) < 0) |
| return ret; |
| s->scale_factors[ch][band][0] = ret; |
| if (s->transition_mode[sf][ch][band]) { |
| if ((ret = parse_scale(s, &scale_index, sel)) < 0) |
| return ret; |
| s->scale_factors[ch][band][1] = ret; |
| } |
| } else { |
| s->scale_factors[ch][band][0] = 0; |
| } |
| } |
| |
| // High frequency VQ subbands |
| for (band = s->subband_vq_start[ch]; band < s->nsubbands[ch]; band++) { |
| if ((ret = parse_scale(s, &scale_index, sel)) < 0) |
| return ret; |
| s->scale_factors[ch][band][0] = ret; |
| } |
| } |
| |
| // Joint subband codebook select |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| if (s->joint_intensity_index[ch]) { |
| s->joint_scale_sel[ch] = get_bits(&s->gb, 3); |
| if (s->joint_scale_sel[ch] == 7) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid joint scale factor code book\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| } |
| |
| // Scale factors for joint subband coding |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| int src_ch = s->joint_intensity_index[ch] - 1; |
| if (src_ch >= 0) { |
| int sel = s->joint_scale_sel[ch]; |
| for (band = s->nsubbands[ch]; band < s->nsubbands[src_ch]; band++) { |
| if ((ret = parse_joint_scale(s, sel)) < 0) |
| return ret; |
| s->joint_scale_factors[ch][band] = ret; |
| } |
| } |
| } |
| |
| // Dynamic range coefficient |
| if (s->drc_present && header == HEADER_CORE) |
| skip_bits(&s->gb, 8); |
| |
| // Side information CRC check word |
| if (s->crc_present) |
| skip_bits(&s->gb, 16); |
| |
| return 0; |
| } |
| |
| #ifndef decode_blockcodes |
| static inline int decode_blockcodes(int code1, int code2, int levels, int32_t *audio) |
| { |
| int offset = (levels - 1) / 2; |
| int n, div; |
| |
| for (n = 0; n < DCA_SUBBAND_SAMPLES / 2; n++) { |
| div = FASTDIV(code1, levels); |
| audio[n] = code1 - div * levels - offset; |
| code1 = div; |
| } |
| for (; n < DCA_SUBBAND_SAMPLES; n++) { |
| div = FASTDIV(code2, levels); |
| audio[n] = code2 - div * levels - offset; |
| code2 = div; |
| } |
| |
| return code1 | code2; |
| } |
| #endif |
| |
| static inline int parse_block_codes(DCACoreDecoder *s, int32_t *audio, int abits) |
| { |
| // Extract block code indices from the bit stream |
| int code1 = get_bits(&s->gb, block_code_nbits[abits - 1]); |
| int code2 = get_bits(&s->gb, block_code_nbits[abits - 1]); |
| int levels = ff_dca_quant_levels[abits]; |
| |
| // Look up samples from the block code book |
| if (decode_blockcodes(code1, code2, levels, audio)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Failed to decode block code(s)\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| return 0; |
| } |
| |
| static inline int parse_huffman_codes(DCACoreDecoder *s, int32_t *audio, int abits, int sel) |
| { |
| int i; |
| |
| // Extract Huffman codes from the bit stream |
| for (i = 0; i < DCA_SUBBAND_SAMPLES; i++) |
| audio[i] = dca_get_vlc(&s->gb, &vlc_quant_index[abits - 1], sel); |
| |
| return 1; |
| } |
| |
| static inline int extract_audio(DCACoreDecoder *s, int32_t *audio, int abits, int ch) |
| { |
| av_assert1(abits >= 0 && abits <= DCA_ABITS_MAX); |
| |
| if (abits == 0) { |
| // No bits allocated |
| memset(audio, 0, DCA_SUBBAND_SAMPLES * sizeof(*audio)); |
| return 0; |
| } |
| |
| if (abits <= DCA_CODE_BOOKS) { |
| int sel = s->quant_index_sel[ch][abits - 1]; |
| if (sel < quant_index_group_size[abits - 1]) { |
| // Huffman codes |
| return parse_huffman_codes(s, audio, abits, sel); |
| } |
| if (abits <= 7) { |
| // Block codes |
| return parse_block_codes(s, audio, abits); |
| } |
| } |
| |
| // No further encoding |
| get_array(&s->gb, audio, DCA_SUBBAND_SAMPLES, abits - 3); |
| return 0; |
| } |
| |
| static inline void dequantize(int32_t *output, const int32_t *input, |
| int32_t step_size, int32_t scale, int residual) |
| { |
| // Account for quantizer step size |
| int64_t step_scale = (int64_t)step_size * scale; |
| int n, shift = 0; |
| |
| // Limit scale factor resolution to 22 bits |
| if (step_scale > (1 << 23)) { |
| shift = av_log2(step_scale >> 23) + 1; |
| step_scale >>= shift; |
| } |
| |
| // Scale the samples |
| if (residual) { |
| for (n = 0; n < DCA_SUBBAND_SAMPLES; n++) |
| output[n] += clip23(norm__(input[n] * step_scale, 22 - shift)); |
| } else { |
| for (n = 0; n < DCA_SUBBAND_SAMPLES; n++) |
| output[n] = clip23(norm__(input[n] * step_scale, 22 - shift)); |
| } |
| } |
| |
| static inline void inverse_adpcm(int32_t **subband_samples, |
| const int16_t *vq_index, |
| const int8_t *prediction_mode, |
| int sb_start, int sb_end, |
| int ofs, int len) |
| { |
| int i, j, k; |
| |
| for (i = sb_start; i < sb_end; i++) { |
| if (prediction_mode[i]) { |
| const int16_t *coeff = ff_dca_adpcm_vb[vq_index[i]]; |
| int32_t *ptr = subband_samples[i] + ofs; |
| for (j = 0; j < len; j++) { |
| int64_t err = 0; |
| for (k = 0; k < DCA_ADPCM_COEFFS; k++) |
| err += (int64_t)ptr[j - k - 1] * coeff[k]; |
| ptr[j] = clip23(ptr[j] + clip23(norm13(err))); |
| } |
| } |
| } |
| } |
| |
| // 5.5 - Primary audio data arrays |
| static int parse_subframe_audio(DCACoreDecoder *s, int sf, enum HeaderType header, |
| int xch_base, int *sub_pos, int *lfe_pos) |
| { |
| int32_t audio[16], scale; |
| int n, ssf, ofs, ch, band; |
| |
| // Check number of subband samples in this subframe |
| int nsamples = s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES; |
| if (*sub_pos + nsamples > s->npcmblocks) { |
| av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (get_bits_left(&s->gb) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| // VQ encoded subbands |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| int32_t vq_index[DCA_SUBBANDS]; |
| |
| for (band = s->subband_vq_start[ch]; band < s->nsubbands[ch]; band++) |
| // Extract the VQ address from the bit stream |
| vq_index[band] = get_bits(&s->gb, 10); |
| |
| if (s->subband_vq_start[ch] < s->nsubbands[ch]) { |
| s->dcadsp->decode_hf(s->subband_samples[ch], vq_index, |
| ff_dca_high_freq_vq, s->scale_factors[ch], |
| s->subband_vq_start[ch], s->nsubbands[ch], |
| *sub_pos, nsamples); |
| } |
| } |
| |
| // Low frequency effect data |
| if (s->lfe_present && header == HEADER_CORE) { |
| unsigned int index; |
| |
| // Determine number of LFE samples in this subframe |
| int nlfesamples = 2 * s->lfe_present * s->nsubsubframes[sf]; |
| av_assert1((unsigned int)nlfesamples <= FF_ARRAY_ELEMS(audio)); |
| |
| // Extract LFE samples from the bit stream |
| get_array(&s->gb, audio, nlfesamples, 8); |
| |
| // Extract scale factor index from the bit stream |
| index = get_bits(&s->gb, 8); |
| if (index >= FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE scale factor index\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // Look up the 7-bit root square quantization table |
| scale = ff_dca_scale_factor_quant7[index]; |
| |
| // Account for quantizer step size which is 0.035 |
| scale = mul23(4697620 /* 0.035 * (1 << 27) */, scale); |
| |
| // Scale and take the LFE samples |
| for (n = 0, ofs = *lfe_pos; n < nlfesamples; n++, ofs++) |
| s->lfe_samples[ofs] = clip23(audio[n] * scale >> 4); |
| |
| // Advance LFE sample pointer for the next subframe |
| *lfe_pos = ofs; |
| } |
| |
| // Audio data |
| for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) { |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| if (get_bits_left(&s->gb) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| // Not high frequency VQ subbands |
| for (band = 0; band < s->subband_vq_start[ch]; band++) { |
| int ret, trans_ssf, abits = s->bit_allocation[ch][band]; |
| int32_t step_size; |
| |
| // Extract bits from the bit stream |
| if ((ret = extract_audio(s, audio, abits, ch)) < 0) |
| return ret; |
| |
