| /* |
| * H.26L/H.264/AVC/JVT/14496-10/... decoder |
| * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * H.264 / AVC / MPEG4 part10 codec. |
| * @author Michael Niedermayer <michaelni@gmx.at> |
| */ |
| |
| #define UNCHECKED_BITSTREAM_READER 1 |
| |
| #include "libavutil/avassert.h" |
| #include "libavutil/display.h" |
| #include "libavutil/imgutils.h" |
| #include "libavutil/opt.h" |
| #include "libavutil/stereo3d.h" |
| #include "libavutil/timer.h" |
| #include "internal.h" |
| #include "cabac.h" |
| #include "cabac_functions.h" |
| #include "error_resilience.h" |
| #include "avcodec.h" |
| #include "h264.h" |
| #include "h264data.h" |
| #include "h264chroma.h" |
| #include "h264_mvpred.h" |
| #include "golomb.h" |
| #include "mathops.h" |
| #include "me_cmp.h" |
| #include "mpegutils.h" |
| #include "profiles.h" |
| #include "rectangle.h" |
| #include "svq3.h" |
| #include "thread.h" |
| #include "vdpau_compat.h" |
| |
| static int h264_decode_end(AVCodecContext *avctx); |
| |
| const uint16_t ff_h264_mb_sizes[4] = { 256, 384, 512, 768 }; |
| |
| int avpriv_h264_has_num_reorder_frames(AVCodecContext *avctx) |
| { |
| H264Context *h = avctx->priv_data; |
| return h ? h->sps.num_reorder_frames : 0; |
| } |
| |
| static void h264_er_decode_mb(void *opaque, int ref, int mv_dir, int mv_type, |
| int (*mv)[2][4][2], |
| int mb_x, int mb_y, int mb_intra, int mb_skipped) |
| { |
| H264Context *h = opaque; |
| H264SliceContext *sl = &h->slice_ctx[0]; |
| |
| sl->mb_x = mb_x; |
| sl->mb_y = mb_y; |
| sl->mb_xy = mb_x + mb_y * h->mb_stride; |
| memset(sl->non_zero_count_cache, 0, sizeof(sl->non_zero_count_cache)); |
| av_assert1(ref >= 0); |
| /* FIXME: It is possible albeit uncommon that slice references |
| * differ between slices. We take the easy approach and ignore |
| * it for now. If this turns out to have any relevance in |
| * practice then correct remapping should be added. */ |
| if (ref >= sl->ref_count[0]) |
| ref = 0; |
| if (!sl->ref_list[0][ref].data[0]) { |
| av_log(h->avctx, AV_LOG_DEBUG, "Reference not available for error concealing\n"); |
| ref = 0; |
| } |
| if ((sl->ref_list[0][ref].reference&3) != 3) { |
| av_log(h->avctx, AV_LOG_DEBUG, "Reference invalid\n"); |
| return; |
| } |
| fill_rectangle(&h->cur_pic.ref_index[0][4 * sl->mb_xy], |
| 2, 2, 2, ref, 1); |
| fill_rectangle(&sl->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1); |
| fill_rectangle(sl->mv_cache[0][scan8[0]], 4, 4, 8, |
| pack16to32((*mv)[0][0][0], (*mv)[0][0][1]), 4); |
| sl->mb_mbaff = |
| sl->mb_field_decoding_flag = 0; |
| ff_h264_hl_decode_mb(h, &h->slice_ctx[0]); |
| } |
| |
| void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, |
| int y, int height) |
| { |
| AVCodecContext *avctx = h->avctx; |
| const AVFrame *src = h->cur_pic.f; |
| const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt); |
| int vshift = desc->log2_chroma_h; |
| const int field_pic = h->picture_structure != PICT_FRAME; |
| if (field_pic) { |
| height <<= 1; |
| y <<= 1; |
| } |
| |
| height = FFMIN(height, avctx->height - y); |
| |
| if (field_pic && h->first_field && !(avctx->slice_flags & SLICE_FLAG_ALLOW_FIELD)) |
| return; |
| |
| if (avctx->draw_horiz_band) { |
| int offset[AV_NUM_DATA_POINTERS]; |
| int i; |
| |
| offset[0] = y * src->linesize[0]; |
| offset[1] = |
| offset[2] = (y >> vshift) * src->linesize[1]; |
| for (i = 3; i < AV_NUM_DATA_POINTERS; i++) |
| offset[i] = 0; |
| |
| emms_c(); |
| |
| avctx->draw_horiz_band(avctx, src, offset, |
| y, h->picture_structure, height); |
| } |
| } |
| |
| /** |
| * Check if the top & left blocks are available if needed and |
| * change the dc mode so it only uses the available blocks. |
| */ |
| int ff_h264_check_intra4x4_pred_mode(const H264Context *h, H264SliceContext *sl) |
| { |
| static const int8_t top[12] = { |
| -1, 0, LEFT_DC_PRED, -1, -1, -1, -1, -1, 0 |
| }; |
| static const int8_t left[12] = { |
| 0, -1, TOP_DC_PRED, 0, -1, -1, -1, 0, -1, DC_128_PRED |
| }; |
| int i; |
| |
| if (!(sl->top_samples_available & 0x8000)) { |
| for (i = 0; i < 4; i++) { |
| int status = top[sl->intra4x4_pred_mode_cache[scan8[0] + i]]; |
| if (status < 0) { |
| av_log(h->avctx, AV_LOG_ERROR, |
| "top block unavailable for requested intra4x4 mode %d at %d %d\n", |
| status, sl->mb_x, sl->mb_y); |
| return AVERROR_INVALIDDATA; |
| } else if (status) { |
| sl->intra4x4_pred_mode_cache[scan8[0] + i] = status; |
| } |
| } |
| } |
| |
| if ((sl->left_samples_available & 0x8888) != 0x8888) { |
| static const int mask[4] = { 0x8000, 0x2000, 0x80, 0x20 }; |
| for (i = 0; i < 4; i++) |
| if (!(sl->left_samples_available & mask[i])) { |
| int status = left[sl->intra4x4_pred_mode_cache[scan8[0] + 8 * i]]; |
| if (status < 0) { |
| av_log(h->avctx, AV_LOG_ERROR, |
| "left block unavailable for requested intra4x4 mode %d at %d %d\n", |
| status, sl->mb_x, sl->mb_y); |
| return AVERROR_INVALIDDATA; |
| } else if (status) { |
| sl->intra4x4_pred_mode_cache[scan8[0] + 8 * i] = status; |
| } |
| } |
| } |
| |
| return 0; |
| } // FIXME cleanup like ff_h264_check_intra_pred_mode |
| |
| /** |
| * Check if the top & left blocks are available if needed and |
| * change the dc mode so it only uses the available blocks. |
| */ |
| int ff_h264_check_intra_pred_mode(const H264Context *h, H264SliceContext *sl, |
| int mode, int is_chroma) |
| { |
| static const int8_t top[4] = { LEFT_DC_PRED8x8, 1, -1, -1 }; |
| static const int8_t left[5] = { TOP_DC_PRED8x8, -1, 2, -1, DC_128_PRED8x8 }; |
| |
| if (mode > 3U) { |
| av_log(h->avctx, AV_LOG_ERROR, |
| "out of range intra chroma pred mode at %d %d\n", |
| sl->mb_x, sl->mb_y); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (!(sl->top_samples_available & 0x8000)) { |
| mode = top[mode]; |
| if (mode < 0) { |
| av_log(h->avctx, AV_LOG_ERROR, |
| "top block unavailable for requested intra mode at %d %d\n", |
| sl->mb_x, sl->mb_y); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| if ((sl->left_samples_available & 0x8080) != 0x8080) { |
| mode = left[mode]; |
| if (mode < 0) { |
| av_log(h->avctx, AV_LOG_ERROR, |
| "left block unavailable for requested intra mode at %d %d\n", |
| sl->mb_x, sl->mb_y); |
| return AVERROR_INVALIDDATA; |
| } |
| if (is_chroma && (sl->left_samples_available & 0x8080)) { |
| // mad cow disease mode, aka MBAFF + constrained_intra_pred |
| mode = ALZHEIMER_DC_L0T_PRED8x8 + |
| (!(sl->left_samples_available & 0x8000)) + |
| 2 * (mode == DC_128_PRED8x8); |
| } |
| } |
| |
| return mode; |
| } |
| |
| const uint8_t *ff_h264_decode_nal(H264Context *h, H264SliceContext *sl, |
| const uint8_t *src, |
| int *dst_length, int *consumed, int length) |
| { |
| int i, si, di; |
| uint8_t *dst; |
| |
| // src[0]&0x80; // forbidden bit |
| h->nal_ref_idc = src[0] >> 5; |
| h->nal_unit_type = src[0] & 0x1F; |
| |
| src++; |
| length--; |
| |
| #define STARTCODE_TEST \ |
| if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \ |
| if (src[i + 2] != 3 && src[i + 2] != 0) { \ |
| /* startcode, so we must be past the end */ \ |
| length = i; \ |
| } \ |
| break; \ |
| } |
| |
| #if HAVE_FAST_UNALIGNED |
| #define FIND_FIRST_ZERO \ |
| if (i > 0 && !src[i]) \ |
| i--; \ |
| while (src[i]) \ |
| i++ |
| |
| #if HAVE_FAST_64BIT |
| for (i = 0; i + 1 < length; i += 9) { |
| if (!((~AV_RN64A(src + i) & |
| (AV_RN64A(src + i) - 0x0100010001000101ULL)) & |
| 0x8000800080008080ULL)) |
| continue; |
