| /* |
| * HEVC video Decoder |
| * |
| * Copyright (C) 2012 - 2013 Guillaume Martres |
| * Copyright (C) 2012 - 2013 Mickael Raulet |
| * Copyright (C) 2012 - 2013 Gildas Cocherel |
| * Copyright (C) 2012 - 2013 Wassim Hamidouche |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "libavutil/atomic.h" |
| #include "libavutil/attributes.h" |
| #include "libavutil/common.h" |
| #include "libavutil/display.h" |
| #include "libavutil/internal.h" |
| #include "libavutil/mastering_display_metadata.h" |
| #include "libavutil/md5.h" |
| #include "libavutil/opt.h" |
| #include "libavutil/pixdesc.h" |
| #include "libavutil/stereo3d.h" |
| |
| #include "bswapdsp.h" |
| #include "bytestream.h" |
| #include "cabac_functions.h" |
| #include "golomb.h" |
| #include "hevc.h" |
| #include "profiles.h" |
| |
| const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 }; |
| |
| /** |
| * NOTE: Each function hls_foo correspond to the function foo in the |
| * specification (HLS stands for High Level Syntax). |
| */ |
| |
| /** |
| * Section 5.7 |
| */ |
| |
| /* free everything allocated by pic_arrays_init() */ |
| static void pic_arrays_free(HEVCContext *s) |
| { |
| av_freep(&s->sao); |
| av_freep(&s->deblock); |
| |
| av_freep(&s->skip_flag); |
| av_freep(&s->tab_ct_depth); |
| |
| av_freep(&s->tab_ipm); |
| av_freep(&s->cbf_luma); |
| av_freep(&s->is_pcm); |
| |
| av_freep(&s->qp_y_tab); |
| av_freep(&s->tab_slice_address); |
| av_freep(&s->filter_slice_edges); |
| |
| av_freep(&s->horizontal_bs); |
| av_freep(&s->vertical_bs); |
| |
| av_freep(&s->sh.entry_point_offset); |
| av_freep(&s->sh.size); |
| av_freep(&s->sh.offset); |
| |
| av_buffer_pool_uninit(&s->tab_mvf_pool); |
| av_buffer_pool_uninit(&s->rpl_tab_pool); |
| } |
| |
| /* allocate arrays that depend on frame dimensions */ |
| static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps) |
| { |
| int log2_min_cb_size = sps->log2_min_cb_size; |
| int width = sps->width; |
| int height = sps->height; |
| int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) * |
| ((height >> log2_min_cb_size) + 1); |
| int ctb_count = sps->ctb_width * sps->ctb_height; |
| int min_pu_size = sps->min_pu_width * sps->min_pu_height; |
| |
| s->bs_width = (width >> 2) + 1; |
| s->bs_height = (height >> 2) + 1; |
| |
| s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao)); |
| s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock)); |
| if (!s->sao || !s->deblock) |
| goto fail; |
| |
| s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width); |
| s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width); |
| if (!s->skip_flag || !s->tab_ct_depth) |
| goto fail; |
| |
| s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height); |
| s->tab_ipm = av_mallocz(min_pu_size); |
| s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1); |
| if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm) |
| goto fail; |
| |
| s->filter_slice_edges = av_mallocz(ctb_count); |
| s->tab_slice_address = av_malloc_array(pic_size_in_ctb, |
| sizeof(*s->tab_slice_address)); |
| s->qp_y_tab = av_malloc_array(pic_size_in_ctb, |
| sizeof(*s->qp_y_tab)); |
| if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address) |
| goto fail; |
| |
| s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height); |
| s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height); |
| if (!s->horizontal_bs || !s->vertical_bs) |
| goto fail; |
| |
| s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField), |
| av_buffer_allocz); |
| s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab), |
| av_buffer_allocz); |
| if (!s->tab_mvf_pool || !s->rpl_tab_pool) |
| goto fail; |
| |
| return 0; |
| |
| fail: |
| pic_arrays_free(s); |
| return AVERROR(ENOMEM); |
| } |
| |
| static void pred_weight_table(HEVCContext *s, GetBitContext *gb) |
| { |
| int i = 0; |
| int j = 0; |
| uint8_t luma_weight_l0_flag[16]; |
| uint8_t chroma_weight_l0_flag[16]; |
| uint8_t luma_weight_l1_flag[16]; |
| uint8_t chroma_weight_l1_flag[16]; |
| int luma_log2_weight_denom; |
| |
| luma_log2_weight_denom = get_ue_golomb_long(gb); |
| if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7) |
| av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom); |
| s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3); |
| if (s->ps.sps->chroma_format_idc != 0) { |
| int delta = get_se_golomb(gb); |
| s->sh.chroma_log2_weight_denom = av_clip_uintp2(s->sh.luma_log2_weight_denom + delta, 3); |
| } |
| |
| for (i = 0; i < s->sh.nb_refs[L0]; i++) { |
| luma_weight_l0_flag[i] = get_bits1(gb); |
| if (!luma_weight_l0_flag[i]) { |
| s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom; |
| s->sh.luma_offset_l0[i] = 0; |
| } |
| } |
| if (s->ps.sps->chroma_format_idc != 0) { |
| for (i = 0; i < s->sh.nb_refs[L0]; i++) |
| chroma_weight_l0_flag[i] = get_bits1(gb); |
| } else { |
| for (i = 0; i < s->sh.nb_refs[L0]; i++) |
| chroma_weight_l0_flag[i] = 0; |
| } |
| for (i = 0; i < s->sh.nb_refs[L0]; i++) { |
| if (luma_weight_l0_flag[i]) { |
| int delta_luma_weight_l0 = get_se_golomb(gb); |
| s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0; |
| s->sh.luma_offset_l0[i] = get_se_golomb(gb); |
| } |
| if (chroma_weight_l0_flag[i]) { |
| for (j = 0; j < 2; j++) { |
| int delta_chroma_weight_l0 = get_se_golomb(gb); |
| int delta_chroma_offset_l0 = get_se_golomb(gb); |
| s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0; |
| s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j]) |
| >> s->sh.chroma_log2_weight_denom) + 128), -128, 127); |
| } |
| } else { |
| s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom; |
| s->sh.chroma_offset_l0[i][0] = 0; |
| s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom; |
| s->sh.chroma_offset_l0[i][1] = 0; |
| } |
| } |
| if (s->sh.slice_type == B_SLICE) { |
| for (i = 0; i < s->sh.nb_refs[L1]; i++) { |
| luma_weight_l1_flag[i] = get_bits1(gb); |
| if (!luma_weight_l1_flag[i]) { |
| s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom; |
| s->sh.luma_offset_l1[i] = 0; |
| } |
| } |
| if (s->ps.sps->chroma_format_idc != 0) { |
| for (i = 0; i < s->sh.nb_refs[L1]; i++) |
| chroma_weight_l1_flag[i] = get_bits1(gb); |
| } else { |
| for (i = 0; i < s->sh.nb_refs[L1]; i++) |
| chroma_weight_l1_flag[i] = 0; |
| } |
| for (i = 0; i < s->sh.nb_refs[L1]; i++) { |
| if (luma_weight_l1_flag[i]) { |
| int delta_luma_weight_l1 = get_se_golomb(gb); |
| s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1; |
| s->sh.luma_offset_l1[i] = get_se_golomb(gb); |
| } |
| if (chroma_weight_l1_flag[i]) { |
| for (j = 0; j < 2; j++) { |
| int delta_chroma_weight_l1 = get_se_golomb(gb); |
| int delta_chroma_offset_l1 = get_se_golomb(gb); |
| s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1; |
| s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j]) |
| >> s->sh.chroma_log2_weight_denom) + 128), -128, 127); |
| } |
| } else { |
| s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom; |
| s->sh.chroma_offset_l1[i][0] = 0; |
| s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom; |
| s->sh.chroma_offset_l1[i][1] = 0; |
| } |
| } |
| } |
| } |
| |
| static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb) |
| { |
| const HEVCSPS *sps = s->ps.sps; |
| int max_poc_lsb = 1 << sps->log2_max_poc_lsb; |
| int prev_delta_msb = 0; |
| unsigned int nb_sps = 0, nb_sh; |
| int i; |
| |
| rps->nb_refs = 0; |
| if (!sps->long_term_ref_pics_present_flag) |
| return 0; |
| |
| if (sps->num_long_term_ref_pics_sps > 0) |
| nb_sps = get_ue_golomb_long(gb); |
| nb_sh = get_ue_golomb_long(gb); |
| |
| if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc)) |
| return AVERROR_INVALIDDATA; |
| |
| rps->nb_refs = nb_sh + nb_sps; |
| |
| for (i = 0; i < rps->nb_refs; i++) { |
| uint8_t delta_poc_msb_present; |
| |
| if (i < nb_sps) { |
| uint8_t lt_idx_sps = 0; |
| |
| if (sps->num_long_term_ref_pics_sps > 1) |
| lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps)); |
| |
| rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps]; |
| rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps]; |
| } else { |
| rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb); |
| rps->used[i] = get_bits1(gb); |
| } |
| |
| delta_poc_msb_present = get_bits1(gb); |
| if (delta_poc_msb_present) { |
| int delta = get_ue_golomb_long(gb); |
| |
| if (i && i != nb_sps) |
| delta += prev_delta_msb; |
| |
| rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb; |
| prev_delta_msb = delta; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps, |
| const HEVCSPS *sps) |
| { |
| const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data; |
| unsigned int num = 0, den = 0; |
| |
| avctx->pix_fmt = sps->pix_fmt; |
| avctx->coded_width = sps->width; |
| avctx->coded_height = sps->height; |
| avctx->width = sps->output_width; |
| avctx->height = sps->output_height; |
| avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics; |
| avctx->profile = sps->ptl.general_ptl.profile_idc; |
| avctx->level = sps->ptl.general_ptl.level_idc; |
| |
| ff_set_sar(avctx, sps->vui.sar); |
| |
| if (sps->vui.video_signal_type_present_flag) |
| avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG |
| : AVCOL_RANGE_MPEG; |
| else |
| avctx->color_range = AVCOL_RANGE_MPEG; |
| |
| if (sps->vui.colour_description_present_flag) { |
| avctx->color_primaries = sps->vui.colour_primaries; |
| avctx->color_trc = sps->vui.transfer_characteristic; |
| avctx->colorspace = sps->vui.matrix_coeffs; |
| } else { |
| avctx->color_primaries = AVCOL_PRI_UNSPECIFIED; |
| avctx->color_trc = AVCOL_TRC_UNSPECIFIED; |
| avctx->colorspace = AVCOL_SPC_UNSPECIFIED; |
| } |
| |
| if (vps->vps_timing_info_present_flag) { |