| // Select quantization step size table and look up |
| // quantization step size |
| if (s->bit_rate == 3) |
| step_size = ff_dca_lossless_quant[abits]; |
| else |
| step_size = ff_dca_lossy_quant[abits]; |
| |
| // Identify transient location |
| trans_ssf = s->transition_mode[sf][ch][band]; |
| |
| // Determine proper scale factor |
| if (trans_ssf == 0 || ssf < trans_ssf) |
| scale = s->scale_factors[ch][band][0]; |
| else |
| scale = s->scale_factors[ch][band][1]; |
| |
| // Adjust scale factor when SEL indicates Huffman code |
| if (ret > 0) { |
| int64_t adj = s->scale_factor_adj[ch][abits - 1]; |
| scale = clip23(adj * scale >> 22); |
| } |
| |
| dequantize(s->subband_samples[ch][band] + ofs, |
| audio, step_size, scale, 0); |
| } |
| } |
| |
| // DSYNC |
| if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) { |
| av_log(s->avctx, AV_LOG_ERROR, "DSYNC check failed\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ofs += DCA_SUBBAND_SAMPLES; |
| } |
| |
| // Inverse ADPCM |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| inverse_adpcm(s->subband_samples[ch], s->prediction_vq_index[ch], |
| s->prediction_mode[ch], 0, s->nsubbands[ch], |
| *sub_pos, nsamples); |
| } |
| |
| // Joint subband coding |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| int src_ch = s->joint_intensity_index[ch] - 1; |
| if (src_ch >= 0) { |
| s->dcadsp->decode_joint(s->subband_samples[ch], s->subband_samples[src_ch], |
| s->joint_scale_factors[ch], s->nsubbands[ch], |
| s->nsubbands[src_ch], *sub_pos, nsamples); |
| } |
| } |
| |
| // Advance subband sample pointer for the next subframe |
| *sub_pos = ofs; |
| return 0; |
| } |
| |
| static void erase_adpcm_history(DCACoreDecoder *s) |
| { |
| int ch, band; |
| |
| // Erase ADPCM history from previous frame if |
| // predictor history switch was disabled |
| for (ch = 0; ch < DCA_CHANNELS; ch++) |
| for (band = 0; band < DCA_SUBBANDS; band++) |
| AV_ZERO128(s->subband_samples[ch][band] - DCA_ADPCM_COEFFS); |
| |
| emms_c(); |
| } |
| |
| static int alloc_sample_buffer(DCACoreDecoder *s) |
| { |
| int nchsamples = DCA_ADPCM_COEFFS + s->npcmblocks; |
| int nframesamples = nchsamples * DCA_CHANNELS * DCA_SUBBANDS; |
| int nlfesamples = DCA_LFE_HISTORY + s->npcmblocks / 2; |
| unsigned int size = s->subband_size; |
| int ch, band; |
| |
| // Reallocate subband sample buffer |
| av_fast_mallocz(&s->subband_buffer, &s->subband_size, |
| (nframesamples + nlfesamples) * sizeof(int32_t)); |
| if (!s->subband_buffer) |
| return AVERROR(ENOMEM); |
| |
| if (size != s->subband_size) { |
| for (ch = 0; ch < DCA_CHANNELS; ch++) |
| for (band = 0; band < DCA_SUBBANDS; band++) |
| s->subband_samples[ch][band] = s->subband_buffer + |
| (ch * DCA_SUBBANDS + band) * nchsamples + DCA_ADPCM_COEFFS; |
| s->lfe_samples = s->subband_buffer + nframesamples; |
| } |
| |
| if (!s->predictor_history) |
| erase_adpcm_history(s); |
| |
| return 0; |
| } |
| |
| static int parse_frame_data(DCACoreDecoder *s, enum HeaderType header, int xch_base) |
| { |
| int sf, ch, ret, band, sub_pos, lfe_pos; |
| |
| if ((ret = parse_coding_header(s, header, xch_base)) < 0) |
| return ret; |
| |
| for (sf = 0, sub_pos = 0, lfe_pos = DCA_LFE_HISTORY; sf < s->nsubframes; sf++) { |
| if ((ret = parse_subframe_header(s, sf, header, xch_base)) < 0) |
| return ret; |
| if ((ret = parse_subframe_audio(s, sf, header, xch_base, &sub_pos, &lfe_pos)) < 0) |
| return ret; |
| } |
| |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| // Determine number of active subbands for this channel |
| int nsubbands = s->nsubbands[ch]; |
| if (s->joint_intensity_index[ch]) |
| nsubbands = FFMAX(nsubbands, s->nsubbands[s->joint_intensity_index[ch] - 1]); |
| |
| // Update history for ADPCM |
| for (band = 0; band < nsubbands; band++) { |
| int32_t *samples = s->subband_samples[ch][band] - DCA_ADPCM_COEFFS; |
| AV_COPY128(samples, samples + s->npcmblocks); |
| } |
| |
| // Clear inactive subbands |
| for (; band < DCA_SUBBANDS; band++) { |
| int32_t *samples = s->subband_samples[ch][band] - DCA_ADPCM_COEFFS; |
| memset(samples, 0, (DCA_ADPCM_COEFFS + s->npcmblocks) * sizeof(int32_t)); |
| } |
| } |
| |
| emms_c(); |
| |
| return 0; |
| } |
| |
| static int parse_xch_frame(DCACoreDecoder *s) |
| { |
| int ret; |
| |
| if (s->ch_mask & DCA_SPEAKER_MASK_Cs) { |
| av_log(s->avctx, AV_LOG_ERROR, "XCH with Cs speaker already present\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if ((ret = parse_frame_data(s, HEADER_XCH, s->nchannels)) < 0) |
| return ret; |
| |
| // Seek to the end of core frame, don't trust XCH frame size |
| if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Read past end of XCH frame\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| return 0; |
| } |
| |
| static int parse_xxch_frame(DCACoreDecoder *s) |
| { |
| int xxch_nchsets, xxch_frame_size; |
| int ret, mask, header_size, header_pos = get_bits_count(&s->gb); |
| |
| // XXCH sync word |
| if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XXCH) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH sync word\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // XXCH frame header length |
| header_size = get_bits(&s->gb, 6) + 1; |
| |
| // Check XXCH frame header CRC |
| if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) |
| && ff_dca_check_crc(&s->gb, header_pos + 32, header_pos + header_size * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH frame header checksum\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // CRC presence flag for channel set header |
| s->xxch_crc_present = get_bits1(&s->gb); |
| |
| // Number of bits for loudspeaker mask |
| s->xxch_mask_nbits = get_bits(&s->gb, 5) + 1; |
| if (s->xxch_mask_nbits <= DCA_SPEAKER_Cs) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid number of bits for XXCH speaker mask (%d)\n", s->xxch_mask_nbits); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // Number of channel sets |
| xxch_nchsets = get_bits(&s->gb, 2) + 1; |
| if (xxch_nchsets > 1) { |
| avpriv_request_sample(s->avctx, "%d XXCH channel sets", xxch_nchsets); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| // Channel set 0 data byte size |
| xxch_frame_size = get_bits(&s->gb, 14) + 1; |
| |
| // Core loudspeaker activity mask |
| s->xxch_core_mask = get_bits_long(&s->gb, s->xxch_mask_nbits); |
| |
| // Validate the core mask |
| mask = s->ch_mask; |
| |
| if ((mask & DCA_SPEAKER_MASK_Ls) && (s->xxch_core_mask & DCA_SPEAKER_MASK_Lss)) |
| mask = (mask & ~DCA_SPEAKER_MASK_Ls) | DCA_SPEAKER_MASK_Lss; |
| |
| if ((mask & DCA_SPEAKER_MASK_Rs) && (s->xxch_core_mask & DCA_SPEAKER_MASK_Rss)) |
| mask = (mask & ~DCA_SPEAKER_MASK_Rs) | DCA_SPEAKER_MASK_Rss; |
| |
| if (mask != s->xxch_core_mask) { |
| av_log(s->avctx, AV_LOG_ERROR, "XXCH core speaker activity mask (%#x) disagrees with core (%#x)\n", s->xxch_core_mask, mask); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // Reserved |
| // Byte align |
| // CRC16 of XXCH frame header |
| if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH frame header\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // Parse XXCH channel set 0 |
| if ((ret = parse_frame_data(s, HEADER_XXCH, s->nchannels)) < 0) |
| return ret; |
| |
| if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8 + xxch_frame_size * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH channel set\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| return 0; |
| } |
| |
| static int parse_xbr_subframe(DCACoreDecoder *s, int xbr_base_ch, int xbr_nchannels, |
| int *xbr_nsubbands, int xbr_transition_mode, int sf, int *sub_pos) |
| { |
| int xbr_nabits[DCA_CHANNELS]; |
| int xbr_bit_allocation[DCA_CHANNELS][DCA_SUBBANDS]; |
| int xbr_scale_nbits[DCA_CHANNELS]; |