| FIND_FIRST_ZERO; |
| STARTCODE_TEST; |
| i -= 7; |
| } |
| #else |
| for (i = 0; i + 1 < length; i += 5) { |
| if (!((~AV_RN32A(src + i) & |
| (AV_RN32A(src + i) - 0x01000101U)) & |
| 0x80008080U)) |
| continue; |
| FIND_FIRST_ZERO; |
| STARTCODE_TEST; |
| i -= 3; |
| } |
| #endif |
| #else |
| for (i = 0; i + 1 < length; i += 2) { |
| if (src[i]) |
| continue; |
| if (i > 0 && src[i - 1] == 0) |
| i--; |
| STARTCODE_TEST; |
| } |
| #endif |
| |
| av_fast_padded_malloc(&sl->rbsp_buffer, &sl->rbsp_buffer_size, length+MAX_MBPAIR_SIZE); |
| dst = sl->rbsp_buffer; |
| |
| if (!dst) |
| return NULL; |
| |
| if(i>=length-1){ //no escaped 0 |
| *dst_length= length; |
| *consumed= length+1; //+1 for the header |
| if(h->avctx->flags2 & AV_CODEC_FLAG2_FAST){ |
| return src; |
| }else{ |
| memcpy(dst, src, length); |
| return dst; |
| } |
| } |
| |
| memcpy(dst, src, i); |
| si = di = i; |
| while (si + 2 < length) { |
| // remove escapes (very rare 1:2^22) |
| if (src[si + 2] > 3) { |
| dst[di++] = src[si++]; |
| dst[di++] = src[si++]; |
| } else if (src[si] == 0 && src[si + 1] == 0 && src[si + 2] != 0) { |
| if (src[si + 2] == 3) { // escape |
| dst[di++] = 0; |
| dst[di++] = 0; |
| si += 3; |
| continue; |
| } else // next start code |
| goto nsc; |
| } |
| |
| dst[di++] = src[si++]; |
| } |
| while (si < length) |
| dst[di++] = src[si++]; |
| |
| nsc: |
| memset(dst + di, 0, AV_INPUT_BUFFER_PADDING_SIZE); |
| |
| *dst_length = di; |
| *consumed = si + 1; // +1 for the header |
| /* FIXME store exact number of bits in the getbitcontext |
| * (it is needed for decoding) */ |
| return dst; |
| } |
| |
| /** |
| * Identify the exact end of the bitstream |
| * @return the length of the trailing, or 0 if damaged |
| */ |
| static int decode_rbsp_trailing(H264Context *h, const uint8_t *src) |
| { |
| int v = *src; |
| int r; |
| |
| ff_tlog(h->avctx, "rbsp trailing %X\n", v); |
| |
| for (r = 1; r < 9; r++) { |
| if (v & 1) |
| return r; |
| v >>= 1; |
| } |
| return 0; |
| } |
| |
| void ff_h264_free_tables(H264Context *h) |
| { |
| int i; |
| |
| av_freep(&h->intra4x4_pred_mode); |
| av_freep(&h->chroma_pred_mode_table); |
| av_freep(&h->cbp_table); |
| av_freep(&h->mvd_table[0]); |
| av_freep(&h->mvd_table[1]); |
| av_freep(&h->direct_table); |
| av_freep(&h->non_zero_count); |
| av_freep(&h->slice_table_base); |
| h->slice_table = NULL; |
| av_freep(&h->list_counts); |
| |
| av_freep(&h->mb2b_xy); |
| av_freep(&h->mb2br_xy); |
| |
| av_buffer_pool_uninit(&h->qscale_table_pool); |
| av_buffer_pool_uninit(&h->mb_type_pool); |
| av_buffer_pool_uninit(&h->motion_val_pool); |
| av_buffer_pool_uninit(&h->ref_index_pool); |
| |
| for (i = 0; i < h->nb_slice_ctx; i++) { |
| H264SliceContext *sl = &h->slice_ctx[i]; |
| |
| av_freep(&sl->dc_val_base); |
| av_freep(&sl->er.mb_index2xy); |
| av_freep(&sl->er.error_status_table); |
| av_freep(&sl->er.er_temp_buffer); |
| |
| av_freep(&sl->bipred_scratchpad); |
| av_freep(&sl->edge_emu_buffer); |
| av_freep(&sl->top_borders[0]); |
| av_freep(&sl->top_borders[1]); |
| |
| sl->bipred_scratchpad_allocated = 0; |
| sl->edge_emu_buffer_allocated = 0; |
| sl->top_borders_allocated[0] = 0; |
| sl->top_borders_allocated[1] = 0; |
| } |
| } |
| |
| int ff_h264_alloc_tables(H264Context *h) |
| { |
| const int big_mb_num = h->mb_stride * (h->mb_height + 1); |
| const int row_mb_num = 2*h->mb_stride*FFMAX(h->avctx->thread_count, 1); |
| int x, y; |
| |
| FF_ALLOCZ_ARRAY_OR_GOTO(h->avctx, h->intra4x4_pred_mode, |
| row_mb_num, 8 * sizeof(uint8_t), fail) |
| h->slice_ctx[0].intra4x4_pred_mode = h->intra4x4_pred_mode; |
| |
| FF_ALLOCZ_OR_GOTO(h->avctx, h->non_zero_count, |
| big_mb_num * 48 * sizeof(uint8_t), fail) |
| FF_ALLOCZ_OR_GOTO(h->avctx, h->slice_table_base, |
| (big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base), fail) |
| FF_ALLOCZ_OR_GOTO(h->avctx, h->cbp_table, |
| big_mb_num * sizeof(uint16_t), fail) |
| FF_ALLOCZ_OR_GOTO(h->avctx, h->chroma_pred_mode_table, |
| big_mb_num * sizeof(uint8_t), fail) |
| FF_ALLOCZ_ARRAY_OR_GOTO(h->avctx, h->mvd_table[0], |
| row_mb_num, 16 * sizeof(uint8_t), fail); |
| FF_ALLOCZ_ARRAY_OR_GOTO(h->avctx, h->mvd_table[1], |
| row_mb_num, 16 * sizeof(uint8_t), fail); |
| h->slice_ctx[0].mvd_table[0] = h->mvd_table[0]; |
| h->slice_ctx[0].mvd_table[1] = h->mvd_table[1]; |
| |
| FF_ALLOCZ_OR_GOTO(h->avctx, h->direct_table, |
| 4 * big_mb_num * sizeof(uint8_t), fail); |
| FF_ALLOCZ_OR_GOTO(h->avctx, h->list_counts, |
| big_mb_num * sizeof(uint8_t), fail) |
| |
| memset(h->slice_table_base, -1, |
| (big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base)); |
| h->slice_table = h->slice_table_base + h->mb_stride * 2 + 1; |
| |
| FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2b_xy, |
| big_mb_num * sizeof(uint32_t), fail); |
| FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2br_xy, |
| big_mb_num * sizeof(uint32_t), fail); |
| for (y = 0; y < h->mb_height; y++) |
| for (x = 0; x < h->mb_width; x++) { |
| const int mb_xy = x + y * h->mb_stride; |
| const int b_xy = 4 * x + 4 * y * h->b_stride; |
| |
| h->mb2b_xy[mb_xy] = b_xy; |
| h->mb2br_xy[mb_xy] = 8 * (FMO ? mb_xy : (mb_xy % (2 * h->mb_stride))); |
| } |
| |
| if (!h->dequant4_coeff[0]) |
| ff_h264_init_dequant_tables(h); |
| |
| return 0; |
| |
| fail: |
| ff_h264_free_tables(h); |
| return AVERROR(ENOMEM); |
| } |
| |
| /** |
| * Init context |
| * Allocate buffers which are not shared amongst multiple threads. |
| */ |
| int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl) |
| { |
| ERContext *er = &sl->er; |
| int mb_array_size = h->mb_height * h->mb_stride; |
| int y_size = (2 * h->mb_width + 1) * (2 * h->mb_height + 1); |
| int c_size = h->mb_stride * (h->mb_height + 1); |
| int yc_size = y_size + 2 * c_size; |
| int x, y, i; |
| |
| sl->ref_cache[0][scan8[5] + 1] = |
| sl->ref_cache[0][scan8[7] + 1] = |
| sl->ref_cache[0][scan8[13] + 1] = |
| sl->ref_cache[1][scan8[5] + 1] = |
| sl->ref_cache[1][scan8[7] + 1] = |
| sl->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE; |
| |
| if (sl != h->slice_ctx) { |
| memset(er, 0, sizeof(*er)); |
| } else |
| if (CONFIG_ERROR_RESILIENCE) { |
| |
| /* init ER */ |
| er->avctx = h->avctx; |
| er->decode_mb = h264_er_decode_mb; |
| er->opaque = h; |
| er->quarter_sample = 1; |
| |
| er->mb_num = h->mb_num; |
| er->mb_width = h->mb_width; |
| er->mb_height = h->mb_height; |
| er->mb_stride = h->mb_stride; |
| er->b8_stride = h->mb_width * 2 + 1; |
| |
| // error resilience code looks cleaner with this |
| FF_ALLOCZ_OR_GOTO(h->avctx, er->mb_index2xy, |
| (h->mb_num + 1) * sizeof(int), fail); |
| |
| for (y = 0; y < h->mb_height; y++) |
| for (x = 0; x < h->mb_width; x++) |
| er->mb_index2xy[x + y * h->mb_width] = x + y * h->mb_stride; |
| |
| er->mb_index2xy[h->mb_height * h->mb_width] = (h->mb_height - 1) * |
| h->mb_stride + h->mb_width; |
| |
| FF_ALLOCZ_OR_GOTO(h->avctx, er->error_status_table, |
| mb_array_size * sizeof(uint8_t), fail); |
| |
| FF_ALLOC_OR_GOTO(h->avctx, er->er_temp_buffer, |
| h->mb_height * h->mb_stride, fail); |
| |
| FF_ALLOCZ_OR_GOTO(h->avctx, sl->dc_val_base, |
| yc_size * sizeof(int16_t), fail); |
| er->dc_val[0] = sl->dc_val_base + h->mb_width * 2 + 2; |
| er->dc_val[1] = sl->dc_val_base + y_size + h->mb_stride + 1; |
| er->dc_val[2] = er->dc_val[1] + c_size; |
| for (i = 0; i < yc_size; i++) |
| sl->dc_val_base[i] = 1024; |
| } |
| |
| return 0; |