| num = vps->vps_num_units_in_tick; |
| den = vps->vps_time_scale; |
| } else if (sps->vui.vui_timing_info_present_flag) { |
| num = sps->vui.vui_num_units_in_tick; |
| den = sps->vui.vui_time_scale; |
| } |
| |
| if (num != 0 && den != 0) |
| av_reduce(&avctx->framerate.den, &avctx->framerate.num, |
| num, den, 1 << 30); |
| } |
| |
| static int set_sps(HEVCContext *s, const HEVCSPS *sps, enum AVPixelFormat pix_fmt) |
| { |
| #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + CONFIG_HEVC_D3D11VA_HWACCEL + CONFIG_HEVC_VAAPI_HWACCEL + CONFIG_HEVC_VDPAU_HWACCEL) |
| enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts; |
| int ret, i; |
| |
| pic_arrays_free(s); |
| s->ps.sps = NULL; |
| s->ps.vps = NULL; |
| |
| if (!sps) |
| return 0; |
| |
| ret = pic_arrays_init(s, sps); |
| if (ret < 0) |
| goto fail; |
| |
| export_stream_params(s->avctx, &s->ps, sps); |
| |
| if (sps->pix_fmt == AV_PIX_FMT_YUV420P || sps->pix_fmt == AV_PIX_FMT_YUVJ420P) { |
| #if CONFIG_HEVC_DXVA2_HWACCEL |
| *fmt++ = AV_PIX_FMT_DXVA2_VLD; |
| #endif |
| #if CONFIG_HEVC_D3D11VA_HWACCEL |
| *fmt++ = AV_PIX_FMT_D3D11VA_VLD; |
| #endif |
| #if CONFIG_HEVC_VAAPI_HWACCEL |
| *fmt++ = AV_PIX_FMT_VAAPI; |
| #endif |
| #if CONFIG_HEVC_VDPAU_HWACCEL |
| *fmt++ = AV_PIX_FMT_VDPAU; |
| #endif |
| } |
| |
| if (pix_fmt == AV_PIX_FMT_NONE) { |
| *fmt++ = sps->pix_fmt; |
| *fmt = AV_PIX_FMT_NONE; |
| |
| ret = ff_thread_get_format(s->avctx, pix_fmts); |
| if (ret < 0) |
| goto fail; |
| s->avctx->pix_fmt = ret; |
| } |
| else { |
| s->avctx->pix_fmt = pix_fmt; |
| } |
| |
| ff_hevc_pred_init(&s->hpc, sps->bit_depth); |
| ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth); |
| ff_videodsp_init (&s->vdsp, sps->bit_depth); |
| |
| for (i = 0; i < 3; i++) { |
| av_freep(&s->sao_pixel_buffer_h[i]); |
| av_freep(&s->sao_pixel_buffer_v[i]); |
| } |
| |
| if (sps->sao_enabled && !s->avctx->hwaccel) { |
| int c_count = (sps->chroma_format_idc != 0) ? 3 : 1; |
| int c_idx; |
| |
| for(c_idx = 0; c_idx < c_count; c_idx++) { |
| int w = sps->width >> sps->hshift[c_idx]; |
| int h = sps->height >> sps->vshift[c_idx]; |
| s->sao_pixel_buffer_h[c_idx] = |
| av_malloc((w * 2 * sps->ctb_height) << |
| sps->pixel_shift); |
| s->sao_pixel_buffer_v[c_idx] = |
| av_malloc((h * 2 * sps->ctb_width) << |
| sps->pixel_shift); |
| } |
| } |
| |
| s->ps.sps = sps; |
| s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data; |
| |
| return 0; |
| |
| fail: |
| pic_arrays_free(s); |
| s->ps.sps = NULL; |
| return ret; |
| } |
| |
| static int hls_slice_header(HEVCContext *s) |
| { |
| GetBitContext *gb = &s->HEVClc->gb; |
| SliceHeader *sh = &s->sh; |
| int i, ret; |
| |
| // Coded parameters |
| sh->first_slice_in_pic_flag = get_bits1(gb); |
| if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) { |
| s->seq_decode = (s->seq_decode + 1) & 0xff; |
| s->max_ra = INT_MAX; |
| if (IS_IDR(s)) |
| ff_hevc_clear_refs(s); |
| } |
| sh->no_output_of_prior_pics_flag = 0; |
| if (IS_IRAP(s)) |
| sh->no_output_of_prior_pics_flag = get_bits1(gb); |
| |
| sh->pps_id = get_ue_golomb_long(gb); |
| if (sh->pps_id >= MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) { |
| av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id); |
| return AVERROR_INVALIDDATA; |
| } |
| if (!sh->first_slice_in_pic_flag && |
| s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) { |
| av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data; |
| if (s->nal_unit_type == NAL_CRA_NUT && s->last_eos == 1) |
| sh->no_output_of_prior_pics_flag = 1; |
| |
| if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) { |
| const HEVCSPS* last_sps = s->ps.sps; |
| s->ps.sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data; |
| if (last_sps && IS_IRAP(s) && s->nal_unit_type != NAL_CRA_NUT) { |
| if (s->ps.sps->width != last_sps->width || s->ps.sps->height != last_sps->height || |
| s->ps.sps->temporal_layer[s->ps.sps->max_sub_layers - 1].max_dec_pic_buffering != |
| last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering) |
| sh->no_output_of_prior_pics_flag = 0; |
| } |
| ff_hevc_clear_refs(s); |
| ret = set_sps(s, s->ps.sps, AV_PIX_FMT_NONE); |
| if (ret < 0) |
| return ret; |
| |
| s->seq_decode = (s->seq_decode + 1) & 0xff; |
| s->max_ra = INT_MAX; |
| } |
| |
| sh->dependent_slice_segment_flag = 0; |
| if (!sh->first_slice_in_pic_flag) { |
| int slice_address_length; |
| |
| if (s->ps.pps->dependent_slice_segments_enabled_flag) |
| sh->dependent_slice_segment_flag = get_bits1(gb); |
| |
| slice_address_length = av_ceil_log2(s->ps.sps->ctb_width * |
| s->ps.sps->ctb_height); |
| sh->slice_segment_addr = get_bitsz(gb, slice_address_length); |
| if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "Invalid slice segment address: %u.\n", |
| sh->slice_segment_addr); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (!sh->dependent_slice_segment_flag) { |
| sh->slice_addr = sh->slice_segment_addr; |
| s->slice_idx++; |
| } |
| } else { |
| sh->slice_segment_addr = sh->slice_addr = 0; |
| s->slice_idx = 0; |
| s->slice_initialized = 0; |
| } |
| |
| if (!sh->dependent_slice_segment_flag) { |
| s->slice_initialized = 0; |
| |
| for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++) |
| skip_bits(gb, 1); // slice_reserved_undetermined_flag[] |
| |
| sh->slice_type = get_ue_golomb_long(gb); |
| if (!(sh->slice_type == I_SLICE || |
| sh->slice_type == P_SLICE || |
| sh->slice_type == B_SLICE)) { |
| av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n", |
| sh->slice_type); |
| return AVERROR_INVALIDDATA; |
| } |
| if (IS_IRAP(s) && sh->slice_type != I_SLICE) { |
| av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // when flag is not present, picture is inferred to be output |
| sh->pic_output_flag = 1; |
| if (s->ps.pps->output_flag_present_flag) |
| sh->pic_output_flag = get_bits1(gb); |
| |
| if (s->ps.sps->separate_colour_plane_flag) |
| sh->colour_plane_id = get_bits(gb, 2); |
| |
| if (!IS_IDR(s)) { |
| int poc, pos; |
| |
| sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb); |
| poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb); |
| if (!sh->first_slice_in_pic_flag && poc != s->poc) { |
| av_log(s->avctx, AV_LOG_WARNING, |
| "Ignoring POC change between slices: %d -> %d\n", s->poc, poc); |
| if (s->avctx->err_recognition & AV_EF_EXPLODE) |
| return AVERROR_INVALIDDATA; |
| poc = s->poc; |
| } |
| s->poc = poc; |
| |
| sh->short_term_ref_pic_set_sps_flag = get_bits1(gb); |
| pos = get_bits_left(gb); |
| if (!sh->short_term_ref_pic_set_sps_flag) { |
| ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1); |
| if (ret < 0) |
| return ret; |
| |
| sh->short_term_rps = &sh->slice_rps; |
| } else { |
| int numbits, rps_idx; |
| |
| if (!s->ps.sps->nb_st_rps) { |
| av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| numbits = av_ceil_log2(s->ps.sps->nb_st_rps); |
| rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0; |
| sh->short_term_rps = &s->ps.sps->st_rps[rps_idx]; |
| } |
| sh->short_term_ref_pic_set_size = pos - get_bits_left(gb); |
| |
| pos = get_bits_left(gb); |
| ret = decode_lt_rps(s, &sh->long_term_rps, gb); |
| if (ret < 0) { |
| av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n"); |
| if (s->avctx->err_recognition & AV_EF_EXPLODE) |
| return AVERROR_INVALIDDATA; |
| } |
| sh->long_term_ref_pic_set_size = pos - get_bits_left(gb); |
| |
| if (s->ps.sps->sps_temporal_mvp_enabled_flag) |
| sh->slice_temporal_mvp_enabled_flag = get_bits1(gb); |
| else |
| sh->slice_temporal_mvp_enabled_flag = 0; |
| } else { |
| s->sh.short_term_rps = NULL; |
| s->poc = 0; |
| } |
| |
| /* 8.3.1 */ |
| if (s->temporal_id == 0 && |
| s->nal_unit_type != NAL_TRAIL_N && |
| s->nal_unit_type != NAL_TSA_N && |
| s->nal_unit_type != NAL_STSA_N && |
| s->nal_unit_type != NAL_RADL_N && |
| s->nal_unit_type != NAL_RADL_R && |
| s->nal_unit_type != NAL_RASL_N && |
| s->nal_unit_type != NAL_RASL_R) |
| s->pocTid0 = s->poc; |
| |
| if (s->ps.sps->sao_enabled) { |
| sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb); |
| if (s->ps.sps->chroma_format_idc) { |
| sh->slice_sample_adaptive_offset_flag[1] = |
| sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb); |
| } |
| } else { |
| sh->slice_sample_adaptive_offset_flag[0] = 0; |
| sh->slice_sample_adaptive_offset_flag[1] = 0; |
| sh->slice_sample_adaptive_offset_flag[2] = 0; |
| } |
| |
| sh->nb_refs[L0] = sh->nb_refs[L1] = 0; |
| if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) { |
| int nb_refs; |
| |
| sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active; |
| if (sh->slice_type == B_SLICE) |
| sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active; |
| |
| if (get_bits1(gb)) { // num_ref_idx_active_override_flag |
| sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1; |
| if (sh->slice_type == B_SLICE) |
| sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1; |
| } |
| if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) { |
| av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n", |
| sh->nb_refs[L0], sh->nb_refs[L1]); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| sh->rpl_modification_flag[0] = 0; |
| sh->rpl_modification_flag[1] = 0; |
| nb_refs = ff_hevc_frame_nb_refs(s); |
| if (!nb_refs) { |
| av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) { |
| sh->rpl_modification_flag[0] = get_bits1(gb); |
| if (sh->rpl_modification_flag[0]) { |
| for (i = 0; i < sh->nb_refs[L0]; i++) |
| sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs)); |
| } |
| |
| if (sh->slice_type == B_SLICE) { |
| sh->rpl_modification_flag[1] = get_bits1(gb); |
| if (sh->rpl_modification_flag[1] == 1) |
| for (i = 0; i < sh->nb_refs[L1]; i++) |
| sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs)); |
| } |
| } |
| |
| if (sh->slice_type == B_SLICE) |
| sh->mvd_l1_zero_flag = get_bits1(gb); |
| |
| if (s->ps.pps->cabac_init_present_flag) |
| sh->cabac_init_flag = get_bits1(gb); |
| else |
| sh->cabac_init_flag = 0; |
| |
| sh->collocated_ref_idx = 0; |
| if (sh->slice_temporal_mvp_enabled_flag) { |
| sh->collocated_list = L0; |
| if (sh->slice_type == B_SLICE) |
| sh->collocated_list = !get_bits1(gb); |
| |
| if (sh->nb_refs[sh->collocated_list] > 1) { |
| sh->collocated_ref_idx = get_ue_golomb_long(gb); |
| if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "Invalid collocated_ref_idx: %d.\n", |
| sh->collocated_ref_idx); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| } |
| |
| if ((s->ps.pps->weighted_pred_flag && sh->slice_type == P_SLICE) || |
| (s->ps.pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) { |
| pred_weight_table(s, gb); |
| } |
| |
| sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb); |
| if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "Invalid number of merging MVP candidates: %d.\n", |
| sh->max_num_merge_cand); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| sh->slice_qp_delta = get_se_golomb(gb); |
| |
| if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) { |
| sh->slice_cb_qp_offset = get_se_golomb(gb); |
| sh->slice_cr_qp_offset = get_se_golomb(gb); |
| } else { |
| sh->slice_cb_qp_offset = 0; |
| sh->slice_cr_qp_offset = 0; |
| } |
| |
| if (s->ps.pps->chroma_qp_offset_list_enabled_flag) |
| sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb); |
| else |
| sh->cu_chroma_qp_offset_enabled_flag = 0; |
| |
| if (s->ps.pps->deblocking_filter_control_present_flag) { |
| int deblocking_filter_override_flag = 0; |
| |
| if (s->ps.pps->deblocking_filter_override_enabled_flag) |
| deblocking_filter_override_flag = get_bits1(gb); |
| |
| if (deblocking_filter_override_flag) { |
| sh->disable_deblocking_filter_flag = get_bits1(gb); |
| if (!sh->disable_deblocking_filter_flag) { |
| sh->beta_offset = get_se_golomb(gb) * 2; |
| sh->tc_offset = get_se_golomb(gb) * 2; |
| } |
| } else { |
| sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf; |
| sh->beta_offset = s->ps.pps->beta_offset; |
| sh->tc_offset = s->ps.pps->tc_offset; |
| } |
| } else { |
| sh->disable_deblocking_filter_flag = 0; |
| sh->beta_offset = 0; |
| sh->tc_offset = 0; |
| } |
| |
| if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag && |
| (sh->slice_sample_adaptive_offset_flag[0] || |
| sh->slice_sample_adaptive_offset_flag[1] || |
| !sh->disable_deblocking_filter_flag)) { |
| sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb); |
| } else { |
| sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag; |
| } |
| } else if (!s->slice_initialized) { |
| av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| sh->num_entry_point_offsets = 0; |
| if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) { |
| unsigned num_entry_point_offsets = get_ue_golomb_long(gb); |
| // It would be possible to bound this tighter but this here is simpler |
| if (num_entry_point_offsets > get_bits_left(gb)) { |
| av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| sh->num_entry_point_offsets = num_entry_point_offsets; |
| if (sh->num_entry_point_offsets > 0) { |
| int offset_len = get_ue_golomb_long(gb) + 1; |
| |
| if (offset_len < 1 || offset_len > 32) { |
| sh->num_entry_point_offsets = 0; |
| av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| av_freep(&sh->entry_point_offset); |
| av_freep(&sh->offset); |
| av_freep(&sh->size); |
| sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned)); |
| sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int)); |
| sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int)); |
| if (!sh->entry_point_offset || !sh->offset || !sh->size) { |
| sh->num_entry_point_offsets = 0; |
| av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n"); |
| return AVERROR(ENOMEM); |
| } |
| for (i = 0; i < sh->num_entry_point_offsets; i++) { |
| unsigned val = get_bits_long(gb, offset_len); |
| sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size |
| } |
| if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) { |
| s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here |
| s->threads_number = 1; |
| } else |
| s->enable_parallel_tiles = 0; |
| } else |
| s->enable_parallel_tiles = 0; |
| } |
| |
| if (s->ps.pps->slice_header_extension_present_flag) { |
| unsigned int length = get_ue_golomb_long(gb); |
| if (length*8LL > get_bits_left(gb)) { |
| av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| for (i = 0; i < length; i++) |
| skip_bits(gb, 8); // slice_header_extension_data_byte |
| } |
| |
| // Inferred parameters |
| sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta; |
| if (sh->slice_qp > 51 || |
| sh->slice_qp < -s->ps.sps->qp_bd_offset) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "The slice_qp %d is outside the valid range " |
| "[%d, 51].\n", |
| sh->slice_qp, |
| -s->ps.sps->qp_bd_offset); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| sh->slice_ctb_addr_rs = sh->slice_segment_addr; |
| |
| if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) { |
| av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (get_bits_left(gb) < 0) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "Overread slice header by %d bits\n", -get_bits_left(gb)); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag; |
| |
| if (!s->ps.pps->cu_qp_delta_enabled_flag) |
| s->HEVClc->qp_y = s->sh.slice_qp; |
| |
| s->slice_initialized = 1; |
| s->HEVClc->tu.cu_qp_offset_cb = 0; |
| s->HEVClc->tu.cu_qp_offset_cr = 0; |
| |
| s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == NAL_CRA_NUT && s->last_eos); |
| |
| return 0; |
| } |
| |
| #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)]) |
| |
| #define SET_SAO(elem, value) \ |
| do { \ |
| if (!sao_merge_up_flag && !sao_merge_left_flag) \ |
| sao->elem = value; \ |
| else if (sao_merge_left_flag) \ |
| sao->elem = CTB(s->sao, rx-1, ry).elem; \ |
| else if (sao_merge_up_flag) \ |
| sao->elem = CTB(s->sao, rx, ry-1).elem; \ |
| else \ |
| sao->elem = 0; \ |
| } while (0) |
| |
| static void hls_sao_param(HEVCContext *s, int rx, int ry) |
| { |
| HEVCLocalContext *lc = s->HEVClc; |
| int sao_merge_left_flag = 0; |
| int sao_merge_up_flag = 0; |
| SAOParams *sao = &CTB(s->sao, rx, ry); |
| int c_idx, i; |
| |
| if (s->sh.slice_sample_adaptive_offset_flag[0] || |
| s->sh.slice_sample_adaptive_offset_flag[1]) { |
| if (rx > 0) { |
| if (lc->ctb_left_flag) |
| sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s); |
| } |
| if (ry > 0 && !sao_merge_left_flag) { |
| if (lc->ctb_up_flag) |
| sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s); |
| } |
| } |
| |
| for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) { |
| int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma : |
| s->ps.pps->log2_sao_offset_scale_chroma; |
| |
| if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) { |
| sao->type_idx[c_idx] = SAO_NOT_APPLIED; |
| continue; |
| } |
| |
| if (c_idx == 2) { |
| sao->type_idx[2] = sao->type_idx[1]; |
| sao->eo_class[2] = sao->eo_class[1]; |
| } else { |
| SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s)); |
| } |
| |
| if (sao->type_idx[c_idx] == SAO_NOT_APPLIED) |
| continue; |
| |
| for (i = 0; i < 4; i++) |
| SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s)); |
| |
| if (sao->type_idx[c_idx] == SAO_BAND) { |
| for (i = 0; i < 4; i++) { |
| if (sao->offset_abs[c_idx][i]) { |
| SET_SAO(offset_sign[c_idx][i], |
| ff_hevc_sao_offset_sign_decode(s)); |
| } else { |
| sao->offset_sign[c_idx][i] = 0; |
| } |
| } |
| SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s)); |
| } else if (c_idx != 2) { |
| SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s)); |
| } |
| |
| // Inferred parameters |
| sao->offset_val[c_idx][0] = 0; |
| for (i = 0; i < 4; i++) { |
| sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i]; |
| if (sao->type_idx[c_idx] == SAO_EDGE) { |
| if (i > 1) |
| sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1]; |
| } else if (sao->offset_sign[c_idx][i]) { |
| sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1]; |
| } |
| sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale; |
| } |
| } |
| } |
| |
| #undef SET_SAO |
| #undef CTB |
| |
| static int hls_cross_component_pred(HEVCContext *s, int idx) { |
| HEVCLocalContext *lc = s->HEVClc; |
| int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx); |
| |
| if (log2_res_scale_abs_plus1 != 0) { |
| int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx); |
| lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) * |
| (1 - 2 * res_scale_sign_flag); |
| } else { |
| lc->tu.res_scale_val = 0; |
| } |
| |
| |
| return 0; |
| } |
| |
| static int hls_transform_unit(HEVCContext *s, int x0, int y0, |
| int xBase, int yBase, int cb_xBase, int cb_yBase, |
| int log2_cb_size, int log2_trafo_size, |
| int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr) |
| { |
| HEVCLocalContext *lc = s->HEVClc; |
| const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1]; |
| int i; |
| |
| if (lc->cu.pred_mode == MODE_INTRA) { |
| int trafo_size = 1 << log2_trafo_size; |
| ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size); |
| |
| s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0); |
| } |
| |
| if (cbf_luma || cbf_cb[0] || cbf_cr[0] || |
| (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) { |
| int scan_idx = SCAN_DIAG; |
| int scan_idx_c = SCAN_DIAG; |
| int cbf_chroma = cbf_cb[0] || cbf_cr[0] || |
| (s->ps.sps->chroma_format_idc == 2 && |