| int32_t xbr_scale_factors[DCA_CHANNELS][DCA_SUBBANDS][2]; |
| int ssf, ch, band, ofs; |
| |
| // Check number of subband samples in this subframe |
| if (*sub_pos + s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES > s->npcmblocks) { |
| av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (get_bits_left(&s->gb) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| // Number of bits for XBR bit allocation index |
| for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) |
| xbr_nabits[ch] = get_bits(&s->gb, 2) + 2; |
| |
| // XBR bit allocation index |
| for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) { |
| for (band = 0; band < xbr_nsubbands[ch]; band++) { |
| xbr_bit_allocation[ch][band] = get_bits(&s->gb, xbr_nabits[ch]); |
| if (xbr_bit_allocation[ch][band] > DCA_ABITS_MAX) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR bit allocation index\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| } |
| |
| // Number of bits for scale indices |
| for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) { |
| xbr_scale_nbits[ch] = get_bits(&s->gb, 3); |
| if (!xbr_scale_nbits[ch]) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid number of bits for XBR scale factor index\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| // XBR scale factors |
| for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) { |
| const uint32_t *scale_table; |
| int scale_size; |
| |
| // Select the root square table |
| if (s->scale_factor_sel[ch] > 5) { |
| scale_table = ff_dca_scale_factor_quant7; |
| scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7); |
| } else { |
| scale_table = ff_dca_scale_factor_quant6; |
| scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant6); |
| } |
| |
| // Parse scale factor indices and look up scale factors from the root |
| // square table |
| for (band = 0; band < xbr_nsubbands[ch]; band++) { |
| if (xbr_bit_allocation[ch][band]) { |
| int scale_index = get_bits(&s->gb, xbr_scale_nbits[ch]); |
| if (scale_index >= scale_size) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR scale factor index\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| xbr_scale_factors[ch][band][0] = scale_table[scale_index]; |
| if (xbr_transition_mode && s->transition_mode[sf][ch][band]) { |
| scale_index = get_bits(&s->gb, xbr_scale_nbits[ch]); |
| if (scale_index >= scale_size) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR scale factor index\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| xbr_scale_factors[ch][band][1] = scale_table[scale_index]; |
| } |
| } |
| } |
| } |
| |
| // Audio data |
| for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) { |
| for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) { |
| if (get_bits_left(&s->gb) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| for (band = 0; band < xbr_nsubbands[ch]; band++) { |
| int ret, trans_ssf, abits = xbr_bit_allocation[ch][band]; |
| int32_t audio[DCA_SUBBAND_SAMPLES], step_size, scale; |
| |
| // Extract bits from the bit stream |
| if (abits > 7) { |
| // No further encoding |
| get_array(&s->gb, audio, DCA_SUBBAND_SAMPLES, abits - 3); |
| } else if (abits > 0) { |
| // Block codes |
| if ((ret = parse_block_codes(s, audio, abits)) < 0) |
| return ret; |
| } else { |
| // No bits allocated |
| continue; |
| } |
| |
| // Look up quantization step size |
| step_size = ff_dca_lossless_quant[abits]; |
| |
| // Identify transient location |
| if (xbr_transition_mode) |
| trans_ssf = s->transition_mode[sf][ch][band]; |
| else |
| trans_ssf = 0; |
| |
| // Determine proper scale factor |
| if (trans_ssf == 0 || ssf < trans_ssf) |
| scale = xbr_scale_factors[ch][band][0]; |
| else |
| scale = xbr_scale_factors[ch][band][1]; |
| |
| dequantize(s->subband_samples[ch][band] + ofs, |
| audio, step_size, scale, 1); |
| } |
| } |
| |
| // DSYNC |
| if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) { |
| av_log(s->avctx, AV_LOG_ERROR, "XBR-DSYNC check failed\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ofs += DCA_SUBBAND_SAMPLES; |
| } |
| |
| // Advance subband sample pointer for the next subframe |
| *sub_pos = ofs; |
| return 0; |
| } |
| |
| static int parse_xbr_frame(DCACoreDecoder *s) |
| { |
| int xbr_frame_size[DCA_EXSS_CHSETS_MAX]; |
| int xbr_nchannels[DCA_EXSS_CHSETS_MAX]; |
| int xbr_nsubbands[DCA_EXSS_CHSETS_MAX * DCA_EXSS_CHANNELS_MAX]; |
| int xbr_nchsets, xbr_transition_mode, xbr_band_nbits, xbr_base_ch; |
| int i, ch1, ch2, ret, header_size, header_pos = get_bits_count(&s->gb); |
| |
| // XBR sync word |
| if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XBR) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR sync word\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // XBR frame header length |
| header_size = get_bits(&s->gb, 6) + 1; |
| |
| // Check XBR frame header CRC |
| if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) |
| && ff_dca_check_crc(&s->gb, header_pos + 32, header_pos + header_size * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR frame header checksum\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // Number of channel sets |
| xbr_nchsets = get_bits(&s->gb, 2) + 1; |
| |
| // Channel set data byte size |
| for (i = 0; i < xbr_nchsets; i++) |
| xbr_frame_size[i] = get_bits(&s->gb, 14) + 1; |
| |
| // Transition mode flag |
| xbr_transition_mode = get_bits1(&s->gb); |
| |
| // Channel set headers |
| for (i = 0, ch2 = 0; i < xbr_nchsets; i++) { |
| xbr_nchannels[i] = get_bits(&s->gb, 3) + 1; |
| xbr_band_nbits = get_bits(&s->gb, 2) + 5; |
| for (ch1 = 0; ch1 < xbr_nchannels[i]; ch1++, ch2++) { |
| xbr_nsubbands[ch2] = get_bits(&s->gb, xbr_band_nbits) + 1; |
| if (xbr_nsubbands[ch2] > DCA_SUBBANDS) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid number of active XBR subbands (%d)\n", xbr_nsubbands[ch2]); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| } |
| |
| // Reserved |
| // Byte align |
| // CRC16 of XBR frame header |
| if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Read past end of XBR frame header\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // Channel set data |
| for (i = 0, xbr_base_ch = 0; i < xbr_nchsets; i++) { |
| header_pos = get_bits_count(&s->gb); |
| |
| if (xbr_base_ch + xbr_nchannels[i] <= s->nchannels) { |
| int sf, sub_pos; |
| |
| for (sf = 0, sub_pos = 0; sf < s->nsubframes; sf++) { |
| if ((ret = parse_xbr_subframe(s, xbr_base_ch, |
| xbr_base_ch + xbr_nchannels[i], |
| xbr_nsubbands, xbr_transition_mode, |
| sf, &sub_pos)) < 0) |
| return ret; |
| } |
| } |
| |
| xbr_base_ch += xbr_nchannels[i]; |
| |
| if (ff_dca_seek_bits(&s->gb, header_pos + xbr_frame_size[i] * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Read past end of XBR channel set\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| return 0; |
| } |
| |
| // Modified ISO/IEC 9899 linear congruential generator |
| // Returns pseudorandom integer in range [-2^30, 2^30 - 1] |
| static int rand_x96(DCACoreDecoder *s) |
| { |
| s->x96_rand = 1103515245U * s->x96_rand + 12345U; |
| return (s->x96_rand & 0x7fffffff) - 0x40000000; |
| } |
| |
| static int parse_x96_subframe_audio(DCACoreDecoder *s, int sf, int xch_base, int *sub_pos) |
| { |
| int n, ssf, ch, band, ofs; |
| |
| // Check number of subband samples in this subframe |
| int nsamples = s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES; |
| if (*sub_pos + nsamples > s->npcmblocks) { |
| av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (get_bits_left(&s->gb) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| // VQ encoded or unallocated subbands |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
| for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) { |