| |
| fail: |
| return AVERROR(ENOMEM); // ff_h264_free_tables will clean up for us |
| } |
| |
| static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size, |
| int parse_extradata); |
| |
| int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size) |
| { |
| AVCodecContext *avctx = h->avctx; |
| int ret; |
| |
| if (!buf || size <= 0) |
| return -1; |
| |
| if (buf[0] == 1) { |
| int i, cnt, nalsize; |
| const unsigned char *p = buf; |
| |
| h->is_avc = 1; |
| |
| if (size < 7) { |
| av_log(avctx, AV_LOG_ERROR, |
| "avcC %d too short\n", size); |
| return AVERROR_INVALIDDATA; |
| } |
| /* sps and pps in the avcC always have length coded with 2 bytes, |
| * so put a fake nal_length_size = 2 while parsing them */ |
| h->nal_length_size = 2; |
| // Decode sps from avcC |
| cnt = *(p + 5) & 0x1f; // Number of sps |
| p += 6; |
| for (i = 0; i < cnt; i++) { |
| nalsize = AV_RB16(p) + 2; |
| if(nalsize > size - (p-buf)) |
| return AVERROR_INVALIDDATA; |
| ret = decode_nal_units(h, p, nalsize, 1); |
| if (ret < 0) { |
| av_log(avctx, AV_LOG_ERROR, |
| "Decoding sps %d from avcC failed\n", i); |
| return ret; |
| } |
| p += nalsize; |
| } |
| // Decode pps from avcC |
| cnt = *(p++); // Number of pps |
| for (i = 0; i < cnt; i++) { |
| nalsize = AV_RB16(p) + 2; |
| if(nalsize > size - (p-buf)) |
| return AVERROR_INVALIDDATA; |
| ret = decode_nal_units(h, p, nalsize, 1); |
| if (ret < 0) { |
| av_log(avctx, AV_LOG_ERROR, |
| "Decoding pps %d from avcC failed\n", i); |
| return ret; |
| } |
| p += nalsize; |
| } |
| // Store right nal length size that will be used to parse all other nals |
| h->nal_length_size = (buf[4] & 0x03) + 1; |
| } else { |
| h->is_avc = 0; |
| ret = decode_nal_units(h, buf, size, 1); |
| if (ret < 0) |
| return ret; |
| } |
| return size; |
| } |
| |
| static int h264_init_context(AVCodecContext *avctx, H264Context *h) |
| { |
| int i; |
| |
| h->avctx = avctx; |
| h->backup_width = -1; |
| h->backup_height = -1; |
| h->backup_pix_fmt = AV_PIX_FMT_NONE; |
| h->dequant_coeff_pps = -1; |
| h->current_sps_id = -1; |
| h->cur_chroma_format_idc = -1; |
| |
| h->picture_structure = PICT_FRAME; |
| h->slice_context_count = 1; |
| h->workaround_bugs = avctx->workaround_bugs; |
| h->flags = avctx->flags; |
| h->prev_poc_msb = 1 << 16; |
| h->x264_build = -1; |
| h->recovery_frame = -1; |
| h->frame_recovered = 0; |
| h->prev_frame_num = -1; |
| h->sei_fpa.frame_packing_arrangement_cancel_flag = -1; |
| |
| h->next_outputed_poc = INT_MIN; |
| for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) |
| h->last_pocs[i] = INT_MIN; |
| |
| ff_h264_reset_sei(h); |
| |
| avctx->chroma_sample_location = AVCHROMA_LOC_LEFT; |
| |
| h->nb_slice_ctx = (avctx->active_thread_type & FF_THREAD_SLICE) ? H264_MAX_THREADS : 1; |
| h->slice_ctx = av_mallocz_array(h->nb_slice_ctx, sizeof(*h->slice_ctx)); |
| if (!h->slice_ctx) { |
| h->nb_slice_ctx = 0; |
| return AVERROR(ENOMEM); |
| } |
| |
| for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) { |
| h->DPB[i].f = av_frame_alloc(); |
| if (!h->DPB[i].f) |
| return AVERROR(ENOMEM); |
| } |
| |
| h->cur_pic.f = av_frame_alloc(); |
| if (!h->cur_pic.f) |
| return AVERROR(ENOMEM); |
| |
| h->last_pic_for_ec.f = av_frame_alloc(); |
| if (!h->last_pic_for_ec.f) |
| return AVERROR(ENOMEM); |
| |
| for (i = 0; i < h->nb_slice_ctx; i++) |
| h->slice_ctx[i].h264 = h; |
| |
| return 0; |
| } |
| |
| static AVOnce h264_vlc_init = AV_ONCE_INIT; |
| |
| av_cold int ff_h264_decode_init(AVCodecContext *avctx) |
| { |
| H264Context *h = avctx->priv_data; |
| int ret; |
| |
| ret = h264_init_context(avctx, h); |
| if (ret < 0) |
| return ret; |
| |
| /* set defaults */ |
| if (!avctx->has_b_frames) |
| h->low_delay = 1; |
| |
| ret = ff_thread_once(&h264_vlc_init, ff_h264_decode_init_vlc); |
| if (ret != 0) { |
| av_log(avctx, AV_LOG_ERROR, "pthread_once has failed."); |
| return AVERROR_UNKNOWN; |
| } |
| |
| if (avctx->codec_id == AV_CODEC_ID_H264) { |
| if (avctx->ticks_per_frame == 1) { |
| if(h->avctx->time_base.den < INT_MAX/2) { |
| h->avctx->time_base.den *= 2; |
| } else |
| h->avctx->time_base.num /= 2; |
| } |
| avctx->ticks_per_frame = 2; |
| } |
| |
| if (avctx->extradata_size > 0 && avctx->extradata) { |
| ret = ff_h264_decode_extradata(h, avctx->extradata, avctx->extradata_size); |
| if (ret < 0) { |
| h264_decode_end(avctx); |
| return ret; |
| } |
| } |
| |
| if (h->sps.bitstream_restriction_flag && |
| h->avctx->has_b_frames < h->sps.num_reorder_frames) { |
| h->avctx->has_b_frames = h->sps.num_reorder_frames; |
| h->low_delay = 0; |
| } |
| |
| avctx->internal->allocate_progress = 1; |
| |
| ff_h264_flush_change(h); |
| |
| if (h->enable_er < 0 && (avctx->active_thread_type & FF_THREAD_SLICE)) |
| h->enable_er = 0; |
| |
| if (h->enable_er && (avctx->active_thread_type & FF_THREAD_SLICE)) { |
| av_log(avctx, AV_LOG_WARNING, |
| "Error resilience with slice threads is enabled. It is unsafe and unsupported and may crash. " |
| "Use it at your own risk\n"); |
| } |
| |
| return 0; |
| } |
| |
| #if HAVE_THREADS |
| static int decode_init_thread_copy(AVCodecContext *avctx) |
| { |
| H264Context *h = avctx->priv_data; |
| int ret; |
| |
| if (!avctx->internal->is_copy) |
| return 0; |
| |
| memset(h, 0, sizeof(*h)); |
| |
| ret = h264_init_context(avctx, h); |
| if (ret < 0) |
| return ret; |
| |
| h->context_initialized = 0; |
| |
| return 0; |
| } |
| #endif |
| |
| /** |
| * Run setup operations that must be run after slice header decoding. |
| * This includes finding the next displayed frame. |
| * |
| * @param h h264 master context |
| * @param setup_finished enough NALs have been read that we can call |
| * ff_thread_finish_setup() |
| */ |
| static void decode_postinit(H264Context *h, int setup_finished) |
| { |
| H264Picture *out = h->cur_pic_ptr; |
| H264Picture *cur = h->cur_pic_ptr; |
| int i, pics, out_of_order, out_idx; |
| |
| h->cur_pic_ptr->f->pict_type = h->pict_type; |
| |
| if (h->next_output_pic) |
| return; |
| |
| if (cur->field_poc[0] == INT_MAX || cur->field_poc[1] == INT_MAX) { |
| /* FIXME: if we have two PAFF fields in one packet, we can't start |
| * the next thread here. If we have one field per packet, we can. |
| * The check in decode_nal_units() is not good enough to find this |
| * yet, so we assume the worst for now. */ |
| // if (setup_finished) |
| // ff_thread_finish_setup(h->avctx); |
| if (cur->field_poc[0] == INT_MAX && cur->field_poc[1] == INT_MAX) |
| return; |
| if (h->avctx->hwaccel || h->missing_fields <=1) |
| return; |
| } |
| |
| cur->f->interlaced_frame = 0; |
| cur->f->repeat_pict = 0; |
| |
| /* Signal interlacing information externally. */ |
| /* Prioritize picture timing SEI information over used |
| * decoding process if it exists. */ |
| |
| if (h->sps.pic_struct_present_flag) { |
| switch (h->sei_pic_struct) { |
| case SEI_PIC_STRUCT_FRAME: |
| break; |
| case SEI_PIC_STRUCT_TOP_FIELD: |
| case SEI_PIC_STRUCT_BOTTOM_FIELD: |
| cur->f->interlaced_frame = 1; |
| break; |
| case SEI_PIC_STRUCT_TOP_BOTTOM: |
| case SEI_PIC_STRUCT_BOTTOM_TOP: |
| if (FIELD_OR_MBAFF_PICTURE(h)) |
| cur->f->interlaced_frame = 1; |
| else |
| // try to flag soft telecine progressive |
| cur->f->interlaced_frame = h->prev_interlaced_frame; |
| break; |
| case SEI_PIC_STRUCT_TOP_BOTTOM_TOP: |
| case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM: |