| (cbf_cb[1] || cbf_cr[1])); |
| |
| if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) { |
| lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s); |
| if (lc->tu.cu_qp_delta != 0) |
| if (ff_hevc_cu_qp_delta_sign_flag(s) == 1) |
| lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta; |
| lc->tu.is_cu_qp_delta_coded = 1; |
| |
| if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) || |
| lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "The cu_qp_delta %d is outside the valid range " |
| "[%d, %d].\n", |
| lc->tu.cu_qp_delta, |
| -(26 + s->ps.sps->qp_bd_offset / 2), |
| (25 + s->ps.sps->qp_bd_offset / 2)); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size); |
| } |
| |
| if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma && |
| !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) { |
| int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s); |
| if (cu_chroma_qp_offset_flag) { |
| int cu_chroma_qp_offset_idx = 0; |
| if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) { |
| cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s); |
| av_log(s->avctx, AV_LOG_ERROR, |
| "cu_chroma_qp_offset_idx not yet tested.\n"); |
| } |
| lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx]; |
| lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx]; |
| } else { |
| lc->tu.cu_qp_offset_cb = 0; |
| lc->tu.cu_qp_offset_cr = 0; |
| } |
| lc->tu.is_cu_chroma_qp_offset_coded = 1; |
| } |
| |
| if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) { |
| if (lc->tu.intra_pred_mode >= 6 && |
| lc->tu.intra_pred_mode <= 14) { |
| scan_idx = SCAN_VERT; |
| } else if (lc->tu.intra_pred_mode >= 22 && |
| lc->tu.intra_pred_mode <= 30) { |
| scan_idx = SCAN_HORIZ; |
| } |
| |
| if (lc->tu.intra_pred_mode_c >= 6 && |
| lc->tu.intra_pred_mode_c <= 14) { |
| scan_idx_c = SCAN_VERT; |
| } else if (lc->tu.intra_pred_mode_c >= 22 && |
| lc->tu.intra_pred_mode_c <= 30) { |
| scan_idx_c = SCAN_HORIZ; |
| } |
| } |
| |
| lc->tu.cross_pf = 0; |
| |
| if (cbf_luma) |
| ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0); |
| if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) { |
| int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]); |
| int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]); |
| lc->tu.cross_pf = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma && |
| (lc->cu.pred_mode == MODE_INTER || |
| (lc->tu.chroma_mode_c == 4))); |
| |
| if (lc->tu.cross_pf) { |
| hls_cross_component_pred(s, 0); |
| } |
| for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) { |
| if (lc->cu.pred_mode == MODE_INTRA) { |
| ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v); |
| s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1); |
| } |
| if (cbf_cb[i]) |
| ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c), |
| log2_trafo_size_c, scan_idx_c, 1); |
| else |
| if (lc->tu.cross_pf) { |
| ptrdiff_t stride = s->frame->linesize[1]; |
| int hshift = s->ps.sps->hshift[1]; |
| int vshift = s->ps.sps->vshift[1]; |
| int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer; |
| int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2; |
| int size = 1 << log2_trafo_size_c; |
| |
| uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride + |
| ((x0 >> hshift) << s->ps.sps->pixel_shift)]; |
| for (i = 0; i < (size * size); i++) { |
| coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3); |
| } |
| s->hevcdsp.transform_add[log2_trafo_size_c-2](dst, coeffs, stride); |
| } |
| } |
| |
| if (lc->tu.cross_pf) { |
| hls_cross_component_pred(s, 1); |
| } |
| for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) { |
| if (lc->cu.pred_mode == MODE_INTRA) { |
| ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v); |
| s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2); |
| } |
| if (cbf_cr[i]) |
| ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c), |
| log2_trafo_size_c, scan_idx_c, 2); |
| else |
| if (lc->tu.cross_pf) { |
| ptrdiff_t stride = s->frame->linesize[2]; |
| int hshift = s->ps.sps->hshift[2]; |
| int vshift = s->ps.sps->vshift[2]; |
| int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer; |
| int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2; |
| int size = 1 << log2_trafo_size_c; |
| |
| uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride + |
| ((x0 >> hshift) << s->ps.sps->pixel_shift)]; |
| for (i = 0; i < (size * size); i++) { |
| coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3); |
| } |
| s->hevcdsp.transform_add[log2_trafo_size_c-2](dst, coeffs, stride); |
| } |
| } |
| } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) { |
| int trafo_size_h = 1 << (log2_trafo_size + 1); |
| int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]); |
| for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) { |
| if (lc->cu.pred_mode == MODE_INTRA) { |
| ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size), |
| trafo_size_h, trafo_size_v); |
| s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1); |
| } |
| if (cbf_cb[i]) |
| ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size), |
| log2_trafo_size, scan_idx_c, 1); |
| } |
| for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) { |
| if (lc->cu.pred_mode == MODE_INTRA) { |
| ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size), |
| trafo_size_h, trafo_size_v); |
| s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2); |
| } |
| if (cbf_cr[i]) |
| ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size), |
| log2_trafo_size, scan_idx_c, 2); |
| } |
| } |
| } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) { |
| if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) { |
| int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]); |
| int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]); |
| ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v); |
| s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1); |
| s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2); |
| if (s->ps.sps->chroma_format_idc == 2) { |
| ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c), |
| trafo_size_h, trafo_size_v); |
| s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1); |
| s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2); |
| } |
| } else if (blk_idx == 3) { |
| int trafo_size_h = 1 << (log2_trafo_size + 1); |
| int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]); |
| ff_hevc_set_neighbour_available(s, xBase, yBase, |
| trafo_size_h, trafo_size_v); |
| s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1); |
| s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2); |
| if (s->ps.sps->chroma_format_idc == 2) { |
| ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)), |
| trafo_size_h, trafo_size_v); |
| s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1); |
| s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size) |
| { |
| int cb_size = 1 << log2_cb_size; |
| int log2_min_pu_size = s->ps.sps->log2_min_pu_size; |
| |
| int min_pu_width = s->ps.sps->min_pu_width; |
| int x_end = FFMIN(x0 + cb_size, s->ps.sps->width); |
| int y_end = FFMIN(y0 + cb_size, s->ps.sps->height); |
| int i, j; |
| |
| for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++) |
| for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++) |
| s->is_pcm[i + j * min_pu_width] = 2; |
| } |
| |
| static int hls_transform_tree(HEVCContext *s, int x0, int y0, |
| int xBase, int yBase, int cb_xBase, int cb_yBase, |
| int log2_cb_size, int log2_trafo_size, |
| int trafo_depth, int blk_idx, |
| const int *base_cbf_cb, const int *base_cbf_cr) |
| { |
| HEVCLocalContext *lc = s->HEVClc; |
| uint8_t split_transform_flag; |
| int cbf_cb[2]; |
| int cbf_cr[2]; |
| int ret; |
| |
| cbf_cb[0] = base_cbf_cb[0]; |
| cbf_cb[1] = base_cbf_cb[1]; |
| cbf_cr[0] = base_cbf_cr[0]; |
| cbf_cr[1] = base_cbf_cr[1]; |
| |
| if (lc->cu.intra_split_flag) { |
| if (trafo_depth == 1) { |
| lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx]; |
| if (s->ps.sps->chroma_format_idc == 3) { |
| lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx]; |
| lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx]; |
| } else { |
| lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0]; |
| lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0]; |
| } |
| } |
| } else { |
| lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0]; |
| lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0]; |
| lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0]; |
| } |
| |
| if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size && |
| log2_trafo_size > s->ps.sps->log2_min_tb_size && |
| trafo_depth < lc->cu.max_trafo_depth && |
| !(lc->cu.intra_split_flag && trafo_depth == 0)) { |
| split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size); |
| } else { |
| int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 && |
| lc->cu.pred_mode == MODE_INTER && |
| lc->cu.part_mode != PART_2Nx2N && |
| trafo_depth == 0; |
| |
| split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size || |
| (lc->cu.intra_split_flag && trafo_depth == 0) || |
| inter_split; |
| } |
| |
| if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) { |
| if (trafo_depth == 0 || cbf_cb[0]) { |
| cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth); |
| if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) { |
| cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth); |
| } |
| } |
| |
| if (trafo_depth == 0 || cbf_cr[0]) { |
| cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth); |
| if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) { |
| cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth); |
| } |
| } |
| } |
| |