| // Get the sample pointer and scale factor |
| int32_t *samples = s->x96_subband_samples[ch][band] + *sub_pos; |
| int32_t scale = s->scale_factors[ch][band >> 1][band & 1]; |
| |
| switch (s->bit_allocation[ch][band]) { |
| case 0: // No bits allocated for subband |
| if (scale <= 1) |
| memset(samples, 0, nsamples * sizeof(int32_t)); |
| else for (n = 0; n < nsamples; n++) |
| // Generate scaled random samples |
| samples[n] = mul31(rand_x96(s), scale); |
| break; |
| |
| case 1: // VQ encoded subband |
| for (ssf = 0; ssf < (s->nsubsubframes[sf] + 1) / 2; ssf++) { |
| // Extract the VQ address from the bit stream and look up |
| // the VQ code book for up to 16 subband samples |
| const int8_t *vq_samples = ff_dca_high_freq_vq[get_bits(&s->gb, 10)]; |
| // Scale and take the samples |
| for (n = 0; n < FFMIN(nsamples - ssf * 16, 16); n++) |
| *samples++ = clip23(vq_samples[n] * scale + (1 << 3) >> 4); |
| } |
| break; |
| } |
| } |
| } |
| |
| // Audio data |
| for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) { |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
| if (get_bits_left(&s->gb) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) { |
| int ret, abits = s->bit_allocation[ch][band] - 1; |
| int32_t audio[DCA_SUBBAND_SAMPLES], step_size, scale; |
| |
| // Not VQ encoded or unallocated subbands |
| if (abits < 1) |
| continue; |
| |
| // Extract bits from the bit stream |
| if ((ret = extract_audio(s, audio, abits, ch)) < 0) |
| return ret; |
| |
| // Select quantization step size table and look up quantization |
| // step size |
| if (s->bit_rate == 3) |
| step_size = ff_dca_lossless_quant[abits]; |
| else |
| step_size = ff_dca_lossy_quant[abits]; |
| |
| // Get the scale factor |
| scale = s->scale_factors[ch][band >> 1][band & 1]; |
| |
| dequantize(s->x96_subband_samples[ch][band] + ofs, |
| audio, step_size, scale, 0); |
| } |
| } |
| |
| // DSYNC |
| if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) { |
| av_log(s->avctx, AV_LOG_ERROR, "X96-DSYNC check failed\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ofs += DCA_SUBBAND_SAMPLES; |
| } |
| |
| // Inverse ADPCM |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
| inverse_adpcm(s->x96_subband_samples[ch], s->prediction_vq_index[ch], |
| s->prediction_mode[ch], s->x96_subband_start, s->nsubbands[ch], |
| *sub_pos, nsamples); |
| } |
| |
| // Joint subband coding |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
| int src_ch = s->joint_intensity_index[ch] - 1; |
| if (src_ch >= 0) { |
| s->dcadsp->decode_joint(s->x96_subband_samples[ch], s->x96_subband_samples[src_ch], |
| s->joint_scale_factors[ch], s->nsubbands[ch], |
| s->nsubbands[src_ch], *sub_pos, nsamples); |
| } |
| } |
| |
| // Advance subband sample pointer for the next subframe |
| *sub_pos = ofs; |
| return 0; |
| } |
| |
| static void erase_x96_adpcm_history(DCACoreDecoder *s) |
| { |
| int ch, band; |
| |
| // Erase ADPCM history from previous frame if |
| // predictor history switch was disabled |
| for (ch = 0; ch < DCA_CHANNELS; ch++) |
| for (band = 0; band < DCA_SUBBANDS_X96; band++) |
| AV_ZERO128(s->x96_subband_samples[ch][band] - DCA_ADPCM_COEFFS); |
| |
| emms_c(); |
| } |
| |
| static int alloc_x96_sample_buffer(DCACoreDecoder *s) |
| { |
| int nchsamples = DCA_ADPCM_COEFFS + s->npcmblocks; |
| int nframesamples = nchsamples * DCA_CHANNELS * DCA_SUBBANDS_X96; |
| unsigned int size = s->x96_subband_size; |
| int ch, band; |
| |
| // Reallocate subband sample buffer |
| av_fast_mallocz(&s->x96_subband_buffer, &s->x96_subband_size, |
| nframesamples * sizeof(int32_t)); |
| if (!s->x96_subband_buffer) |
| return AVERROR(ENOMEM); |
| |
| if (size != s->x96_subband_size) { |
| for (ch = 0; ch < DCA_CHANNELS; ch++) |
| for (band = 0; band < DCA_SUBBANDS_X96; band++) |
| s->x96_subband_samples[ch][band] = s->x96_subband_buffer + |
| (ch * DCA_SUBBANDS_X96 + band) * nchsamples + DCA_ADPCM_COEFFS; |
| } |
| |
| if (!s->predictor_history) |
| erase_x96_adpcm_history(s); |
| |
| return 0; |
| } |
| |
| static int parse_x96_subframe_header(DCACoreDecoder *s, int xch_base) |
| { |
| int ch, band, ret; |
| |
| if (get_bits_left(&s->gb) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| // Prediction mode |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) |
| for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) |
| s->prediction_mode[ch][band] = get_bits1(&s->gb); |
| |
| // Prediction coefficients VQ address |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) |
| for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) |
| if (s->prediction_mode[ch][band]) |
| s->prediction_vq_index[ch][band] = get_bits(&s->gb, 12); |
| |
| // Bit allocation index |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
| int sel = s->bit_allocation_sel[ch]; |
| int abits = 0; |
| |
| for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) { |
| // If Huffman code was used, the difference of abits was encoded |
| if (sel < 7) |
| abits += dca_get_vlc(&s->gb, &vlc_quant_index[5 + 2 * s->x96_high_res], sel); |
| else |
| abits = get_bits(&s->gb, 3 + s->x96_high_res); |
| |
| if (abits < 0 || abits > 7 + 8 * s->x96_high_res) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 bit allocation index\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| s->bit_allocation[ch][band] = abits; |
| } |
| } |
| |
| // Scale factors |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
| int sel = s->scale_factor_sel[ch]; |
| int scale_index = 0; |
| |
| // Extract scales for subbands which are transmitted even for |
| // unallocated subbands |
| for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) { |
| if ((ret = parse_scale(s, &scale_index, sel)) < 0) |
| return ret; |
| s->scale_factors[ch][band >> 1][band & 1] = ret; |
| } |
| } |
| |
| // Joint subband codebook select |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
| if (s->joint_intensity_index[ch]) { |
| s->joint_scale_sel[ch] = get_bits(&s->gb, 3); |
| if (s->joint_scale_sel[ch] == 7) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 joint scale factor code book\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| } |
| |
| // Scale factors for joint subband coding |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
| int src_ch = s->joint_intensity_index[ch] - 1; |
| if (src_ch >= 0) { |
| int sel = s->joint_scale_sel[ch]; |
| for (band = s->nsubbands[ch]; band < s->nsubbands[src_ch]; band++) { |
| if ((ret = parse_joint_scale(s, sel)) < 0) |
| return ret; |
| s->joint_scale_factors[ch][band] = ret; |
| } |
| } |
| } |
| |
| // Side information CRC check word |
| if (s->crc_present) |
| skip_bits(&s->gb, 16); |
| |
| return 0; |
| } |
| |
| static int parse_x96_coding_header(DCACoreDecoder *s, int exss, int xch_base) |
| { |
| int n, ch, header_size = 0, header_pos = get_bits_count(&s->gb); |
| |
| if (get_bits_left(&s->gb) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| if (exss) { |
| // Channel set header length |
| header_size = get_bits(&s->gb, 7) + 1; |
| |
| // Check CRC |
| if (s->x96_crc_present |
| && (s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) |
| && ff_dca_check_crc(&s->gb, header_pos, header_pos + header_size * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 channel set header checksum\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| // High resolution flag |
| s->x96_high_res = get_bits1(&s->gb); |
| |
| // First encoded subband |
| if (s->x96_rev_no < 8) { |
| s->x96_subband_start = get_bits(&s->gb, 5); |
| if (s->x96_subband_start > 27) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 subband start index (%d)\n", s->x96_subband_start); |
| return AVERROR_INVALIDDATA; |
| } |
| } else { |
| s->x96_subband_start = DCA_SUBBANDS; |