| /* Signal the possibility of telecined film externally |
| * (pic_struct 5,6). From these hints, let the applications |
| * decide if they apply deinterlacing. */ |
| cur->f->repeat_pict = 1; |
| break; |
| case SEI_PIC_STRUCT_FRAME_DOUBLING: |
| cur->f->repeat_pict = 2; |
| break; |
| case SEI_PIC_STRUCT_FRAME_TRIPLING: |
| cur->f->repeat_pict = 4; |
| break; |
| } |
| |
| if ((h->sei_ct_type & 3) && |
| h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP) |
| cur->f->interlaced_frame = (h->sei_ct_type & (1 << 1)) != 0; |
| } else { |
| /* Derive interlacing flag from used decoding process. */ |
| cur->f->interlaced_frame = FIELD_OR_MBAFF_PICTURE(h); |
| } |
| h->prev_interlaced_frame = cur->f->interlaced_frame; |
| |
| if (cur->field_poc[0] != cur->field_poc[1]) { |
| /* Derive top_field_first from field pocs. */ |
| cur->f->top_field_first = cur->field_poc[0] < cur->field_poc[1]; |
| } else { |
| if (h->sps.pic_struct_present_flag) { |
| /* Use picture timing SEI information. Even if it is a |
| * information of a past frame, better than nothing. */ |
| if (h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM || |
| h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP) |
| cur->f->top_field_first = 1; |
| else |
| cur->f->top_field_first = 0; |
| } else if (cur->f->interlaced_frame) { |
| /* Default to top field first when pic_struct_present_flag |
| * is not set but interlaced frame detected */ |
| cur->f->top_field_first = 1; |
| } else { |
| /* Most likely progressive */ |
| cur->f->top_field_first = 0; |
| } |
| } |
| |
| if (h->sei_frame_packing_present && |
| h->frame_packing_arrangement_type >= 0 && |
| h->frame_packing_arrangement_type <= 6 && |
| h->content_interpretation_type > 0 && |
| h->content_interpretation_type < 3) { |
| AVStereo3D *stereo = av_stereo3d_create_side_data(cur->f); |
| if (stereo) { |
| switch (h->frame_packing_arrangement_type) { |
| case 0: |
| stereo->type = AV_STEREO3D_CHECKERBOARD; |
| break; |
| case 1: |
| stereo->type = AV_STEREO3D_COLUMNS; |
| break; |
| case 2: |
| stereo->type = AV_STEREO3D_LINES; |
| break; |
| case 3: |
| if (h->quincunx_subsampling) |
| stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX; |
| else |
| stereo->type = AV_STEREO3D_SIDEBYSIDE; |
| break; |
| case 4: |
| stereo->type = AV_STEREO3D_TOPBOTTOM; |
| break; |
| case 5: |
| stereo->type = AV_STEREO3D_FRAMESEQUENCE; |
| break; |
| case 6: |
| stereo->type = AV_STEREO3D_2D; |
| break; |
| } |
| |
| if (h->content_interpretation_type == 2) |
| stereo->flags = AV_STEREO3D_FLAG_INVERT; |
| } |
| } |
| |
| if (h->sei_display_orientation_present && |
| (h->sei_anticlockwise_rotation || h->sei_hflip || h->sei_vflip)) { |
| double angle = h->sei_anticlockwise_rotation * 360 / (double) (1 << 16); |
| AVFrameSideData *rotation = av_frame_new_side_data(cur->f, |
| AV_FRAME_DATA_DISPLAYMATRIX, |
| sizeof(int32_t) * 9); |
| if (rotation) { |
| av_display_rotation_set((int32_t *)rotation->data, angle); |
| av_display_matrix_flip((int32_t *)rotation->data, |
| h->sei_hflip, h->sei_vflip); |
| } |
| } |
| |
| if (h->sei_reguserdata_afd_present) { |
| AVFrameSideData *sd = av_frame_new_side_data(cur->f, AV_FRAME_DATA_AFD, |
| sizeof(uint8_t)); |
| |
| if (sd) { |
| *sd->data = h->active_format_description; |
| h->sei_reguserdata_afd_present = 0; |
| } |
| } |
| |
| if (h->a53_caption) { |
| AVFrameSideData *sd = av_frame_new_side_data(cur->f, |
| AV_FRAME_DATA_A53_CC, |
| h->a53_caption_size); |
| if (sd) |
| memcpy(sd->data, h->a53_caption, h->a53_caption_size); |
| av_freep(&h->a53_caption); |
| h->a53_caption_size = 0; |
| h->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS; |
| } |
| |
| cur->mmco_reset = h->mmco_reset; |
| h->mmco_reset = 0; |
| |
| // FIXME do something with unavailable reference frames |
| |
| /* Sort B-frames into display order */ |
| if (h->sps.bitstream_restriction_flag || |
| h->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT) { |
| h->avctx->has_b_frames = FFMAX(h->avctx->has_b_frames, h->sps.num_reorder_frames); |
| } |
| h->low_delay = !h->avctx->has_b_frames; |
| |
| for (i = 0; 1; i++) { |
| if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){ |
| if(i) |
| h->last_pocs[i-1] = cur->poc; |
| break; |
| } else if(i) { |
| h->last_pocs[i-1]= h->last_pocs[i]; |
| } |
| } |
| out_of_order = MAX_DELAYED_PIC_COUNT - i; |
| if( cur->f->pict_type == AV_PICTURE_TYPE_B |
| || (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2)) |
| out_of_order = FFMAX(out_of_order, 1); |
| if (out_of_order == MAX_DELAYED_PIC_COUNT) { |
| av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]); |
| for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++) |
| h->last_pocs[i] = INT_MIN; |
| h->last_pocs[0] = cur->poc; |
| cur->mmco_reset = 1; |
| } else if(h->avctx->has_b_frames < out_of_order && !h->sps.bitstream_restriction_flag){ |
| av_log(h->avctx, AV_LOG_INFO, "Increasing reorder buffer to %d\n", out_of_order); |
| h->avctx->has_b_frames = out_of_order; |
| h->low_delay = 0; |
| } |
| |
| pics = 0; |
| while (h->delayed_pic[pics]) |
| pics++; |
| |
| av_assert0(pics <= MAX_DELAYED_PIC_COUNT); |
| |
| h->delayed_pic[pics++] = cur; |
| if (cur->reference == 0) |
| cur->reference = DELAYED_PIC_REF; |
| |
| out = h->delayed_pic[0]; |
| out_idx = 0; |
| for (i = 1; h->delayed_pic[i] && |
| !h->delayed_pic[i]->f->key_frame && |
| !h->delayed_pic[i]->mmco_reset; |
| i++) |
| if (h->delayed_pic[i]->poc < out->poc) { |
| out = h->delayed_pic[i]; |
| out_idx = i; |
| } |
| if (h->avctx->has_b_frames == 0 && |
| (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset)) |
| h->next_outputed_poc = INT_MIN; |
| out_of_order = out->poc < h->next_outputed_poc; |
| |
| if (out_of_order || pics > h->avctx->has_b_frames) { |
| out->reference &= ~DELAYED_PIC_REF; |
| // for frame threading, the owner must be the second field's thread or |
| // else the first thread can release the picture and reuse it unsafely |
| for (i = out_idx; h->delayed_pic[i]; i++) |
| h->delayed_pic[i] = h->delayed_pic[i + 1]; |
| } |
| if (!out_of_order && pics > h->avctx->has_b_frames) { |
| h->next_output_pic = out; |
| if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset)) { |
| h->next_outputed_poc = INT_MIN; |
| } else |
| h->next_outputed_poc = out->poc; |
| } else { |
| av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : ""); |
| } |
| |
| if (h->next_output_pic) { |
| if (h->next_output_pic->recovered) { |
| // We have reached an recovery point and all frames after it in |
| // display order are "recovered". |
| h->frame_recovered |= FRAME_RECOVERED_SEI; |
| } |
| h->next_output_pic->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_SEI); |
| } |
| |
| if (setup_finished && !h->avctx->hwaccel) { |
| ff_thread_finish_setup(h->avctx); |
| |
| if (h->avctx->active_thread_type & FF_THREAD_FRAME) |
| h->setup_finished = 1; |
| } |
| } |
| |
| int ff_pred_weight_table(H264Context *h, H264SliceContext *sl) |
| { |
| int list, i; |
| int luma_def, chroma_def; |
| |
| sl->use_weight = 0; |
| sl->use_weight_chroma = 0; |
| sl->luma_log2_weight_denom = get_ue_golomb(&sl->gb); |
| if (h->sps.chroma_format_idc) |
| sl->chroma_log2_weight_denom = get_ue_golomb(&sl->gb); |
| |
| if (sl->luma_log2_weight_denom > 7U) { |
| av_log(h->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is out of range\n", sl->luma_log2_weight_denom); |
| sl->luma_log2_weight_denom = 0; |