| if (split_transform_flag) { |
| const int trafo_size_split = 1 << (log2_trafo_size - 1); |
| const int x1 = x0 + trafo_size_split; |
| const int y1 = y0 + trafo_size_split; |
| |
| #define SUBDIVIDE(x, y, idx) \ |
| do { \ |
| ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \ |
| log2_trafo_size - 1, trafo_depth + 1, idx, \ |
| cbf_cb, cbf_cr); \ |
| if (ret < 0) \ |
| return ret; \ |
| } while (0) |
| |
| SUBDIVIDE(x0, y0, 0); |
| SUBDIVIDE(x1, y0, 1); |
| SUBDIVIDE(x0, y1, 2); |
| SUBDIVIDE(x1, y1, 3); |
| |
| #undef SUBDIVIDE |
| } else { |
| int min_tu_size = 1 << s->ps.sps->log2_min_tb_size; |
| int log2_min_tu_size = s->ps.sps->log2_min_tb_size; |
| int min_tu_width = s->ps.sps->min_tb_width; |
| int cbf_luma = 1; |
| |
| if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 || |
| cbf_cb[0] || cbf_cr[0] || |
| (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) { |
| cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth); |
| } |
| |
| ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase, |
| log2_cb_size, log2_trafo_size, |
| blk_idx, cbf_luma, cbf_cb, cbf_cr); |
| if (ret < 0) |
| return ret; |
| // TODO: store cbf_luma somewhere else |
| if (cbf_luma) { |
| int i, j; |
| for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size) |
| for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) { |
| int x_tu = (x0 + j) >> log2_min_tu_size; |
| int y_tu = (y0 + i) >> log2_min_tu_size; |
| s->cbf_luma[y_tu * min_tu_width + x_tu] = 1; |
| } |
| } |
| if (!s->sh.disable_deblocking_filter_flag) { |
| ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size); |
| if (s->ps.pps->transquant_bypass_enable_flag && |
| lc->cu.cu_transquant_bypass_flag) |
| set_deblocking_bypass(s, x0, y0, log2_trafo_size); |
| } |
| } |
| return 0; |
| } |
| |
| static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size) |
| { |
| HEVCLocalContext *lc = s->HEVClc; |
| GetBitContext gb; |
| int cb_size = 1 << log2_cb_size; |
| int stride0 = s->frame->linesize[0]; |
| uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)]; |
| int stride1 = s->frame->linesize[1]; |
| uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)]; |
| int stride2 = s->frame->linesize[2]; |
| uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)]; |
| |
| int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth + |
| (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) + |
| ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) * |
| s->ps.sps->pcm.bit_depth_chroma; |
| const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3); |
| int ret; |
| |
| if (!s->sh.disable_deblocking_filter_flag) |
| ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size); |
| |
| ret = init_get_bits(&gb, pcm, length); |
| if (ret < 0) |
| return ret; |
| |
| s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->ps.sps->pcm.bit_depth); |
| if (s->ps.sps->chroma_format_idc) { |
| s->hevcdsp.put_pcm(dst1, stride1, |
| cb_size >> s->ps.sps->hshift[1], |
| cb_size >> s->ps.sps->vshift[1], |
| &gb, s->ps.sps->pcm.bit_depth_chroma); |
| s->hevcdsp.put_pcm(dst2, stride2, |
| cb_size >> s->ps.sps->hshift[2], |
| cb_size >> s->ps.sps->vshift[2], |
| &gb, s->ps.sps->pcm.bit_depth_chroma); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * 8.5.3.2.2.1 Luma sample unidirectional interpolation process |
| * |
| * @param s HEVC decoding context |
| * @param dst target buffer for block data at block position |
| * @param dststride stride of the dst buffer |
| * @param ref reference picture buffer at origin (0, 0) |
| * @param mv motion vector (relative to block position) to get pixel data from |
| * @param x_off horizontal position of block from origin (0, 0) |
| * @param y_off vertical position of block from origin (0, 0) |
| * @param block_w width of block |
| * @param block_h height of block |
| * @param luma_weight weighting factor applied to the luma prediction |
| * @param luma_offset additive offset applied to the luma prediction value |
| */ |
| |
| static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride, |
| AVFrame *ref, const Mv *mv, int x_off, int y_off, |
| int block_w, int block_h, int luma_weight, int luma_offset) |
| { |
| HEVCLocalContext *lc = s->HEVClc; |
| uint8_t *src = ref->data[0]; |
| ptrdiff_t srcstride = ref->linesize[0]; |
| int pic_width = s->ps.sps->width; |
| int pic_height = s->ps.sps->height; |
| int mx = mv->x & 3; |
| int my = mv->y & 3; |
| int weight_flag = (s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) || |
| (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag); |
| int idx = ff_hevc_pel_weight[block_w]; |
| |
| x_off += mv->x >> 2; |
| y_off += mv->y >> 2; |
| src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift)); |
| |
| if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER || |
| x_off >= pic_width - block_w - QPEL_EXTRA_AFTER || |
| y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) { |
| const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift; |
| int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift); |
| int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift); |
| |
| s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset, |
| edge_emu_stride, srcstride, |
| block_w + QPEL_EXTRA, |
| block_h + QPEL_EXTRA, |
| x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE, |
| pic_width, pic_height); |
| src = lc->edge_emu_buffer + buf_offset; |
| srcstride = edge_emu_stride; |
| } |
| |
| if (!weight_flag) |
| s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride, |
| block_h, mx, my, block_w); |
| else |
| s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride, |
| block_h, s->sh.luma_log2_weight_denom, |
| luma_weight, luma_offset, mx, my, block_w); |
| } |
| |
| /** |
| * 8.5.3.2.2.1 Luma sample bidirectional interpolation process |
| * |
| * @param s HEVC decoding context |
| * @param dst target buffer for block data at block position |
| * @param dststride stride of the dst buffer |
| * @param ref0 reference picture0 buffer at origin (0, 0) |
| * @param mv0 motion vector0 (relative to block position) to get pixel data from |
| * @param x_off horizontal position of block from origin (0, 0) |
| * @param y_off vertical position of block from origin (0, 0) |
| * @param block_w width of block |
| * @param block_h height of block |
| * @param ref1 reference picture1 buffer at origin (0, 0) |
| * @param mv1 motion vector1 (relative to block position) to get pixel data from |
| * @param current_mv current motion vector structure |
| */ |
| static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride, |
| AVFrame *ref0, const Mv *mv0, int x_off, int y_off, |
| int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv) |
| { |
| HEVCLocalContext *lc = s->HEVClc; |
| ptrdiff_t src0stride = ref0->linesize[0]; |
| ptrdiff_t src1stride = ref1->linesize[0]; |
| int pic_width = s->ps.sps->width; |
| int pic_height = s->ps.sps->height; |
| int mx0 = mv0->x & 3; |
| int my0 = mv0->y & 3; |
| int mx1 = mv1->x & 3; |
| int my1 = mv1->y & 3; |
| int weight_flag = (s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) || |
| (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag); |
| int x_off0 = x_off + (mv0->x >> 2); |
| int y_off0 = y_off + (mv0->y >> 2); |
| int x_off1 = x_off + (mv1->x >> 2); |
| int y_off1 = y_off + (mv1->y >> 2); |
| int idx = ff_hevc_pel_weight[block_w]; |
| |
| uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift); |
| uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift); |
| |
| if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER || |
| x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER || |
| y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) { |
| const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift; |
| int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift); |
| int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift); |
| |
| s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset, |
| edge_emu_stride, src0stride, |
| block_w + QPEL_EXTRA, |
| block_h + QPEL_EXTRA, |
| x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE, |
| pic_width, pic_height); |
| src0 = lc->edge_emu_buffer + buf_offset; |
| src0stride = edge_emu_stride; |
| } |
| |
| if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER || |
| x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER || |
| y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) { |
| const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift; |
| int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift); |
| int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift); |
| |
| s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset, |
| edge_emu_stride, src1stride, |
| block_w + QPEL_EXTRA, |
| block_h + QPEL_EXTRA, |
| x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE, |
| pic_width, pic_height); |
| src1 = lc->edge_emu_buffer2 + buf_offset; |
| src1stride = edge_emu_stride; |
| } |
| |
| s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride, |
| block_h, mx0, my0, block_w); |
| if (!weight_flag) |
| s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp, |
| block_h, mx1, my1, block_w); |
| else |
| s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp, |
| block_h, s->sh.luma_log2_weight_denom, |
| s->sh.luma_weight_l0[current_mv->ref_idx[0]], |
| s->sh.luma_weight_l1[current_mv->ref_idx[1]], |
| s->sh.luma_offset_l0[current_mv->ref_idx[0]], |
| s->sh.luma_offset_l1[current_mv->ref_idx[1]], |
| mx1, my1, block_w); |
| |
| } |
| |
| /** |
| * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process |
| * |
| * @param s HEVC decoding context |
| * @param dst1 target buffer for block data at block position (U plane) |