| } |
| |
| // Subband activity count |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
| s->nsubbands[ch] = get_bits(&s->gb, 6) + 1; |
| if (s->nsubbands[ch] < DCA_SUBBANDS) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 subband activity count (%d)\n", s->nsubbands[ch]); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| // Joint intensity coding index |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
| if ((n = get_bits(&s->gb, 3)) && xch_base) |
| n += xch_base - 1; |
| if (n > s->x96_nchannels) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 joint intensity coding index\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| s->joint_intensity_index[ch] = n; |
| } |
| |
| // Scale factor code book |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
| s->scale_factor_sel[ch] = get_bits(&s->gb, 3); |
| if (s->scale_factor_sel[ch] >= 6) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 scale factor code book\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| // Bit allocation quantizer select |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) |
| s->bit_allocation_sel[ch] = get_bits(&s->gb, 3); |
| |
| // Quantization index codebook select |
| for (n = 0; n < 6 + 4 * s->x96_high_res; n++) |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) |
| s->quant_index_sel[ch][n] = get_bits(&s->gb, quant_index_sel_nbits[n]); |
| |
| if (exss) { |
| // Reserved |
| // Byte align |
| // CRC16 of channel set header |
| if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 channel set header\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } else { |
| if (s->crc_present) |
| skip_bits(&s->gb, 16); |
| } |
| |
| return 0; |
| } |
| |
| static int parse_x96_frame_data(DCACoreDecoder *s, int exss, int xch_base) |
| { |
| int sf, ch, ret, band, sub_pos; |
| |
| if ((ret = parse_x96_coding_header(s, exss, xch_base)) < 0) |
| return ret; |
| |
| for (sf = 0, sub_pos = 0; sf < s->nsubframes; sf++) { |
| if ((ret = parse_x96_subframe_header(s, xch_base)) < 0) |
| return ret; |
| if ((ret = parse_x96_subframe_audio(s, sf, xch_base, &sub_pos)) < 0) |
| return ret; |
| } |
| |
| for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
| // Determine number of active subbands for this channel |
| int nsubbands = s->nsubbands[ch]; |
| if (s->joint_intensity_index[ch]) |
| nsubbands = FFMAX(nsubbands, s->nsubbands[s->joint_intensity_index[ch] - 1]); |
| |
| // Update history for ADPCM and clear inactive subbands |
| for (band = 0; band < DCA_SUBBANDS_X96; band++) { |
| int32_t *samples = s->x96_subband_samples[ch][band] - DCA_ADPCM_COEFFS; |
| if (band >= s->x96_subband_start && band < nsubbands) |
| AV_COPY128(samples, samples + s->npcmblocks); |
| else |
| memset(samples, 0, (DCA_ADPCM_COEFFS + s->npcmblocks) * sizeof(int32_t)); |
| } |
| } |
| |
| emms_c(); |
| |
| return 0; |
| } |
| |
| static int parse_x96_frame(DCACoreDecoder *s) |
| { |
| int ret; |
| |
| // Revision number |
| s->x96_rev_no = get_bits(&s->gb, 4); |
| if (s->x96_rev_no < 1 || s->x96_rev_no > 8) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 revision (%d)\n", s->x96_rev_no); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| s->x96_crc_present = 0; |
| s->x96_nchannels = s->nchannels; |
| |
| if ((ret = alloc_x96_sample_buffer(s)) < 0) |
| return ret; |
| |
| if ((ret = parse_x96_frame_data(s, 0, 0)) < 0) |
| return ret; |
| |
| // Seek to the end of core frame |
| if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 frame\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| return 0; |
| } |
| |
| static int parse_x96_frame_exss(DCACoreDecoder *s) |
| { |
| int x96_frame_size[DCA_EXSS_CHSETS_MAX]; |
| int x96_nchannels[DCA_EXSS_CHSETS_MAX]; |
| int x96_nchsets, x96_base_ch; |
| int i, ret, header_size, header_pos = get_bits_count(&s->gb); |
| |
| // X96 sync word |
| if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_X96) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 sync word\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // X96 frame header length |
| header_size = get_bits(&s->gb, 6) + 1; |
| |
| // Check X96 frame header CRC |
| if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) |
| && ff_dca_check_crc(&s->gb, header_pos + 32, header_pos + header_size * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 frame header checksum\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // Revision number |
| s->x96_rev_no = get_bits(&s->gb, 4); |
| if (s->x96_rev_no < 1 || s->x96_rev_no > 8) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 revision (%d)\n", s->x96_rev_no); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // CRC presence flag for channel set header |
| s->x96_crc_present = get_bits1(&s->gb); |
| |
| // Number of channel sets |
| x96_nchsets = get_bits(&s->gb, 2) + 1; |
| |
| // Channel set data byte size |
| for (i = 0; i < x96_nchsets; i++) |
| x96_frame_size[i] = get_bits(&s->gb, 12) + 1; |
| |
| // Number of channels in channel set |
| for (i = 0; i < x96_nchsets; i++) |
| x96_nchannels[i] = get_bits(&s->gb, 3) + 1; |
| |
| // Reserved |
| // Byte align |
| // CRC16 of X96 frame header |
| if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 frame header\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if ((ret = alloc_x96_sample_buffer(s)) < 0) |
| return ret; |
| |
| // Channel set data |
| for (i = 0, x96_base_ch = 0; i < x96_nchsets; i++) { |
| header_pos = get_bits_count(&s->gb); |
| |
| if (x96_base_ch + x96_nchannels[i] <= s->nchannels) { |
| s->x96_nchannels = x96_base_ch + x96_nchannels[i]; |
| if ((ret = parse_x96_frame_data(s, 1, x96_base_ch)) < 0) |
| return ret; |
| } |
| |
| x96_base_ch += x96_nchannels[i]; |
| |
| if (ff_dca_seek_bits(&s->gb, header_pos + x96_frame_size[i] * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 channel set\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int parse_aux_data(DCACoreDecoder *s) |
| { |
| int aux_pos; |
| |
| if (get_bits_left(&s->gb) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| // Auxiliary data byte count (can't be trusted) |
| skip_bits(&s->gb, 6); |
| |
| // 4-byte align |
| skip_bits_long(&s->gb, -get_bits_count(&s->gb) & 31); |
| |
| // Auxiliary data sync word |
| if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_REV1AUX) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid auxiliary data sync word\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| aux_pos = get_bits_count(&s->gb); |
| |
| // Auxiliary decode time stamp flag |
| if (get_bits1(&s->gb)) |
| skip_bits_long(&s->gb, 47); |
| |
| // Auxiliary dynamic downmix flag |
| if (s->prim_dmix_embedded = get_bits1(&s->gb)) { |
| int i, m, n; |
| |
| // Auxiliary primary channel downmix type |
| s->prim_dmix_type = get_bits(&s->gb, 3); |
| if (s->prim_dmix_type >= DCA_DMIX_TYPE_COUNT) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid primary channel set downmix type\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // Size of downmix coefficients matrix |
| m = ff_dca_dmix_primary_nch[s->prim_dmix_type]; |
| n = ff_dca_channels[s->audio_mode] + !!s->lfe_present; |
| |
| // Dynamic downmix code coefficients |
| for (i = 0; i < m * n; i++) { |
| int code = get_bits(&s->gb, 9); |
| int sign = (code >> 8) - 1; |
| unsigned int index = code & 0xff; |
| if (index >= FF_DCA_DMIXTABLE_SIZE) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid downmix coefficient index\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| s->prim_dmix_coeff[i] = (ff_dca_dmixtable[index] ^ sign) - sign; |
| } |
| } |
| |
| // Byte align |
| skip_bits(&s->gb, -get_bits_count(&s->gb) & 7); |
| |
| // CRC16 of auxiliary data |
| skip_bits(&s->gb, 16); |
| |
| // Check CRC |