| } |
| if (sl->chroma_log2_weight_denom > 7U) { |
| av_log(h->avctx, AV_LOG_ERROR, "chroma_log2_weight_denom %d is out of range\n", sl->chroma_log2_weight_denom); |
| sl->chroma_log2_weight_denom = 0; |
| } |
| |
| luma_def = 1 << sl->luma_log2_weight_denom; |
| chroma_def = 1 << sl->chroma_log2_weight_denom; |
| |
| for (list = 0; list < 2; list++) { |
| sl->luma_weight_flag[list] = 0; |
| sl->chroma_weight_flag[list] = 0; |
| for (i = 0; i < sl->ref_count[list]; i++) { |
| int luma_weight_flag, chroma_weight_flag; |
| |
| luma_weight_flag = get_bits1(&sl->gb); |
| if (luma_weight_flag) { |
| sl->luma_weight[i][list][0] = get_se_golomb(&sl->gb); |
| sl->luma_weight[i][list][1] = get_se_golomb(&sl->gb); |
| if (sl->luma_weight[i][list][0] != luma_def || |
| sl->luma_weight[i][list][1] != 0) { |
| sl->use_weight = 1; |
| sl->luma_weight_flag[list] = 1; |
| } |
| } else { |
| sl->luma_weight[i][list][0] = luma_def; |
| sl->luma_weight[i][list][1] = 0; |
| } |
| |
| if (h->sps.chroma_format_idc) { |
| chroma_weight_flag = get_bits1(&sl->gb); |
| if (chroma_weight_flag) { |
| int j; |
| for (j = 0; j < 2; j++) { |
| sl->chroma_weight[i][list][j][0] = get_se_golomb(&sl->gb); |
| sl->chroma_weight[i][list][j][1] = get_se_golomb(&sl->gb); |
| if (sl->chroma_weight[i][list][j][0] != chroma_def || |
| sl->chroma_weight[i][list][j][1] != 0) { |
| sl->use_weight_chroma = 1; |
| sl->chroma_weight_flag[list] = 1; |
| } |
| } |
| } else { |
| int j; |
| for (j = 0; j < 2; j++) { |
| sl->chroma_weight[i][list][j][0] = chroma_def; |
| sl->chroma_weight[i][list][j][1] = 0; |
| } |
| } |
| } |
| } |
| if (sl->slice_type_nos != AV_PICTURE_TYPE_B) |
| break; |
| } |
| sl->use_weight = sl->use_weight || sl->use_weight_chroma; |
| return 0; |
| } |
| |
| /** |
| * instantaneous decoder refresh. |
| */ |
| static void idr(H264Context *h) |
| { |
| int i; |
| ff_h264_remove_all_refs(h); |
| h->prev_frame_num = |
| h->prev_frame_num_offset = 0; |
| h->prev_poc_msb = 1<<16; |
| h->prev_poc_lsb = 0; |
| for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) |
| h->last_pocs[i] = INT_MIN; |
| } |
| |
| /* forget old pics after a seek */ |
| void ff_h264_flush_change(H264Context *h) |
| { |
| int i, j; |
| |
| h->next_outputed_poc = INT_MIN; |
| h->prev_interlaced_frame = 1; |
| idr(h); |
| |
| h->prev_frame_num = -1; |
| if (h->cur_pic_ptr) { |
| h->cur_pic_ptr->reference = 0; |
| for (j=i=0; h->delayed_pic[i]; i++) |
| if (h->delayed_pic[i] != h->cur_pic_ptr) |
| h->delayed_pic[j++] = h->delayed_pic[i]; |
| h->delayed_pic[j] = NULL; |
| } |
| ff_h264_unref_picture(h, &h->last_pic_for_ec); |
| |
| h->first_field = 0; |
| ff_h264_reset_sei(h); |
| h->recovery_frame = -1; |
| h->frame_recovered = 0; |
| h->current_slice = 0; |
| h->mmco_reset = 1; |
| for (i = 0; i < h->nb_slice_ctx; i++) |
| h->slice_ctx[i].list_count = 0; |
| } |
| |
| /* forget old pics after a seek */ |
| static void flush_dpb(AVCodecContext *avctx) |
| { |
| H264Context *h = avctx->priv_data; |
| int i; |
| |
| memset(h->delayed_pic, 0, sizeof(h->delayed_pic)); |
| |
| ff_h264_flush_change(h); |
| |
| for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) |
| ff_h264_unref_picture(h, &h->DPB[i]); |
| h->cur_pic_ptr = NULL; |
| ff_h264_unref_picture(h, &h->cur_pic); |
| |
| h->mb_y = 0; |
| |
| ff_h264_free_tables(h); |
| h->context_initialized = 0; |
| } |
| |
| int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc) |
| { |
| const int max_frame_num = 1 << h->sps.log2_max_frame_num; |
| int field_poc[2]; |
| |
| h->frame_num_offset = h->prev_frame_num_offset; |
| if (h->frame_num < h->prev_frame_num) |
| h->frame_num_offset += max_frame_num; |
| |
| if (h->sps.poc_type == 0) { |
| const int max_poc_lsb = 1 << h->sps.log2_max_poc_lsb; |
| |
| if (h->poc_lsb < h->prev_poc_lsb && |
| h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb / 2) |
| h->poc_msb = h->prev_poc_msb + max_poc_lsb; |
| else if (h->poc_lsb > h->prev_poc_lsb && |
| h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb / 2) |
| h->poc_msb = h->prev_poc_msb - max_poc_lsb; |
| else |
| h->poc_msb = h->prev_poc_msb; |
| field_poc[0] = |
| field_poc[1] = h->poc_msb + h->poc_lsb; |
| if (h->picture_structure == PICT_FRAME) |
| field_poc[1] += h->delta_poc_bottom; |
| } else if (h->sps.poc_type == 1) { |
| int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc; |
| int i; |
| |
| if (h->sps.poc_cycle_length != 0) |
| abs_frame_num = h->frame_num_offset + h->frame_num; |
| else |
| abs_frame_num = 0; |
| |
| if (h->nal_ref_idc == 0 && abs_frame_num > 0) |
| abs_frame_num--; |
| |
| expected_delta_per_poc_cycle = 0; |
| for (i = 0; i < h->sps.poc_cycle_length; i++) |
| // FIXME integrate during sps parse |
| expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[i]; |
| |
| if (abs_frame_num > 0) { |
| int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length; |
| int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length; |
| |
| expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle; |
| for (i = 0; i <= frame_num_in_poc_cycle; i++) |
| expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[i]; |
| } else |
| expectedpoc = 0; |
| |
| if (h->nal_ref_idc == 0) |
| expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic; |
| |
| field_poc[0] = expectedpoc + h->delta_poc[0]; |
| field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field; |
| |
| if (h->picture_structure == PICT_FRAME) |
| field_poc[1] += h->delta_poc[1]; |
| } else { |
| int poc = 2 * (h->frame_num_offset + h->frame_num); |
| |
| if (!h->nal_ref_idc) |
| poc--; |
| |
| field_poc[0] = poc; |
| field_poc[1] = poc; |
| } |
| |
| if (h->picture_structure != PICT_BOTTOM_FIELD) |
| pic_field_poc[0] = field_poc[0]; |
| if (h->picture_structure != PICT_TOP_FIELD) |
| pic_field_poc[1] = field_poc[1]; |
| *pic_poc = FFMIN(pic_field_poc[0], pic_field_poc[1]); |
| |
| return 0; |
| } |
| |
| /** |
| * Compute profile from profile_idc and constraint_set?_flags. |
| * |
| * @param sps SPS |
| * |
| * @return profile as defined by FF_PROFILE_H264_* |
| */ |
| int ff_h264_get_profile(SPS *sps) |
| { |
| int profile = sps->profile_idc; |
| |
| switch (sps->profile_idc) { |
| case FF_PROFILE_H264_BASELINE: |
| // constraint_set1_flag set to 1 |
| profile |= (sps->constraint_set_flags & 1 << 1) ? FF_PROFILE_H264_CONSTRAINED : 0; |
| break; |
| case FF_PROFILE_H264_HIGH_10: |
| case FF_PROFILE_H264_HIGH_422: |
| case FF_PROFILE_H264_HIGH_444_PREDICTIVE: |
| // constraint_set3_flag set to 1 |
| profile |= (sps->constraint_set_flags & 1 << 3) ? FF_PROFILE_H264_INTRA : 0; |
| break; |
| } |
| |
| return profile; |
| } |
| |
| int ff_set_ref_count(H264Context *h, H264SliceContext *sl) |
| { |
| int ref_count[2], list_count; |
| int num_ref_idx_active_override_flag; |
| |
| // set defaults, might be overridden a few lines later |
| ref_count[0] = h->pps.ref_count[0]; |
| ref_count[1] = h->pps.ref_count[1]; |
| |
| if (sl->slice_type_nos != AV_PICTURE_TYPE_I) { |
| unsigned max[2]; |
| max[0] = max[1] = h->picture_structure == PICT_FRAME ? 15 : 31; |
| |
| if (sl->slice_type_nos == AV_PICTURE_TYPE_B) |
| sl->direct_spatial_mv_pred = get_bits1(&sl->gb); |
| num_ref_idx_active_override_flag = get_bits1(&sl->gb); |
| |
| if (num_ref_idx_active_override_flag) { |
| ref_count[0] = get_ue_golomb(&sl->gb) + 1; |
| if (sl->slice_type_nos == AV_PICTURE_TYPE_B) { |