| * @param dst2 target buffer for block data at block position (V plane) |
| * @param dststride stride of the dst1 and dst2 buffers |
| * @param ref reference picture buffer at origin (0, 0) |
| * @param mv motion vector (relative to block position) to get pixel data from |
| * @param x_off horizontal position of block from origin (0, 0) |
| * @param y_off vertical position of block from origin (0, 0) |
| * @param block_w width of block |
| * @param block_h height of block |
| * @param chroma_weight weighting factor applied to the chroma prediction |
| * @param chroma_offset additive offset applied to the chroma prediction value |
| */ |
| |
| static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0, |
| ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist, |
| int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset) |
| { |
| HEVCLocalContext *lc = s->HEVClc; |
| int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1]; |
| int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1]; |
| const Mv *mv = ¤t_mv->mv[reflist]; |
| int weight_flag = (s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) || |
| (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag); |
| int idx = ff_hevc_pel_weight[block_w]; |
| int hshift = s->ps.sps->hshift[1]; |
| int vshift = s->ps.sps->vshift[1]; |
| intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift); |
| intptr_t my = av_mod_uintp2(mv->y, 2 + vshift); |
| intptr_t _mx = mx << (1 - hshift); |
| intptr_t _my = my << (1 - vshift); |
| |
| x_off += mv->x >> (2 + hshift); |
| y_off += mv->y >> (2 + vshift); |
| src0 += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift)); |
| |
| if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER || |
| x_off >= pic_width - block_w - EPEL_EXTRA_AFTER || |
| y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) { |
| const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift; |
| int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift)); |
| int buf_offset0 = EPEL_EXTRA_BEFORE * |
| (edge_emu_stride + (1 << s->ps.sps->pixel_shift)); |
| s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0, |
| edge_emu_stride, srcstride, |
| block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, |
| x_off - EPEL_EXTRA_BEFORE, |
| y_off - EPEL_EXTRA_BEFORE, |
| pic_width, pic_height); |
| |
| src0 = lc->edge_emu_buffer + buf_offset0; |
| srcstride = edge_emu_stride; |
| } |
| if (!weight_flag) |
| s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride, |
| block_h, _mx, _my, block_w); |
| else |
| s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride, |
| block_h, s->sh.chroma_log2_weight_denom, |
| chroma_weight, chroma_offset, _mx, _my, block_w); |
| } |
| |
| /** |
| * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process |
| * |
| * @param s HEVC decoding context |
| * @param dst target buffer for block data at block position |
| * @param dststride stride of the dst buffer |
| * @param ref0 reference picture0 buffer at origin (0, 0) |
| * @param mv0 motion vector0 (relative to block position) to get pixel data from |
| * @param x_off horizontal position of block from origin (0, 0) |
| * @param y_off vertical position of block from origin (0, 0) |
| * @param block_w width of block |
| * @param block_h height of block |
| * @param ref1 reference picture1 buffer at origin (0, 0) |
| * @param mv1 motion vector1 (relative to block position) to get pixel data from |
| * @param current_mv current motion vector structure |
| * @param cidx chroma component(cb, cr) |
| */ |
| static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1, |
| int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx) |
| { |
| HEVCLocalContext *lc = s->HEVClc; |
| uint8_t *src1 = ref0->data[cidx+1]; |
| uint8_t *src2 = ref1->data[cidx+1]; |
| ptrdiff_t src1stride = ref0->linesize[cidx+1]; |
| ptrdiff_t src2stride = ref1->linesize[cidx+1]; |
| int weight_flag = (s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) || |
| (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag); |
| int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1]; |
| int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1]; |
| Mv *mv0 = ¤t_mv->mv[0]; |
| Mv *mv1 = ¤t_mv->mv[1]; |
| int hshift = s->ps.sps->hshift[1]; |
| int vshift = s->ps.sps->vshift[1]; |
| |
| intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift); |
| intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift); |
| intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift); |
| intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift); |
| intptr_t _mx0 = mx0 << (1 - hshift); |
| intptr_t _my0 = my0 << (1 - vshift); |
| intptr_t _mx1 = mx1 << (1 - hshift); |
| intptr_t _my1 = my1 << (1 - vshift); |
| |
| int x_off0 = x_off + (mv0->x >> (2 + hshift)); |
| int y_off0 = y_off + (mv0->y >> (2 + vshift)); |
| int x_off1 = x_off + (mv1->x >> (2 + hshift)); |
| int y_off1 = y_off + (mv1->y >> (2 + vshift)); |
| int idx = ff_hevc_pel_weight[block_w]; |
| src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift); |
| src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift); |
| |
| if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER || |
| x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER || |
| y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) { |
| const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift; |
| int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift)); |
| int buf_offset1 = EPEL_EXTRA_BEFORE * |
| (edge_emu_stride + (1 << s->ps.sps->pixel_shift)); |
| |
| s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1, |
| edge_emu_stride, src1stride, |
| block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, |
| x_off0 - EPEL_EXTRA_BEFORE, |
| y_off0 - EPEL_EXTRA_BEFORE, |
| pic_width, pic_height); |
| |
| src1 = lc->edge_emu_buffer + buf_offset1; |
| src1stride = edge_emu_stride; |
| } |
| |
| if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER || |
| x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER || |
| y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) { |
| const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift; |
| int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift)); |
| int buf_offset1 = EPEL_EXTRA_BEFORE * |
| (edge_emu_stride + (1 << s->ps.sps->pixel_shift)); |
| |
| s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1, |
| edge_emu_stride, src2stride, |
| block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, |
| x_off1 - EPEL_EXTRA_BEFORE, |
| y_off1 - EPEL_EXTRA_BEFORE, |
| pic_width, pic_height); |
| |
| src2 = lc->edge_emu_buffer2 + buf_offset1; |
| src2stride = edge_emu_stride; |
| } |
| |
| s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride, |
| block_h, _mx0, _my0, block_w); |
| if (!weight_flag) |
| s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1], |
| src2, src2stride, lc->tmp, |
| block_h, _mx1, _my1, block_w); |
| else |
| s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1], |
| src2, src2stride, lc->tmp, |
| block_h, |
| s->sh.chroma_log2_weight_denom, |
| s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx], |
| s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx], |
| s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx], |
| s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx], |
| _mx1, _my1, block_w); |
| } |
| |
| static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref, |
| const Mv *mv, int y0, int height) |
| { |
| int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9); |
| |
| if (s->threads_type == FF_THREAD_FRAME ) |
| ff_thread_await_progress(&ref->tf, y, 0); |
| } |
| |
| static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW, |
| int nPbH, int log2_cb_size, int part_idx, |
| int merge_idx, MvField *mv) |
| { |
| HEVCLocalContext *lc = s->HEVClc; |
| enum InterPredIdc inter_pred_idc = PRED_L0; |
| int mvp_flag; |
| |
| ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH); |
| mv->pred_flag = 0; |
| if (s->sh.slice_type == B_SLICE) |
| inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH); |
| |
| if (inter_pred_idc != PRED_L1) { |
| if (s->sh.nb_refs[L0]) |
| mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]); |
| |
| mv->pred_flag = PF_L0; |
| ff_hevc_hls_mvd_coding(s, x0, y0, 0); |
| mvp_flag = ff_hevc_mvp_lx_flag_decode(s); |
| ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size, |
| part_idx, merge_idx, mv, mvp_flag, 0); |
| mv->mv[0].x += lc->pu.mvd.x; |
| mv->mv[0].y += lc->pu.mvd.y; |
| } |
| |
| if (inter_pred_idc != PRED_L0) { |
| if (s->sh.nb_refs[L1]) |
| mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]); |
| |
| if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) { |
| AV_ZERO32(&lc->pu.mvd); |
| } else { |
| ff_hevc_hls_mvd_coding(s, x0, y0, 1); |
| } |
| |
| mv->pred_flag += PF_L1; |
| mvp_flag = ff_hevc_mvp_lx_flag_decode(s); |
| ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size, |
| part_idx, merge_idx, mv, mvp_flag, 1); |
| mv->mv[1].x += lc->pu.mvd.x; |
| mv->mv[1].y += lc->pu.mvd.y; |
| } |
| } |
| |
| static void hls_prediction_unit(HEVCContext *s, int x0, int y0, |
| int nPbW, int nPbH, |
| int log2_cb_size, int partIdx, int idx) |
| { |
| #define POS(c_idx, x, y) \ |
| &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \ |
| (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)] |
| HEVCLocalContext *lc = s->HEVClc; |
| int merge_idx = 0; |
| struct MvField current_mv = {{{ 0 }}}; |
| |
| int min_pu_width = s->ps.sps->min_pu_width; |
| |
| MvField *tab_mvf = s->ref->tab_mvf; |
| RefPicList *refPicList = s->ref->refPicList; |
| HEVCFrame *ref0 = NULL, *ref1 = NULL; |