| if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) |
| && ff_dca_check_crc(&s->gb, aux_pos, get_bits_count(&s->gb))) { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid auxiliary data checksum\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| return 0; |
| } |
| |
| static int parse_optional_info(DCACoreDecoder *s) |
| { |
| DCAContext *dca = s->avctx->priv_data; |
| int ret = -1; |
| |
| // Time code stamp |
| if (s->ts_present) |
| skip_bits_long(&s->gb, 32); |
| |
| // Auxiliary data |
| if (s->aux_present && (ret = parse_aux_data(s)) < 0 |
| && (s->avctx->err_recognition & AV_EF_EXPLODE)) |
| return ret; |
| |
| if (ret < 0) |
| s->prim_dmix_embedded = 0; |
| |
| // Core extensions |
| if (s->ext_audio_present && !dca->core_only) { |
| int sync_pos = FFMIN(s->frame_size / 4, s->gb.size_in_bits / 32) - 1; |
| int last_pos = get_bits_count(&s->gb) / 32; |
| int size, dist; |
| |
| // Search for extension sync words aligned on 4-byte boundary. Search |
| // must be done backwards from the end of core frame to work around |
| // sync word aliasing issues. |
| switch (s->ext_audio_type) { |
| case EXT_AUDIO_XCH: |
| if (dca->request_channel_layout) |
| break; |
| |
| // The distance between XCH sync word and end of the core frame |
| // must be equal to XCH frame size. Off by one error is allowed for |
| // compatibility with legacy bitstreams. Minimum XCH frame size is |
| // 96 bytes. AMODE and PCHS are further checked to reduce |
| // probability of alias sync detection. |
| for (; sync_pos >= last_pos; sync_pos--) { |
| if (AV_RB32(s->gb.buffer + sync_pos * 4) == DCA_SYNCWORD_XCH) { |
| s->gb.index = (sync_pos + 1) * 32; |
| size = get_bits(&s->gb, 10) + 1; |
| dist = s->frame_size - sync_pos * 4; |
| if (size >= 96 |
| && (size == dist || size - 1 == dist) |
| && get_bits(&s->gb, 7) == 0x08) { |
| s->xch_pos = get_bits_count(&s->gb); |
| break; |
| } |
| } |
| } |
| |
| if (s->avctx->err_recognition & AV_EF_EXPLODE) { |
| av_log(s->avctx, AV_LOG_ERROR, "XCH sync word not found\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| break; |
| |
| case EXT_AUDIO_X96: |
| // The distance between X96 sync word and end of the core frame |
| // must be equal to X96 frame size. Minimum X96 frame size is 96 |
| // bytes. |
| for (; sync_pos >= last_pos; sync_pos--) { |
| if (AV_RB32(s->gb.buffer + sync_pos * 4) == DCA_SYNCWORD_X96) { |
| s->gb.index = (sync_pos + 1) * 32; |
| size = get_bits(&s->gb, 12) + 1; |
| dist = s->frame_size - sync_pos * 4; |
| if (size >= 96 && size == dist) { |
| s->x96_pos = get_bits_count(&s->gb); |
| break; |
| } |
| } |
| } |
| |
| if (s->avctx->err_recognition & AV_EF_EXPLODE) { |
| av_log(s->avctx, AV_LOG_ERROR, "X96 sync word not found\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| break; |
| |
| case EXT_AUDIO_XXCH: |
| if (dca->request_channel_layout) |
| break; |
| |
| // XXCH frame header CRC must be valid. Minimum XXCH frame header |
| // size is 11 bytes. |
| for (; sync_pos >= last_pos; sync_pos--) { |
| if (AV_RB32(s->gb.buffer + sync_pos * 4) == DCA_SYNCWORD_XXCH) { |
| s->gb.index = (sync_pos + 1) * 32; |
| size = get_bits(&s->gb, 6) + 1; |
| if (size >= 11 && |
| !ff_dca_check_crc(&s->gb, (sync_pos + 1) * 32, |
| sync_pos * 32 + size * 8)) { |
| s->xxch_pos = sync_pos * 32; |
| break; |
| } |
| } |
| } |
| |
| if (s->avctx->err_recognition & AV_EF_EXPLODE) { |
| av_log(s->avctx, AV_LOG_ERROR, "XXCH sync word not found\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int ff_dca_core_parse(DCACoreDecoder *s, uint8_t *data, int size) |
| { |
| int ret; |
| |
| s->ext_audio_mask = 0; |
| s->xch_pos = s->xxch_pos = s->x96_pos = 0; |
| |
| if ((ret = init_get_bits8(&s->gb, data, size)) < 0) |
| return ret; |
| |
| skip_bits_long(&s->gb, 32); |
| if ((ret = parse_frame_header(s)) < 0) |
| return ret; |
| if ((ret = alloc_sample_buffer(s)) < 0) |
| return ret; |
| if ((ret = parse_frame_data(s, HEADER_CORE, 0)) < 0) |
| return ret; |
| if ((ret = parse_optional_info(s)) < 0) |
| return ret; |
| |
| // Workaround for DTS in WAV |
| if (s->frame_size > size && s->frame_size < size + 4) { |
| av_log(s->avctx, AV_LOG_DEBUG, "Working around excessive core frame size (%d > %d)\n", s->frame_size, size); |
| s->frame_size = size; |
| } |
| |
| if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Read past end of core frame\n"); |
| if (s->avctx->err_recognition & AV_EF_EXPLODE) |
| return AVERROR_INVALIDDATA; |
| } |
| |
| return 0; |
| } |
| |
| int ff_dca_core_parse_exss(DCACoreDecoder *s, uint8_t *data, DCAExssAsset *asset) |
| { |
| AVCodecContext *avctx = s->avctx; |
| DCAContext *dca = avctx->priv_data; |
| GetBitContext gb = s->gb; |
| int exss_mask = asset ? asset->extension_mask : 0; |
| int ret = 0, ext = 0; |
| |
| // Parse (X)XCH unless downmixing |
| if (!dca->request_channel_layout) { |
| if (exss_mask & DCA_EXSS_XXCH) { |
| if ((ret = init_get_bits8(&s->gb, data + asset->xxch_offset, asset->xxch_size)) < 0) |
| return ret; |
| ret = parse_xxch_frame(s); |
| ext = DCA_EXSS_XXCH; |
| } else if (s->xxch_pos) { |
| s->gb.index = s->xxch_pos; |
| ret = parse_xxch_frame(s); |
| ext = DCA_CSS_XXCH; |
| } else if (s->xch_pos) { |
| s->gb.index = s->xch_pos; |
| ret = parse_xch_frame(s); |
| ext = DCA_CSS_XCH; |
| } |
| |
| // Revert to primary channel set in case (X)XCH parsing fails |
| if (ret < 0) { |
| if (avctx->err_recognition & AV_EF_EXPLODE) |
| return ret; |
| s->nchannels = ff_dca_channels[s->audio_mode]; |
| s->ch_mask = audio_mode_ch_mask[s->audio_mode]; |
| if (s->lfe_present) |
| s->ch_mask |= DCA_SPEAKER_MASK_LFE1; |
| } else { |
| s->ext_audio_mask |= ext; |
| } |
| } |
| |
| // Parse XBR |
| if (exss_mask & DCA_EXSS_XBR) { |
| if ((ret = init_get_bits8(&s->gb, data + asset->xbr_offset, asset->xbr_size)) < 0) |
| return ret; |
| if ((ret = parse_xbr_frame(s)) < 0) { |
| if (avctx->err_recognition & AV_EF_EXPLODE) |
| return ret; |
| } else { |
| s->ext_audio_mask |= DCA_EXSS_XBR; |
| } |
| } |
| |
| // Parse X96 unless decoding XLL |
| if (!(dca->packet & DCA_PACKET_XLL)) { |
| if (exss_mask & DCA_EXSS_X96) { |
| if ((ret = init_get_bits8(&s->gb, data + asset->x96_offset, asset->x96_size)) < 0) |
| return ret; |
| if ((ret = parse_x96_frame_exss(s)) < 0) { |
| if (ret == AVERROR(ENOMEM) || (avctx->err_recognition & AV_EF_EXPLODE)) |
| return ret; |
| } else { |
| s->ext_audio_mask |= DCA_EXSS_X96; |
| } |
| } else if (s->x96_pos) { |
| s->gb = gb; |
| s->gb.index = s->x96_pos; |
| if ((ret = parse_x96_frame(s)) < 0) { |
| if (ret == AVERROR(ENOMEM) || (avctx->err_recognition & AV_EF_EXPLODE)) |
| return ret; |
| } else { |
| s->ext_audio_mask |= DCA_CSS_X96; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int map_prm_ch_to_spkr(DCACoreDecoder *s, int ch) |
| { |
| int pos, spkr; |
| |
| // Try to map this channel to core first |
| pos = ff_dca_channels[s->audio_mode]; |
| if (ch < pos) { |
| spkr = prm_ch_to_spkr_map[s->audio_mode][ch]; |
| if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) { |
| if (s->xxch_core_mask & (1U << spkr)) |
| return spkr; |
| if (spkr == DCA_SPEAKER_Ls && (s->xxch_core_mask & DCA_SPEAKER_MASK_Lss)) |
| return DCA_SPEAKER_Lss; |
| if (spkr == DCA_SPEAKER_Rs && (s->xxch_core_mask & DCA_SPEAKER_MASK_Rss)) |
| return DCA_SPEAKER_Rss; |
| return -1; |
| } |
| return spkr; |
| } |
| |
| // Then XCH |
| if ((s->ext_audio_mask & DCA_CSS_XCH) && ch == pos) |
| return DCA_SPEAKER_Cs; |
| |
| // Then XXCH |
| if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) { |
| for (spkr = DCA_SPEAKER_Cs; spkr < s->xxch_mask_nbits; spkr++) |
| if (s->xxch_spkr_mask & (1U << spkr)) |
| if (pos++ == ch) |
| return spkr; |
| } |
| |
| // No mapping |
| return -1; |
| } |
| |