| ref_count[1] = get_ue_golomb(&sl->gb) + 1; |
| } else |
| // full range is spec-ok in this case, even for frames |
| ref_count[1] = 1; |
| } |
| |
| if (ref_count[0]-1 > max[0] || ref_count[1]-1 > max[1]){ |
| av_log(h->avctx, AV_LOG_ERROR, "reference overflow %u > %u or %u > %u\n", ref_count[0]-1, max[0], ref_count[1]-1, max[1]); |
| sl->ref_count[0] = sl->ref_count[1] = 0; |
| sl->list_count = 0; |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (sl->slice_type_nos == AV_PICTURE_TYPE_B) |
| list_count = 2; |
| else |
| list_count = 1; |
| } else { |
| list_count = 0; |
| ref_count[0] = ref_count[1] = 0; |
| } |
| |
| if (list_count != sl->list_count || |
| ref_count[0] != sl->ref_count[0] || |
| ref_count[1] != sl->ref_count[1]) { |
| sl->ref_count[0] = ref_count[0]; |
| sl->ref_count[1] = ref_count[1]; |
| sl->list_count = list_count; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static const uint8_t start_code[] = { 0x00, 0x00, 0x01 }; |
| |
| static int get_bit_length(H264Context *h, const uint8_t *buf, |
| const uint8_t *ptr, int dst_length, |
| int i, int next_avc) |
| { |
| if ((h->workaround_bugs & FF_BUG_AUTODETECT) && i + 3 < next_avc && |
| buf[i] == 0x00 && buf[i + 1] == 0x00 && |
| buf[i + 2] == 0x01 && buf[i + 3] == 0xE0) |
| h->workaround_bugs |= FF_BUG_TRUNCATED; |
| |
| if (!(h->workaround_bugs & FF_BUG_TRUNCATED)) |
| while (dst_length > 0 && ptr[dst_length - 1] == 0) |
| dst_length--; |
| |
| if (!dst_length) |
| return 0; |
| |
| return 8 * dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1); |
| } |
| |
| static int get_last_needed_nal(H264Context *h, const uint8_t *buf, int buf_size) |
| { |
| int next_avc = h->is_avc ? 0 : buf_size; |
| int nal_index = 0; |
| int buf_index = 0; |
| int nals_needed = 0; |
| int first_slice = 0; |
| |
| while(1) { |
| GetBitContext gb; |
| int nalsize = 0; |
| int dst_length, bit_length, consumed; |
| const uint8_t *ptr; |
| |
| if (buf_index >= next_avc) { |
| nalsize = get_avc_nalsize(h, buf, buf_size, &buf_index); |
| if (nalsize < 0) |
| break; |
| next_avc = buf_index + nalsize; |
| } else { |
| buf_index = find_start_code(buf, buf_size, buf_index, next_avc); |
| if (buf_index >= buf_size) |
| break; |
| if (buf_index >= next_avc) |
| continue; |
| } |
| |
| ptr = ff_h264_decode_nal(h, &h->slice_ctx[0], buf + buf_index, &dst_length, &consumed, |
| next_avc - buf_index); |
| |
| if (!ptr || dst_length < 0) |
| return AVERROR_INVALIDDATA; |
| |
| buf_index += consumed; |
| |
| bit_length = get_bit_length(h, buf, ptr, dst_length, |
| buf_index, next_avc); |
| nal_index++; |
| |
| /* packets can sometimes contain multiple PPS/SPS, |
| * e.g. two PAFF field pictures in one packet, or a demuxer |
| * which splits NALs strangely if so, when frame threading we |
| * can't start the next thread until we've read all of them */ |
| switch (h->nal_unit_type) { |
| case NAL_SPS: |
| case NAL_PPS: |
| nals_needed = nal_index; |
| break; |
| case NAL_DPA: |
| case NAL_IDR_SLICE: |
| case NAL_SLICE: |
| init_get_bits(&gb, ptr, bit_length); |
| if (!get_ue_golomb_long(&gb) || // first_mb_in_slice |
| !first_slice || |
| first_slice != h->nal_unit_type) |
| nals_needed = nal_index; |
| if (!first_slice) |
| first_slice = h->nal_unit_type; |
| } |
| } |
| |
| return nals_needed; |
| } |
| |
| static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size, |
| int parse_extradata) |
| { |
| AVCodecContext *const avctx = h->avctx; |
| H264SliceContext *sl; |
| int buf_index; |
| unsigned context_count; |
| int next_avc; |
| int nals_needed = 0; ///< number of NALs that need decoding before the next frame thread starts |
| int nal_index; |
| int idr_cleared=0; |
| int ret = 0; |
| |
| h->nal_unit_type= 0; |
| |
| if(!h->slice_context_count) |
| h->slice_context_count= 1; |
| h->max_contexts = h->slice_context_count; |
| if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS)) { |
| h->current_slice = 0; |
| if (!h->first_field) |
| h->cur_pic_ptr = NULL; |
| ff_h264_reset_sei(h); |
| } |
| |
| if (h->nal_length_size == 4) { |
| if (buf_size > 8 && AV_RB32(buf) == 1 && AV_RB32(buf+5) > (unsigned)buf_size) { |
| h->is_avc = 0; |
| }else if(buf_size > 3 && AV_RB32(buf) > 1 && AV_RB32(buf) <= (unsigned)buf_size) |
| h->is_avc = 1; |
| } |
| |
| if (avctx->active_thread_type & FF_THREAD_FRAME) |
| nals_needed = get_last_needed_nal(h, buf, buf_size); |
| |
| { |
| buf_index = 0; |
| context_count = 0; |
| next_avc = h->is_avc ? 0 : buf_size; |
| nal_index = 0; |
| for (;;) { |
| int consumed; |
| int dst_length; |
| int bit_length; |
| const uint8_t *ptr; |
| int nalsize = 0; |
| int err; |
| |
| if (buf_index >= next_avc) { |
| nalsize = get_avc_nalsize(h, buf, buf_size, &buf_index); |
| if (nalsize < 0) |
| break; |
| next_avc = buf_index + nalsize; |
| } else { |
| buf_index = find_start_code(buf, buf_size, buf_index, next_avc); |
| if (buf_index >= buf_size) |
| break; |
| if (buf_index >= next_avc) |
| continue; |
| } |
| |
| sl = &h->slice_ctx[context_count]; |
| |
| ptr = ff_h264_decode_nal(h, sl, buf + buf_index, &dst_length, |
| &consumed, next_avc - buf_index); |
| if (!ptr || dst_length < 0) { |
| ret = -1; |
| goto end; |
| } |
| |
| bit_length = get_bit_length(h, buf, ptr, dst_length, |
| buf_index + consumed, next_avc); |
| |
| if (h->avctx->debug & FF_DEBUG_STARTCODE) |
| av_log(h->avctx, AV_LOG_DEBUG, |
| "NAL %d/%d at %d/%d length %d\n", |
| h->nal_unit_type, h->nal_ref_idc, buf_index, buf_size, dst_length); |
| |
| if (h->is_avc && (nalsize != consumed) && nalsize) |
| av_log(h->avctx, AV_LOG_DEBUG, |
| "AVC: Consumed only %d bytes instead of %d\n", |
| consumed, nalsize); |
| |
| buf_index += consumed; |
| nal_index++; |
| |
| if (avctx->skip_frame >= AVDISCARD_NONREF && |
| h->nal_ref_idc == 0 && |
| h->nal_unit_type != NAL_SEI) |
| continue; |
| |
| again: |
| /* Ignore per frame NAL unit type during extradata |
| * parsing. Decoding slices is not possible in codec init |
| * with frame-mt */ |
| if (parse_extradata) { |
| switch (h->nal_unit_type) { |
| case NAL_IDR_SLICE: |
| case NAL_SLICE: |
| case NAL_DPA: |
| case NAL_DPB: |
| case NAL_DPC: |
| av_log(h->avctx, AV_LOG_WARNING, |
| "Ignoring NAL %d in global header/extradata\n", |
| h->nal_unit_type); |
| // fall through to next case |
| case NAL_AUXILIARY_SLICE: |
| h->nal_unit_type = NAL_FF_IGNORE; |
| } |
| } |
| |
| err = 0; |
| |
| switch (h->nal_unit_type) { |
| case NAL_IDR_SLICE: |
| if ((ptr[0] & 0xFC) == 0x98) { |
| av_log(h->avctx, AV_LOG_ERROR, "Invalid inter IDR frame\n"); |
| h->next_outputed_poc = INT_MIN; |
| ret = -1; |
| goto end; |
| } |
| if (h->nal_unit_type != NAL_IDR_SLICE) { |
| av_log(h->avctx, AV_LOG_ERROR, |
| "Invalid mix of idr and non-idr slices\n"); |
| ret = -1; |
| goto end; |
| } |
| if(!idr_cleared) { |
| if (h->current_slice && (avctx->active_thread_type & FF_THREAD_SLICE)) { |
| av_log(h, AV_LOG_ERROR, "invalid mixed IDR / non IDR frames cannot be decoded in slice multithreading mode\n"); |
| ret = AVERROR_INVALIDDATA; |
| goto end; |
| } |
| idr(h); // FIXME ensure we don't lose some frames if there is reordering |
| } |
| idr_cleared = 1; |
| h->has_recovery_point = 1; |
| case NAL_SLICE: |
| init_get_bits(&sl->gb, ptr, bit_length); |
| |
| if ( nals_needed >= nal_index |
| || (!(avctx->active_thread_type & FF_THREAD_FRAME) && !context_count)) |
| h->au_pps_id = -1; |
| |
| if ((err = ff_h264_decode_slice_header(h, sl))) |