| uint8_t *dst0 = POS(0, x0, y0); |
| uint8_t *dst1 = POS(1, x0, y0); |
| uint8_t *dst2 = POS(2, x0, y0); |
| int log2_min_cb_size = s->ps.sps->log2_min_cb_size; |
| int min_cb_width = s->ps.sps->min_cb_width; |
| int x_cb = x0 >> log2_min_cb_size; |
| int y_cb = y0 >> log2_min_cb_size; |
| int x_pu, y_pu; |
| int i, j; |
| |
| int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb); |
| |
| if (!skip_flag) |
| lc->pu.merge_flag = ff_hevc_merge_flag_decode(s); |
| |
| if (skip_flag || lc->pu.merge_flag) { |
| if (s->sh.max_num_merge_cand > 1) |
| merge_idx = ff_hevc_merge_idx_decode(s); |
| else |
| merge_idx = 0; |
| |
| ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size, |
| partIdx, merge_idx, ¤t_mv); |
| } else { |
| hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size, |
| partIdx, merge_idx, ¤t_mv); |
| } |
| |
| x_pu = x0 >> s->ps.sps->log2_min_pu_size; |
| y_pu = y0 >> s->ps.sps->log2_min_pu_size; |
| |
| for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++) |
| for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++) |
| tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv; |
| |
| if (current_mv.pred_flag & PF_L0) { |
| ref0 = refPicList[0].ref[current_mv.ref_idx[0]]; |
| if (!ref0) |
| return; |
| hevc_await_progress(s, ref0, ¤t_mv.mv[0], y0, nPbH); |
| } |
| if (current_mv.pred_flag & PF_L1) { |
| ref1 = refPicList[1].ref[current_mv.ref_idx[1]]; |
| if (!ref1) |
| return; |
| hevc_await_progress(s, ref1, ¤t_mv.mv[1], y0, nPbH); |
| } |
| |
| if (current_mv.pred_flag == PF_L0) { |
| int x0_c = x0 >> s->ps.sps->hshift[1]; |
| int y0_c = y0 >> s->ps.sps->vshift[1]; |
| int nPbW_c = nPbW >> s->ps.sps->hshift[1]; |
| int nPbH_c = nPbH >> s->ps.sps->vshift[1]; |
| |
| luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame, |
| ¤t_mv.mv[0], x0, y0, nPbW, nPbH, |
| s->sh.luma_weight_l0[current_mv.ref_idx[0]], |
| s->sh.luma_offset_l0[current_mv.ref_idx[0]]); |
| |
| if (s->ps.sps->chroma_format_idc) { |
| chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1], |
| 0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, |
| s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]); |
| chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2], |
| 0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, |
| s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]); |
| } |
| } else if (current_mv.pred_flag == PF_L1) { |
| int x0_c = x0 >> s->ps.sps->hshift[1]; |
| int y0_c = y0 >> s->ps.sps->vshift[1]; |
| int nPbW_c = nPbW >> s->ps.sps->hshift[1]; |
| int nPbH_c = nPbH >> s->ps.sps->vshift[1]; |
| |
| luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame, |
| ¤t_mv.mv[1], x0, y0, nPbW, nPbH, |
| s->sh.luma_weight_l1[current_mv.ref_idx[1]], |
| s->sh.luma_offset_l1[current_mv.ref_idx[1]]); |
| |
| if (s->ps.sps->chroma_format_idc) { |
| chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1], |
| 1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, |
| s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]); |
| |
| chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2], |
| 1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, |
| s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]); |
| } |
| } else if (current_mv.pred_flag == PF_BI) { |
| int x0_c = x0 >> s->ps.sps->hshift[1]; |
| int y0_c = y0 >> s->ps.sps->vshift[1]; |
| int nPbW_c = nPbW >> s->ps.sps->hshift[1]; |
| int nPbH_c = nPbH >> s->ps.sps->vshift[1]; |
| |
| luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame, |
| ¤t_mv.mv[0], x0, y0, nPbW, nPbH, |
| ref1->frame, ¤t_mv.mv[1], ¤t_mv); |
| |
| if (s->ps.sps->chroma_format_idc) { |
| chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame, |
| x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 0); |
| |
| chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame, |
| x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 1); |
| } |
| } |
| } |
| |
| /** |
| * 8.4.1 |
| */ |
| static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size, |
| int prev_intra_luma_pred_flag) |
| { |
| HEVCLocalContext *lc = s->HEVClc; |
| int x_pu = x0 >> s->ps.sps->log2_min_pu_size; |
| int y_pu = y0 >> s->ps.sps->log2_min_pu_size; |
| int min_pu_width = s->ps.sps->min_pu_width; |
| int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size; |
| int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size); |
| int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size); |
| |
| int cand_up = (lc->ctb_up_flag || y0b) ? |
| s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC; |
| int cand_left = (lc->ctb_left_flag || x0b) ? |
| s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC; |
| |
| int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size); |
| |
| MvField *tab_mvf = s->ref->tab_mvf; |
| int intra_pred_mode; |
| int candidate[3]; |
| int i, j; |
| |
| // intra_pred_mode prediction does not cross vertical CTB boundaries |
| if ((y0 - 1) < y_ctb) |
| cand_up = INTRA_DC; |
| |
| if (cand_left == cand_up) { |
| if (cand_left < 2) { |
| candidate[0] = INTRA_PLANAR; |
| candidate[1] = INTRA_DC; |
| candidate[2] = INTRA_ANGULAR_26; |
| } else { |
| candidate[0] = cand_left; |
| candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31); |
| candidate[2] = 2 + ((cand_left - 2 + 1) & 31); |
| } |
| } else { |
| candidate[0] = cand_left; |
| candidate[1] = cand_up; |
| if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) { |
| candidate[2] = INTRA_PLANAR; |
| } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) { |
| candidate[2] = INTRA_DC; |
| } else { |
| candidate[2] = INTRA_ANGULAR_26; |
| } |
| } |
| |
| if (prev_intra_luma_pred_flag) { |
| intra_pred_mode = candidate[lc->pu.mpm_idx]; |
| } else { |
| if (candidate[0] > candidate[1]) |
| FFSWAP(uint8_t, candidate[0], candidate[1]); |
| if (candidate[0] > candidate[2]) |
| FFSWAP(uint8_t, candidate[0], candidate[2]); |
| if (candidate[1] > candidate[2]) |
| FFSWAP(uint8_t, candidate[1], candidate[2]); |
| |
| intra_pred_mode = lc->pu.rem_intra_luma_pred_mode; |
| for (i = 0; i < 3; i++) |
| if (intra_pred_mode >= candidate[i]) |
| intra_pred_mode++; |
| } |
| |
| /* write the intra prediction units into the mv array */ |
| if (!size_in_pus) |
| size_in_pus = 1; |
| for (i = 0; i < size_in_pus; i++) { |
| memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu], |
| intra_pred_mode, size_in_pus); |
| |
| for (j = 0; j < size_in_pus; j++) { |
| tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA; |
| } |
| } |
| |
| return intra_pred_mode; |
| } |
| |
| static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0, |
| int log2_cb_size, int ct_depth) |
| { |
| int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size; |
| int x_cb = x0 >> s->ps.sps->log2_min_cb_size; |
| int y_cb = y0 >> s->ps.sps->log2_min_cb_size; |
| int y; |
| |
| for (y = 0; y < length; y++) |
| memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb], |
| ct_depth, length); |
| } |
| |
| static const uint8_t tab_mode_idx[] = { |
| 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20, |
| 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31}; |
| |
| static void intra_prediction_unit(HEVCContext *s, int x0, int y0, |
| int log2_cb_size) |
| { |
| HEVCLocalContext *lc = s->HEVClc; |
| static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 }; |
| uint8_t prev_intra_luma_pred_flag[4]; |
| int split = lc->cu.part_mode == PART_NxN; |
| int pb_size = (1 << log2_cb_size) >> split; |
| int side = split + 1; |
| int chroma_mode; |
| int i, j; |
| |
| for (i = 0; i < side; i++) |
| for (j = 0; j < side; j++) |
| prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s); |
| |
| for (i = 0; i < side; i++) { |
| for (j = 0; j < side; j++) { |
| if (prev_intra_luma_pred_flag[2 * i + j]) |
| lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s); |
| else |
| lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s); |
| |
| lc->pu.intra_pred_mode[2 * i + j] = |
| luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size, |
| prev_intra_luma_pred_flag[2 * i + j]); |
| } |
| } |
| |
| if (s->ps.sps->chroma_format_idc == 3) { |
| for (i = 0; i < side; i++) { |
| for (j = 0; j < side; j++) { |
| lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s); |
| if (chroma_mode != 4) { |
| if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode]) |
| lc->pu.intra_pred_mode_c[2 * i + j] = 34; |
| else |
| lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode]; |
| } else { |
| lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j]; |
| } |
| } |
| } |
| } else if (s->ps.sps->chroma_format_idc == 2) { |
| int mode_idx; |
| lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s); |
| if (chroma_mode != 4) { |
| if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode]) |
| mode_idx = 34; |
| else |
| mode_idx = intra_chroma_table[chroma_mode]; |
| } else { |
| mode_idx = lc->pu.intra_pred_mode[0]; |
| } |
| lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx]; |
| } else if (s->ps.sps->chroma_format_idc != 0) { |
| chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s); |
| if (chroma_mode != 4) { |
| if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode]) |
| lc->pu.intra_pred_mode_c[0] = 34; |
| else |
| lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode]; |
| } else { |
| lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0]; |
| } |
| } |
| } |
| |
| static void intra_prediction_unit_default_value(HEVCContext *s, |
| int x0, int y0, |
| int log2_cb_size) |
| { |
| HEVCLocalContext *lc = s->HEVClc; |
| int pb_size = 1 << log2_cb_size; |
| int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size; |
| int min_pu_width = s->ps.sps->min_pu_width; |