| static void erase_dsp_history(DCACoreDecoder *s) |
| { |
| memset(s->dcadsp_data, 0, sizeof(s->dcadsp_data)); |
| s->output_history_lfe_fixed = 0; |
| s->output_history_lfe_float = 0; |
| } |
| |
| static void set_filter_mode(DCACoreDecoder *s, int mode) |
| { |
| if (s->filter_mode != mode) { |
| erase_dsp_history(s); |
| s->filter_mode = mode; |
| } |
| } |
| |
| int ff_dca_core_filter_fixed(DCACoreDecoder *s, int x96_synth) |
| { |
| int n, ch, spkr, nsamples, x96_nchannels = 0; |
| const int32_t *filter_coeff; |
| int32_t *ptr; |
| |
| // Externally set x96_synth flag implies that X96 synthesis should be |
| // enabled, yet actual X96 subband data should be discarded. This is a |
| // special case for lossless residual decoder that ignores X96 data if |
| // present. |
| if (!x96_synth && (s->ext_audio_mask & (DCA_CSS_X96 | DCA_EXSS_X96))) { |
| x96_nchannels = s->x96_nchannels; |
| x96_synth = 1; |
| } |
| if (x96_synth < 0) |
| x96_synth = 0; |
| |
| s->output_rate = s->sample_rate << x96_synth; |
| s->npcmsamples = nsamples = (s->npcmblocks * DCA_PCMBLOCK_SAMPLES) << x96_synth; |
| |
| // Reallocate PCM output buffer |
| av_fast_malloc(&s->output_buffer, &s->output_size, |
| nsamples * av_popcount(s->ch_mask) * sizeof(int32_t)); |
| if (!s->output_buffer) |
| return AVERROR(ENOMEM); |
| |
| ptr = (int32_t *)s->output_buffer; |
| for (spkr = 0; spkr < DCA_SPEAKER_COUNT; spkr++) { |
| if (s->ch_mask & (1U << spkr)) { |
| s->output_samples[spkr] = ptr; |
| ptr += nsamples; |
| } else { |
| s->output_samples[spkr] = NULL; |
| } |
| } |
| |
| // Handle change of filtering mode |
| set_filter_mode(s, x96_synth | DCA_FILTER_MODE_FIXED); |
| |
| // Select filter |
| if (x96_synth) |
| filter_coeff = ff_dca_fir_64bands_fixed; |
| else if (s->filter_perfect) |
| filter_coeff = ff_dca_fir_32bands_perfect_fixed; |
| else |
| filter_coeff = ff_dca_fir_32bands_nonperfect_fixed; |
| |
| // Filter primary channels |
| for (ch = 0; ch < s->nchannels; ch++) { |
| // Map this primary channel to speaker |
| spkr = map_prm_ch_to_spkr(s, ch); |
| if (spkr < 0) |
| return AVERROR(EINVAL); |
| |
| // Filter bank reconstruction |
| s->dcadsp->sub_qmf_fixed[x96_synth]( |
| &s->synth, |
| &s->dcadct, |
| s->output_samples[spkr], |
| s->subband_samples[ch], |
| ch < x96_nchannels ? s->x96_subband_samples[ch] : NULL, |
| s->dcadsp_data[ch].u.fix.hist1, |
| &s->dcadsp_data[ch].offset, |
| s->dcadsp_data[ch].u.fix.hist2, |
| filter_coeff, |
| s->npcmblocks); |
| } |
| |
| // Filter LFE channel |
| if (s->lfe_present) { |
| int32_t *samples = s->output_samples[DCA_SPEAKER_LFE1]; |
| int nlfesamples = s->npcmblocks >> 1; |
| |
| // Check LFF |
| if (s->lfe_present == LFE_FLAG_128) { |
| av_log(s->avctx, AV_LOG_ERROR, "Fixed point mode doesn't support LFF=1\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| // Offset intermediate buffer for X96 |
| if (x96_synth) |
| samples += nsamples / 2; |
| |
| // Interpolate LFE channel |
| s->dcadsp->lfe_fir_fixed(samples, s->lfe_samples + DCA_LFE_HISTORY, |
| ff_dca_lfe_fir_64_fixed, s->npcmblocks); |
| |
| if (x96_synth) { |
| // Filter 96 kHz oversampled LFE PCM to attenuate high frequency |
| // (47.6 - 48.0 kHz) components of interpolation image |
| s->dcadsp->lfe_x96_fixed(s->output_samples[DCA_SPEAKER_LFE1], |
| samples, &s->output_history_lfe_fixed, |
| nsamples / 2); |
| |
| } |
| |
| // Update LFE history |
| for (n = DCA_LFE_HISTORY - 1; n >= 0; n--) |
| s->lfe_samples[n] = s->lfe_samples[nlfesamples + n]; |
| } |
| |
| return 0; |
| } |
| |
| static int filter_frame_fixed(DCACoreDecoder *s, AVFrame *frame) |
| { |
| AVCodecContext *avctx = s->avctx; |
| DCAContext *dca = avctx->priv_data; |
| int i, n, ch, ret, spkr, nsamples; |
| |
| // Don't filter twice when falling back from XLL |
| if (!(dca->packet & DCA_PACKET_XLL) && (ret = ff_dca_core_filter_fixed(s, 0)) < 0) |
| return ret; |
| |
| avctx->sample_rate = s->output_rate; |
| avctx->sample_fmt = AV_SAMPLE_FMT_S32P; |
| avctx->bits_per_raw_sample = 24; |
| |
| frame->nb_samples = nsamples = s->npcmsamples; |
| if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
| return ret; |
| |
| // Undo embedded XCH downmix |
| if (s->es_format && (s->ext_audio_mask & DCA_CSS_XCH) |
| && s->audio_mode >= AMODE_2F2R) { |
| s->dcadsp->dmix_sub_xch(s->output_samples[DCA_SPEAKER_Ls], |
| s->output_samples[DCA_SPEAKER_Rs], |
| s->output_samples[DCA_SPEAKER_Cs], |
| nsamples); |
| |
| } |
| |
| // Undo embedded XXCH downmix |
| if ((s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) |
| && s->xxch_dmix_embedded) { |
| int scale_inv = s->xxch_dmix_scale_inv; |
| int *coeff_ptr = s->xxch_dmix_coeff; |
| int xch_base = ff_dca_channels[s->audio_mode]; |
| av_assert1(s->nchannels - xch_base <= DCA_XXCH_CHANNELS_MAX); |
| |
| // Undo embedded core downmix pre-scaling |
| for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) { |
| if (s->xxch_core_mask & (1U << spkr)) { |
| s->dcadsp->dmix_scale_inv(s->output_samples[spkr], |
| scale_inv, nsamples); |
| } |
| } |
| |
| // Undo downmix |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| int src_spkr = map_prm_ch_to_spkr(s, ch); |
| if (src_spkr < 0) |
| return AVERROR(EINVAL); |
| for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) { |
| if (s->xxch_dmix_mask[ch - xch_base] & (1U << spkr)) { |
| int coeff = mul16(*coeff_ptr++, scale_inv); |
| if (coeff) { |
| s->dcadsp->dmix_sub(s->output_samples[spkr ], |
| s->output_samples[src_spkr], |
| coeff, nsamples); |
| } |
| } |
| } |
| } |
| } |
| |
| if (!(s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH | DCA_EXSS_XXCH))) { |
| // Front sum/difference decoding |
| if ((s->sumdiff_front && s->audio_mode > AMODE_MONO) |
| || s->audio_mode == AMODE_STEREO_SUMDIFF) { |
| s->fixed_dsp->butterflies_fixed(s->output_samples[DCA_SPEAKER_L], |
| s->output_samples[DCA_SPEAKER_R], |
| nsamples); |
| } |
| |
| // Surround sum/difference decoding |
| if (s->sumdiff_surround && s->audio_mode >= AMODE_2F2R) { |
| s->fixed_dsp->butterflies_fixed(s->output_samples[DCA_SPEAKER_Ls], |
| s->output_samples[DCA_SPEAKER_Rs], |
| nsamples); |
| } |
| } |
| |
| // Downmix primary channel set to stereo |
| if (s->request_mask != s->ch_mask) { |
| ff_dca_downmix_to_stereo_fixed(s->dcadsp, |
| s->output_samples, |
| s->prim_dmix_coeff, |
| nsamples, s->ch_mask); |
| } |
| |
| for (i = 0; i < avctx->channels; i++) { |
| int32_t *samples = s->output_samples[s->ch_remap[i]]; |
| int32_t *plane = (int32_t *)frame->extended_data[i]; |
| for (n = 0; n < nsamples; n++) |
| plane[n] = clip23(samples[n]) * (1 << 8); |
| } |
| |
| return 0; |
| } |
| |
| static int filter_frame_float(DCACoreDecoder *s, AVFrame *frame) |
| { |
| AVCodecContext *avctx = s->avctx; |
| int x96_nchannels = 0, x96_synth = 0; |
| int i, n, ch, ret, spkr, nsamples, nchannels; |
| float *output_samples[DCA_SPEAKER_COUNT] = { NULL }, *ptr; |
| const float *filter_coeff; |
| |
| if (s->ext_audio_mask & (DCA_CSS_X96 | DCA_EXSS_X96)) { |
| x96_nchannels = s->x96_nchannels; |
| x96_synth = 1; |
| } |
| |
| avctx->sample_rate = s->sample_rate << x96_synth; |
| avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; |
| avctx->bits_per_raw_sample = 0; |
| |
| frame->nb_samples = nsamples = (s->npcmblocks * DCA_PCMBLOCK_SAMPLES) << x96_synth; |
| if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
| return ret; |
| |
| // Build reverse speaker to channel mapping |
| for (i = 0; i < avctx->channels; i++) |
| output_samples[s->ch_remap[i]] = (float *)frame->extended_data[i]; |
| |
| // Allocate space for extra channels |
| nchannels = av_popcount(s->ch_mask) - avctx->channels; |
| if (nchannels > 0) { |
| av_fast_malloc(&s->output_buffer, &s->output_size, |
| nsamples * nchannels * sizeof(float)); |