| break; |
| |
| if (h->sei_recovery_frame_cnt >= 0) { |
| if (h->frame_num != h->sei_recovery_frame_cnt || sl->slice_type_nos != AV_PICTURE_TYPE_I) |
| h->valid_recovery_point = 1; |
| |
| if ( h->recovery_frame < 0 |
| || av_mod_uintp2(h->recovery_frame - h->frame_num, h->sps.log2_max_frame_num) > h->sei_recovery_frame_cnt) { |
| h->recovery_frame = av_mod_uintp2(h->frame_num + h->sei_recovery_frame_cnt, h->sps.log2_max_frame_num); |
| |
| if (!h->valid_recovery_point) |
| h->recovery_frame = h->frame_num; |
| } |
| } |
| |
| h->cur_pic_ptr->f->key_frame |= |
| (h->nal_unit_type == NAL_IDR_SLICE); |
| |
| if (h->nal_unit_type == NAL_IDR_SLICE || |
| h->recovery_frame == h->frame_num) { |
| h->recovery_frame = -1; |
| h->cur_pic_ptr->recovered = 1; |
| } |
| // If we have an IDR, all frames after it in decoded order are |
| // "recovered". |
| if (h->nal_unit_type == NAL_IDR_SLICE) |
| h->frame_recovered |= FRAME_RECOVERED_IDR; |
| #if 1 |
| h->cur_pic_ptr->recovered |= h->frame_recovered; |
| #else |
| h->cur_pic_ptr->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_IDR); |
| #endif |
| |
| if (h->current_slice == 1) { |
| if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS)) |
| decode_postinit(h, nal_index >= nals_needed); |
| |
| if (h->avctx->hwaccel && |
| (ret = h->avctx->hwaccel->start_frame(h->avctx, buf, buf_size)) < 0) |
| goto end; |
| #if FF_API_CAP_VDPAU |
| if (CONFIG_H264_VDPAU_DECODER && |
| h->avctx->codec->capabilities & AV_CODEC_CAP_HWACCEL_VDPAU) |
| ff_vdpau_h264_picture_start(h); |
| #endif |
| } |
| |
| if (sl->redundant_pic_count == 0) { |
| if (avctx->hwaccel) { |
| ret = avctx->hwaccel->decode_slice(avctx, |
| &buf[buf_index - consumed], |
| consumed); |
| if (ret < 0) |
| goto end; |
| #if FF_API_CAP_VDPAU |
| } else if (CONFIG_H264_VDPAU_DECODER && |
| h->avctx->codec->capabilities & AV_CODEC_CAP_HWACCEL_VDPAU) { |
| ff_vdpau_add_data_chunk(h->cur_pic_ptr->f->data[0], |
| start_code, |
| sizeof(start_code)); |
| ff_vdpau_add_data_chunk(h->cur_pic_ptr->f->data[0], |
| &buf[buf_index - consumed], |
| consumed); |
| #endif |
| } else |
| context_count++; |
| } |
| break; |
| case NAL_DPA: |
| case NAL_DPB: |
| case NAL_DPC: |
| avpriv_request_sample(avctx, "data partitioning"); |
| break; |
| case NAL_SEI: |
| init_get_bits(&h->gb, ptr, bit_length); |
| ret = ff_h264_decode_sei(h); |
| if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) |
| goto end; |
| break; |
| case NAL_SPS: |
| init_get_bits(&h->gb, ptr, bit_length); |
| if (ff_h264_decode_seq_parameter_set(h, 0) >= 0) |
| break; |
| if (h->is_avc ? nalsize : 1) { |
| av_log(h->avctx, AV_LOG_DEBUG, |
| "SPS decoding failure, trying again with the complete NAL\n"); |
| if (h->is_avc) |
| av_assert0(next_avc - buf_index + consumed == nalsize); |
| if ((next_avc - buf_index + consumed - 1) >= INT_MAX/8) |
| break; |
| init_get_bits(&h->gb, &buf[buf_index + 1 - consumed], |
| 8*(next_avc - buf_index + consumed - 1)); |
| if (ff_h264_decode_seq_parameter_set(h, 0) >= 0) |
| break; |
| } |
| init_get_bits(&h->gb, ptr, bit_length); |
| ff_h264_decode_seq_parameter_set(h, 1); |
| |
| break; |
| case NAL_PPS: |
| init_get_bits(&h->gb, ptr, bit_length); |
| ret = ff_h264_decode_picture_parameter_set(h, bit_length); |
| if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) |
| goto end; |
| break; |
| case NAL_AUD: |
| case NAL_END_SEQUENCE: |
| case NAL_END_STREAM: |
| case NAL_FILLER_DATA: |
| case NAL_SPS_EXT: |
| case NAL_AUXILIARY_SLICE: |
| break; |
| case NAL_FF_IGNORE: |
| break; |
| default: |
| av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", |
| h->nal_unit_type, bit_length); |
| } |
| |
| if (context_count == h->max_contexts) { |
| ret = ff_h264_execute_decode_slices(h, context_count); |
| if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) |
| goto end; |
| context_count = 0; |
| } |
| |
| if (err < 0 || err == SLICE_SKIPED) { |
| if (err < 0) |
| av_log(h->avctx, AV_LOG_ERROR, "decode_slice_header error\n"); |
| sl->ref_count[0] = sl->ref_count[1] = sl->list_count = 0; |
| } else if (err == SLICE_SINGLETHREAD) { |
| if (context_count > 1) { |
| ret = ff_h264_execute_decode_slices(h, context_count - 1); |
| if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) |
| goto end; |
| context_count = 0; |
| } |
| /* Slice could not be decoded in parallel mode, restart. Note |
| * that rbsp_buffer is not transferred, but since we no longer |
| * run in parallel mode this should not be an issue. */ |
| sl = &h->slice_ctx[0]; |
| goto again; |
| } |
| } |
| } |
| if (context_count) { |
| ret = ff_h264_execute_decode_slices(h, context_count); |
| if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) |
| goto end; |
| } |
| |
| ret = 0; |
| end: |
| /* clean up */ |
| if (h->cur_pic_ptr && !h->droppable) { |
| ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, |
| h->picture_structure == PICT_BOTTOM_FIELD); |
| } |
| |
| return (ret < 0) ? ret : buf_index; |
| } |
| |
| /** |
| * Return the number of bytes consumed for building the current frame. |
| */ |
| static int get_consumed_bytes(int pos, int buf_size) |
| { |
| if (pos == 0) |
| pos = 1; // avoid infinite loops (I doubt that is needed but...) |
| if (pos + 10 > buf_size) |
| pos = buf_size; // oops ;) |
| |
| return pos; |
| } |
| |
| static int output_frame(H264Context *h, AVFrame *dst, H264Picture *srcp) |
| { |
| AVFrame *src = srcp->f; |
| const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(src->format); |
| int i; |
| int ret = av_frame_ref(dst, src); |
| if (ret < 0) |
| return ret; |
| |
| av_dict_set(&dst->metadata, "stereo_mode", ff_h264_sei_stereo_mode(h), 0); |
| |
| h->backup_width = h->avctx->width; |
| h->backup_height = h->avctx->height; |
| h->backup_pix_fmt = h->avctx->pix_fmt; |
| |
| h->avctx->width = dst->width; |
| h->avctx->height = dst->height; |
| h->avctx->pix_fmt = dst->format; |
| |
| if (srcp->sei_recovery_frame_cnt == 0) |
| dst->key_frame = 1; |
| if (!srcp->crop) |
| return 0; |
| |
| for (i = 0; i < desc->nb_components; i++) { |
| int hshift = (i > 0) ? desc->log2_chroma_w : 0; |
| int vshift = (i > 0) ? desc->log2_chroma_h : 0; |
| int off = ((srcp->crop_left >> hshift) << h->pixel_shift) + |
| (srcp->crop_top >> vshift) * dst->linesize[i]; |
| dst->data[i] += off; |
| } |
| return 0; |
| } |
| |
| static int is_extra(const uint8_t *buf, int buf_size) |
| { |
| int cnt= buf[5]&0x1f; |
| const uint8_t *p= buf+6; |
| while(cnt--){ |
| int nalsize= AV_RB16(p) + 2; |
| if(nalsize > buf_size - (p-buf) || p[2]!=0x67) |
| return 0; |
| p += nalsize; |
| } |
| cnt = *(p++); |
| if(!cnt) |
| return 0; |
| while(cnt--){ |
| int nalsize= AV_RB16(p) + 2; |
| if(nalsize > buf_size - (p-buf) || p[2]!=0x68) |
| return 0; |
| p += nalsize; |
| } |
| return 1; |
| } |
| |
| static int h264_decode_frame(AVCodecContext *avctx, void *data, |
| int *got_frame, AVPacket *avpkt) |
| { |
| const uint8_t *buf = avpkt->data; |
| int buf_size = avpkt->size; |
| H264Context *h = avctx->priv_data; |
| AVFrame *pict = data; |
| int buf_index = 0; |
| H264Picture *out; |
| int i, out_idx; |
| int ret; |
| |
| h->flags = avctx->flags; |
| h->setup_finished = 0; |
| |
| if (h->backup_width != -1) { |
| avctx->width = h->backup_width; |
| h->backup_width = -1; |
| } |
| if (h->backup_height != -1) { |
| avctx->height = h->backup_height; |
| h->backup_height = -1; |