| MvField *tab_mvf = s->ref->tab_mvf; |
| int x_pu = x0 >> s->ps.sps->log2_min_pu_size; |
| int y_pu = y0 >> s->ps.sps->log2_min_pu_size; |
| int j, k; |
| |
| if (size_in_pus == 0) |
| size_in_pus = 1; |
| for (j = 0; j < size_in_pus; j++) |
| memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus); |
| if (lc->cu.pred_mode == MODE_INTRA) |
| for (j = 0; j < size_in_pus; j++) |
| for (k = 0; k < size_in_pus; k++) |
| tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA; |
| } |
| |
| static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size) |
| { |
| int cb_size = 1 << log2_cb_size; |
| HEVCLocalContext *lc = s->HEVClc; |
| int log2_min_cb_size = s->ps.sps->log2_min_cb_size; |
| int length = cb_size >> log2_min_cb_size; |
| int min_cb_width = s->ps.sps->min_cb_width; |
| int x_cb = x0 >> log2_min_cb_size; |
| int y_cb = y0 >> log2_min_cb_size; |
| int idx = log2_cb_size - 2; |
| int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1; |
| int x, y, ret; |
| |
| lc->cu.x = x0; |
| lc->cu.y = y0; |
| lc->cu.pred_mode = MODE_INTRA; |
| lc->cu.part_mode = PART_2Nx2N; |
| lc->cu.intra_split_flag = 0; |
| |
| SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0; |
| for (x = 0; x < 4; x++) |
| lc->pu.intra_pred_mode[x] = 1; |
| if (s->ps.pps->transquant_bypass_enable_flag) { |
| lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s); |
| if (lc->cu.cu_transquant_bypass_flag) |
| set_deblocking_bypass(s, x0, y0, log2_cb_size); |
| } else |
| lc->cu.cu_transquant_bypass_flag = 0; |
| |
| if (s->sh.slice_type != I_SLICE) { |
| uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb); |
| |
| x = y_cb * min_cb_width + x_cb; |
| for (y = 0; y < length; y++) { |
| memset(&s->skip_flag[x], skip_flag, length); |
| x += min_cb_width; |
| } |
| lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER; |
| } else { |
| x = y_cb * min_cb_width + x_cb; |
| for (y = 0; y < length; y++) { |
| memset(&s->skip_flag[x], 0, length); |
| x += min_cb_width; |
| } |
| } |
| |
| if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) { |
| hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx); |
| intra_prediction_unit_default_value(s, x0, y0, log2_cb_size); |
| |
| if (!s->sh.disable_deblocking_filter_flag) |
| ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size); |
| } else { |
| int pcm_flag = 0; |
| |
| if (s->sh.slice_type != I_SLICE) |
| lc->cu.pred_mode = ff_hevc_pred_mode_decode(s); |
| if (lc->cu.pred_mode != MODE_INTRA || |
| log2_cb_size == s->ps.sps->log2_min_cb_size) { |
| lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size); |
| lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN && |
| lc->cu.pred_mode == MODE_INTRA; |
| } |
| |
| if (lc->cu.pred_mode == MODE_INTRA) { |
| if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag && |
| log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size && |
| log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) { |
| pcm_flag = ff_hevc_pcm_flag_decode(s); |
| } |
| if (pcm_flag) { |
| intra_prediction_unit_default_value(s, x0, y0, log2_cb_size); |
| ret = hls_pcm_sample(s, x0, y0, log2_cb_size); |
| if (s->ps.sps->pcm.loop_filter_disable_flag) |
| set_deblocking_bypass(s, x0, y0, log2_cb_size); |
| |
| if (ret < 0) |
| return ret; |
| } else { |
| intra_prediction_unit(s, x0, y0, log2_cb_size); |
| } |
| } else { |
| intra_prediction_unit_default_value(s, x0, y0, log2_cb_size); |
| switch (lc->cu.part_mode) { |
| case PART_2Nx2N: |
| hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx); |
| break; |
| case PART_2NxN: |
| hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx); |
| hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx); |
| break; |
| case PART_Nx2N: |
| hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1); |
| hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1); |
| break; |
| case PART_2NxnU: |
| hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx); |
| hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx); |
| break; |
| case PART_2NxnD: |
| hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx); |
| hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx); |
| break; |
| case PART_nLx2N: |
| hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2); |
| hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2); |
| break; |
| case PART_nRx2N: |
| hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2); |
| hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2); |
| break; |
| case PART_NxN: |
| hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1); |
| hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1); |
| hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1); |
| hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1); |
| break; |
| } |
| } |
| |
| if (!pcm_flag) { |
| int rqt_root_cbf = 1; |
| |
| if (lc->cu.pred_mode != MODE_INTRA && |
| !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) { |
| rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s); |
| } |
| if (rqt_root_cbf) { |
| const static int cbf[2] = { 0 }; |
| lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ? |
| s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag : |
| s->ps.sps->max_transform_hierarchy_depth_inter; |
| ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0, |
| log2_cb_size, |
| log2_cb_size, 0, 0, cbf, cbf); |
| if (ret < 0) |
| return ret; |
| } else { |
| if (!s->sh.disable_deblocking_filter_flag) |
| ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size); |
| } |
| } |
| } |
| |
| if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0) |
| ff_hevc_set_qPy(s, x0, y0, log2_cb_size); |
| |
| x = y_cb * min_cb_width + x_cb; |
| for (y = 0; y < length; y++) { |
| memset(&s->qp_y_tab[x], lc->qp_y, length); |
| x += min_cb_width; |
| } |
| |
| if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 && |
| ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) { |
| lc->qPy_pred = lc->qp_y; |
| } |
| |
| set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth); |
| |
| return 0; |
| } |
| |
| static int hls_coding_quadtree(HEVCContext *s, int x0, int y0, |
| int log2_cb_size, int cb_depth) |
| { |
| HEVCLocalContext *lc = s->HEVClc; |
| const int cb_size = 1 << log2_cb_size; |
| int ret; |
| int split_cu; |
| |
| lc->ct_depth = cb_depth; |
| if (x0 + cb_size <= s->ps.sps->width && |
| y0 + cb_size <= s->ps.sps->height && |
| log2_cb_size > s->ps.sps->log2_min_cb_size) { |
| split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0); |
| } else { |
| split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size); |
| } |
| if (s->ps.pps->cu_qp_delta_enabled_flag && |
| log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) { |
| lc->tu.is_cu_qp_delta_coded = 0; |
| lc->tu.cu_qp_delta = 0; |
| } |
| |
| if (s->sh.cu_chroma_qp_offset_enabled_flag && |
| log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) { |
| lc->tu.is_cu_chroma_qp_offset_coded = 0; |
| } |
| |
| if (split_cu) { |
| int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1; |
| const int cb_size_split = cb_size >> 1; |
| const int x1 = x0 + cb_size_split; |
| const int y1 = y0 + cb_size_split; |
| |
| int more_data = 0; |
| |
| more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1); |
| if (more_data < 0) |
| return more_data; |
| |
| if (more_data && x1 < s->ps.sps->width) { |
| more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1); |
| if (more_data < 0) |
| return more_data; |
| } |
| if (more_data && y1 < s->ps.sps->height) { |
| more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1); |
| if (more_data < 0) |
| return more_data; |
| } |
| if (more_data && x1 < s->ps.sps->width && |
| y1 < s->ps.sps->height) { |
| more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1); |
| if (more_data < 0) |
| return more_data; |
| } |
| |
| if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 && |
| ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) |
| lc->qPy_pred = lc->qp_y; |
| |
| if (more_data) |
| return ((x1 + cb_size_split) < s->ps.sps->width || |
| (y1 + cb_size_split) < s->ps.sps->height); |
| else |
| return 0; |
| } else { |
| ret = hls_coding_unit(s, x0, y0, log2_cb_size); |
| if (ret < 0) |
| return ret; |
| if ((!((x0 + cb_size) % |
| (1 << (s->ps.sps->log2_ctb_size))) || |
| (x0 + cb_size >= s->ps.sps->width)) && |
| (!((y0 + cb_size) % |
| (1 << (s->ps.sps->log2_ctb_size))) || |
| (y0 + cb_size >= s->ps.sps->height))) { |
| int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s); |
| return !end_of_slice_flag; |
| } else { |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb, |
| int ctb_addr_ts) |
| { |
| HEVCLocalContext *lc = s->HEVClc; |
| int ctb_size = 1 << s->ps.sps->log2_ctb_size; |
| int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts]; |
| int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr; |
| |
| s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr; |
| |
| if (s->ps.pps->entropy_coding_sync_enabled_flag) { |
| if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0) |
| lc->first_qp_group = 1; |
| lc->end_of_tiles_x = s->ps.sps->width; |
| } else if (s->ps.pps->tiles_enabled_flag) { |
| if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) { |
| int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size]; |
| lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size); |
| lc->first_qp_group = 1; |
| } |
| } else { |
| lc->end_of_tiles_x = s->ps.sps->width; |
| } |
| |
| lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height); |
| |
| lc->boundary_flags = 0; |
| if (s->ps.pps->tiles_enabled_flag) { |
| if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]]) |
| lc->boundary_flags |= |