| if (!s->output_buffer) |
| return AVERROR(ENOMEM); |
| |
| ptr = (float *)s->output_buffer; |
| for (spkr = 0; spkr < DCA_SPEAKER_COUNT; spkr++) { |
| if (!(s->ch_mask & (1U << spkr))) |
| continue; |
| if (output_samples[spkr]) |
| continue; |
| output_samples[spkr] = ptr; |
| ptr += nsamples; |
| } |
| } |
| |
| // Handle change of filtering mode |
| set_filter_mode(s, x96_synth); |
| |
| // Select filter |
| if (x96_synth) |
| filter_coeff = ff_dca_fir_64bands; |
| else if (s->filter_perfect) |
| filter_coeff = ff_dca_fir_32bands_perfect; |
| else |
| filter_coeff = ff_dca_fir_32bands_nonperfect; |
| |
| // Filter primary channels |
| for (ch = 0; ch < s->nchannels; ch++) { |
| // Map this primary channel to speaker |
| spkr = map_prm_ch_to_spkr(s, ch); |
| if (spkr < 0) |
| return AVERROR(EINVAL); |
| |
| // Filter bank reconstruction |
| s->dcadsp->sub_qmf_float[x96_synth]( |
| &s->synth, |
| &s->imdct[x96_synth], |
| output_samples[spkr], |
| s->subband_samples[ch], |
| ch < x96_nchannels ? s->x96_subband_samples[ch] : NULL, |
| s->dcadsp_data[ch].u.flt.hist1, |
| &s->dcadsp_data[ch].offset, |
| s->dcadsp_data[ch].u.flt.hist2, |
| filter_coeff, |
| s->npcmblocks, |
| 1.0f / (1 << (17 - x96_synth))); |
| } |
| |
| // Filter LFE channel |
| if (s->lfe_present) { |
| int dec_select = (s->lfe_present == LFE_FLAG_128); |
| float *samples = output_samples[DCA_SPEAKER_LFE1]; |
| int nlfesamples = s->npcmblocks >> (dec_select + 1); |
| |
| // Offset intermediate buffer for X96 |
| if (x96_synth) |
| samples += nsamples / 2; |
| |
| // Select filter |
| if (dec_select) |
| filter_coeff = ff_dca_lfe_fir_128; |
| else |
| filter_coeff = ff_dca_lfe_fir_64; |
| |
| // Interpolate LFE channel |
| s->dcadsp->lfe_fir_float[dec_select]( |
| samples, s->lfe_samples + DCA_LFE_HISTORY, |
| filter_coeff, s->npcmblocks); |
| |
| if (x96_synth) { |
| // Filter 96 kHz oversampled LFE PCM to attenuate high frequency |
| // (47.6 - 48.0 kHz) components of interpolation image |
| s->dcadsp->lfe_x96_float(output_samples[DCA_SPEAKER_LFE1], |
| samples, &s->output_history_lfe_float, |
| nsamples / 2); |
| } |
| |
| // Update LFE history |
| for (n = DCA_LFE_HISTORY - 1; n >= 0; n--) |
| s->lfe_samples[n] = s->lfe_samples[nlfesamples + n]; |
| } |
| |
| // Undo embedded XCH downmix |
| if (s->es_format && (s->ext_audio_mask & DCA_CSS_XCH) |
| && s->audio_mode >= AMODE_2F2R) { |
| s->float_dsp->vector_fmac_scalar(output_samples[DCA_SPEAKER_Ls], |
| output_samples[DCA_SPEAKER_Cs], |
| -M_SQRT1_2, nsamples); |
| s->float_dsp->vector_fmac_scalar(output_samples[DCA_SPEAKER_Rs], |
| output_samples[DCA_SPEAKER_Cs], |
| -M_SQRT1_2, nsamples); |
| } |
| |
| // Undo embedded XXCH downmix |
| if ((s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) |
| && s->xxch_dmix_embedded) { |
| float scale_inv = s->xxch_dmix_scale_inv * (1.0f / (1 << 16)); |
| int *coeff_ptr = s->xxch_dmix_coeff; |
| int xch_base = ff_dca_channels[s->audio_mode]; |
| av_assert1(s->nchannels - xch_base <= DCA_XXCH_CHANNELS_MAX); |
| |
| // Undo downmix |
| for (ch = xch_base; ch < s->nchannels; ch++) { |
| int src_spkr = map_prm_ch_to_spkr(s, ch); |
| if (src_spkr < 0) |
| return AVERROR(EINVAL); |
| for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) { |
| if (s->xxch_dmix_mask[ch - xch_base] & (1U << spkr)) { |
| int coeff = *coeff_ptr++; |
| if (coeff) { |
| s->float_dsp->vector_fmac_scalar(output_samples[ spkr], |
| output_samples[src_spkr], |
| coeff * (-1.0f / (1 << 15)), |
| nsamples); |
| } |
| } |
| } |
| } |
| |
| // Undo embedded core downmix pre-scaling |
| for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) { |
| if (s->xxch_core_mask & (1U << spkr)) { |
| s->float_dsp->vector_fmul_scalar(output_samples[spkr], |
| output_samples[spkr], |
| scale_inv, nsamples); |
| } |
| } |
| } |
| |
| if (!(s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH | DCA_EXSS_XXCH))) { |
| // Front sum/difference decoding |
| if ((s->sumdiff_front && s->audio_mode > AMODE_MONO) |
| || s->audio_mode == AMODE_STEREO_SUMDIFF) { |
| s->float_dsp->butterflies_float(output_samples[DCA_SPEAKER_L], |
| output_samples[DCA_SPEAKER_R], |
| nsamples); |
| } |
| |
| // Surround sum/difference decoding |
| if (s->sumdiff_surround && s->audio_mode >= AMODE_2F2R) { |
| s->float_dsp->butterflies_float(output_samples[DCA_SPEAKER_Ls], |
| output_samples[DCA_SPEAKER_Rs], |
| nsamples); |
| } |
| } |
| |
| // Downmix primary channel set to stereo |
| if (s->request_mask != s->ch_mask) { |
| ff_dca_downmix_to_stereo_float(s->float_dsp, output_samples, |
| s->prim_dmix_coeff, |
| nsamples, s->ch_mask); |
| } |
| |
| return 0; |
| } |
| |
| int ff_dca_core_filter_frame(DCACoreDecoder *s, AVFrame *frame) |
| { |
| AVCodecContext *avctx = s->avctx; |
| DCAContext *dca = avctx->priv_data; |
| DCAExssAsset *asset = &dca->exss.assets[0]; |
| enum AVMatrixEncoding matrix_encoding; |
| int ret; |
| |
| // Handle downmixing to stereo request |
| if (dca->request_channel_layout == DCA_SPEAKER_LAYOUT_STEREO |
| && s->audio_mode > AMODE_MONO && s->prim_dmix_embedded |
| && (s->prim_dmix_type == DCA_DMIX_TYPE_LoRo || |
| s->prim_dmix_type == DCA_DMIX_TYPE_LtRt)) |
| s->request_mask = DCA_SPEAKER_LAYOUT_STEREO; |
| else |
| s->request_mask = s->ch_mask; |
| if (!ff_dca_set_channel_layout(avctx, s->ch_remap, s->request_mask)) |
| return AVERROR(EINVAL); |
| |
| // Force fixed point mode when falling back from XLL |
| if ((avctx->flags & AV_CODEC_FLAG_BITEXACT) || ((dca->packet & DCA_PACKET_EXSS) |
| && (asset->extension_mask & DCA_EXSS_XLL))) |
| ret = filter_frame_fixed(s, frame); |
| else |
| ret = filter_frame_float(s, frame); |
| if (ret < 0) |
| return ret; |
| |
| // Set profile, bit rate, etc |
| if (s->ext_audio_mask & DCA_EXSS_MASK) |
| avctx->profile = FF_PROFILE_DTS_HD_HRA; |
| else if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH)) |
| avctx->profile = FF_PROFILE_DTS_ES; |
| else if (s->ext_audio_mask & DCA_CSS_X96) |
| avctx->profile = FF_PROFILE_DTS_96_24; |
| else |
| avctx->profile = FF_PROFILE_DTS; |
| |
| if (s->bit_rate > 3 && !(s->ext_audio_mask & DCA_EXSS_MASK)) |
| avctx->bit_rate = s->bit_rate; |
| else |
| avctx->bit_rate = 0; |
| |
| if (s->audio_mode == AMODE_STEREO_TOTAL || (s->request_mask != s->ch_mask && |
| s->prim_dmix_type == DCA_DMIX_TYPE_LtRt)) |
| matrix_encoding = AV_MATRIX_ENCODING_DOLBY; |
| else |
| matrix_encoding = AV_MATRIX_ENCODING_NONE; |
| if ((ret = ff_side_data_update_matrix_encoding(frame, matrix_encoding)) < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| av_cold void ff_dca_core_flush(DCACoreDecoder *s) |
| { |
| if (s->subband_buffer) { |
| erase_adpcm_history(s); |
| memset(s->lfe_samples, 0, DCA_LFE_HISTORY * sizeof(int32_t)); |
| } |
| |
| if (s->x96_subband_buffer) |
| erase_x96_adpcm_history(s); |
| |
| erase_dsp_history(s); |
| } |
| |
| av_cold int ff_dca_core_init(DCACoreDecoder *s) |
| { |
| dca_init_vlcs(); |
| |
| if (!(s->float_dsp = avpriv_float_dsp_alloc(0))) |
| return -1; |
| if (!(s->fixed_dsp = avpriv_alloc_fixed_dsp(0))) |
| return -1; |
| |
| ff_dcadct_init(&s->dcadct); |
| if (ff_mdct_init(&s->imdct[0], 6, 1, 1.0) < 0) |
| return -1; |
| if (ff_mdct_init(&s->imdct[1], 7, 1, 1.0) < 0) |
| return -1; |
| ff_synth_filter_init(&s->synth); |
| |
| s->x96_rand = 1; |
| return 0; |
| } |
| |
| av_cold void ff_dca_core_close(DCACoreDecoder *s) |
| { |
| av_freep(&s->float_dsp); |
| av_freep(&s->fixed_dsp); |
| |
| ff_mdct_end(&s->imdct[0]); |
| ff_mdct_end(&s->imdct[1]); |
| |
| av_freep(&s->subband_buffer); |
| s->subband_size = 0; |
| |
| av_freep(&s->x96_subband_buffer); |
| s->x96_subband_size = 0; |
| |
| av_freep(&s->output_buffer); |
| s->output_size = 0; |
| } |