| } |
| if (h->backup_pix_fmt != AV_PIX_FMT_NONE) { |
| avctx->pix_fmt = h->backup_pix_fmt; |
| h->backup_pix_fmt = AV_PIX_FMT_NONE; |
| } |
| |
| ff_h264_unref_picture(h, &h->last_pic_for_ec); |
| |
| /* end of stream, output what is still in the buffers */ |
| if (buf_size == 0) { |
| out: |
| |
| h->cur_pic_ptr = NULL; |
| h->first_field = 0; |
| |
| // FIXME factorize this with the output code below |
| out = h->delayed_pic[0]; |
| out_idx = 0; |
| for (i = 1; |
| h->delayed_pic[i] && |
| !h->delayed_pic[i]->f->key_frame && |
| !h->delayed_pic[i]->mmco_reset; |
| i++) |
| if (h->delayed_pic[i]->poc < out->poc) { |
| out = h->delayed_pic[i]; |
| out_idx = i; |
| } |
| |
| for (i = out_idx; h->delayed_pic[i]; i++) |
| h->delayed_pic[i] = h->delayed_pic[i + 1]; |
| |
| if (out) { |
| out->reference &= ~DELAYED_PIC_REF; |
| ret = output_frame(h, pict, out); |
| if (ret < 0) |
| return ret; |
| *got_frame = 1; |
| } |
| |
| return buf_index; |
| } |
| if (h->is_avc && av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, NULL)) { |
| int side_size; |
| uint8_t *side = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, &side_size); |
| if (is_extra(side, side_size)) |
| ff_h264_decode_extradata(h, side, side_size); |
| } |
| if(h->is_avc && buf_size >= 9 && buf[0]==1 && buf[2]==0 && (buf[4]&0xFC)==0xFC && (buf[5]&0x1F) && buf[8]==0x67){ |
| if (is_extra(buf, buf_size)) |
| return ff_h264_decode_extradata(h, buf, buf_size); |
| } |
| |
| buf_index = decode_nal_units(h, buf, buf_size, 0); |
| if (buf_index < 0) |
| return AVERROR_INVALIDDATA; |
| |
| if (!h->cur_pic_ptr && h->nal_unit_type == NAL_END_SEQUENCE) { |
| av_assert0(buf_index <= buf_size); |
| goto out; |
| } |
| |
| if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) && !h->cur_pic_ptr) { |
| if (avctx->skip_frame >= AVDISCARD_NONREF || |
| buf_size >= 4 && !memcmp("Q264", buf, 4)) |
| return buf_size; |
| av_log(avctx, AV_LOG_ERROR, "no frame!\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) || |
| (h->mb_y >= h->mb_height && h->mb_height)) { |
| if (avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) |
| decode_postinit(h, 1); |
| |
| if ((ret = ff_h264_field_end(h, &h->slice_ctx[0], 0)) < 0) |
| return ret; |
| |
| /* Wait for second field. */ |
| *got_frame = 0; |
| if (h->next_output_pic && ((avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) || |
| (avctx->flags2 & AV_CODEC_FLAG2_SHOW_ALL) || |
| h->next_output_pic->recovered)) { |
| if (!h->next_output_pic->recovered) |
| h->next_output_pic->f->flags |= AV_FRAME_FLAG_CORRUPT; |
| |
| if (!h->avctx->hwaccel && |
| (h->next_output_pic->field_poc[0] == INT_MAX || |
| h->next_output_pic->field_poc[1] == INT_MAX) |
| ) { |
| int p; |
| AVFrame *f = h->next_output_pic->f; |
| int field = h->next_output_pic->field_poc[0] == INT_MAX; |
| uint8_t *dst_data[4]; |
| int linesizes[4]; |
| const uint8_t *src_data[4]; |
| |
| av_log(h->avctx, AV_LOG_DEBUG, "Duplicating field %d to fill missing\n", field); |
| |
| for (p = 0; p<4; p++) { |
| dst_data[p] = f->data[p] + (field^1)*f->linesize[p]; |
| src_data[p] = f->data[p] + field *f->linesize[p]; |
| linesizes[p] = 2*f->linesize[p]; |
| } |
| |
| av_image_copy(dst_data, linesizes, src_data, linesizes, |
| f->format, f->width, f->height>>1); |
| } |
| |
| ret = output_frame(h, pict, h->next_output_pic); |
| if (ret < 0) |
| return ret; |
| *got_frame = 1; |
| if (CONFIG_MPEGVIDEO) { |
| ff_print_debug_info2(h->avctx, pict, NULL, |
| h->next_output_pic->mb_type, |
| h->next_output_pic->qscale_table, |
| h->next_output_pic->motion_val, |
| &h->low_delay, |
| h->mb_width, h->mb_height, h->mb_stride, 1); |
| } |
| } |
| } |
| |
| av_assert0(pict->buf[0] || !*got_frame); |
| |
| ff_h264_unref_picture(h, &h->last_pic_for_ec); |
| |
| return get_consumed_bytes(buf_index, buf_size); |
| } |
| |
| av_cold void ff_h264_free_context(H264Context *h) |
| { |
| int i; |
| |
| ff_h264_free_tables(h); |
| |
| for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) { |
| ff_h264_unref_picture(h, &h->DPB[i]); |
| av_frame_free(&h->DPB[i].f); |
| } |
| memset(h->delayed_pic, 0, sizeof(h->delayed_pic)); |
| |
| h->cur_pic_ptr = NULL; |
| |
| for (i = 0; i < h->nb_slice_ctx; i++) |
| av_freep(&h->slice_ctx[i].rbsp_buffer); |
| av_freep(&h->slice_ctx); |
| h->nb_slice_ctx = 0; |
| |
| h->a53_caption_size = 0; |
| av_freep(&h->a53_caption); |
| |
| for (i = 0; i < MAX_SPS_COUNT; i++) |
| av_freep(h->sps_buffers + i); |
| |
| for (i = 0; i < MAX_PPS_COUNT; i++) |
| av_freep(h->pps_buffers + i); |
| } |
| |
| static av_cold int h264_decode_end(AVCodecContext *avctx) |
| { |
| H264Context *h = avctx->priv_data; |
| |
| ff_h264_remove_all_refs(h); |
| ff_h264_free_context(h); |
| |
| ff_h264_unref_picture(h, &h->cur_pic); |
| av_frame_free(&h->cur_pic.f); |
| ff_h264_unref_picture(h, &h->last_pic_for_ec); |
| av_frame_free(&h->last_pic_for_ec.f); |
| |
| return 0; |
| } |
| |
| #define OFFSET(x) offsetof(H264Context, x) |
| #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM |
| static const AVOption h264_options[] = { |
| {"is_avc", "is avc", offsetof(H264Context, is_avc), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, 0}, |
| {"nal_length_size", "nal_length_size", offsetof(H264Context, nal_length_size), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 4, 0}, |
| { "enable_er", "Enable error resilience on damaged frames (unsafe)", OFFSET(enable_er), AV_OPT_TYPE_BOOL, { .i64 = -1 }, -1, 1, VD }, |
| { NULL }, |
| }; |
| |
| static const AVClass h264_class = { |
| .class_name = "H264 Decoder", |
| .item_name = av_default_item_name, |
| .option = h264_options, |
| .version = LIBAVUTIL_VERSION_INT, |
| }; |
| |
| AVCodec ff_h264_decoder = { |
| .name = "h264", |
| .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"), |
| .type = AVMEDIA_TYPE_VIDEO, |
| .id = AV_CODEC_ID_H264, |
| .priv_data_size = sizeof(H264Context), |
| .init = ff_h264_decode_init, |
| .close = h264_decode_end, |
| .decode = h264_decode_frame, |
| .capabilities = /*AV_CODEC_CAP_DRAW_HORIZ_BAND |*/ AV_CODEC_CAP_DR1 | |
| AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS | |
| AV_CODEC_CAP_FRAME_THREADS, |
| .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, |
| .flush = flush_dpb, |
| .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), |
| .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_h264_update_thread_context), |
| .profiles = NULL_IF_CONFIG_SMALL(ff_h264_profiles), |
| .priv_class = &h264_class, |
| }; |
| |
| #if CONFIG_H264_VDPAU_DECODER && FF_API_VDPAU |
| static const AVClass h264_vdpau_class = { |
| .class_name = "H264 VDPAU Decoder", |
| .item_name = av_default_item_name, |
| .option = h264_options, |
| .version = LIBAVUTIL_VERSION_INT, |
| }; |
| |
| AVCodec ff_h264_vdpau_decoder = { |
| .name = "h264_vdpau", |
| .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"), |
| .type = AVMEDIA_TYPE_VIDEO, |
| .id = AV_CODEC_ID_H264, |
| .priv_data_size = sizeof(H264Context), |
| .init = ff_h264_decode_init, |
| .close = h264_decode_end, |
| .decode = h264_decode_frame, |
| .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY | AV_CODEC_CAP_HWACCEL_VDPAU, |
| .flush = flush_dpb, |
| .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_VDPAU_H264, |
| AV_PIX_FMT_NONE}, |
| .profiles = NULL_IF_CONFIG_SMALL(ff_h264_profiles), |
| .priv_class = &h264_vdpau_class, |
| }; |
| #endif |