| /* |
| * Copyright (c) 2001, 2002 Fabrice Bellard |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include <stdint.h> |
| |
| #include "libavutil/attributes.h" |
| #include "libavutil/mem.h" |
| #include "dct32.h" |
| #include "mathops.h" |
| #include "mpegaudiodsp.h" |
| #include "mpegaudio.h" |
| |
| #if USE_FLOATS |
| #define RENAME(n) n##_float |
| |
| static inline float round_sample(float *sum) |
| { |
| float sum1=*sum; |
| *sum = 0; |
| return sum1; |
| } |
| |
| #define MACS(rt, ra, rb) rt+=(ra)*(rb) |
| #define MULS(ra, rb) ((ra)*(rb)) |
| #define MULH3(x, y, s) ((s)*(y)*(x)) |
| #define MLSS(rt, ra, rb) rt-=(ra)*(rb) |
| #define MULLx(x, y, s) ((y)*(x)) |
| #define FIXHR(x) ((float)(x)) |
| #define FIXR(x) ((float)(x)) |
| #define SHR(a,b) ((a)*(1.0f/(1<<(b)))) |
| |
| #else |
| |
| #define RENAME(n) n##_fixed |
| #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15) |
| |
| static inline int round_sample(int64_t *sum) |
| { |
| int sum1; |
| sum1 = (int)((*sum) >> OUT_SHIFT); |
| *sum &= (1<<OUT_SHIFT)-1; |
| return av_clip_int16(sum1); |
| } |
| |
| # define MULS(ra, rb) MUL64(ra, rb) |
| # define MACS(rt, ra, rb) MAC64(rt, ra, rb) |
| # define MLSS(rt, ra, rb) MLS64(rt, ra, rb) |
| # define MULH3(x, y, s) MULH((s)*(x), y) |
| # define MULLx(x, y, s) MULL(x,y,s) |
| # define SHR(a,b) ((a)>>(b)) |
| # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) |
| # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5)) |
| #endif |
| |
| /** Window for MDCT. Actually only the elements in [0,17] and |
| [MDCT_BUF_SIZE/2, MDCT_BUF_SIZE/2 + 17] are actually used. The rest |
| is just to preserve alignment for SIMD implementations. |
| */ |
| DECLARE_ALIGNED(16, INTFLOAT, RENAME(ff_mdct_win))[8][MDCT_BUF_SIZE]; |
| |
| DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256]; |
| |
| #define SUM8(op, sum, w, p) \ |
| { \ |
| op(sum, (w)[0 * 64], (p)[0 * 64]); \ |
| op(sum, (w)[1 * 64], (p)[1 * 64]); \ |
| op(sum, (w)[2 * 64], (p)[2 * 64]); \ |
| op(sum, (w)[3 * 64], (p)[3 * 64]); \ |
| op(sum, (w)[4 * 64], (p)[4 * 64]); \ |
| op(sum, (w)[5 * 64], (p)[5 * 64]); \ |
| op(sum, (w)[6 * 64], (p)[6 * 64]); \ |
| op(sum, (w)[7 * 64], (p)[7 * 64]); \ |
| } |
| |
| #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \ |
| { \ |
| INTFLOAT tmp;\ |
| tmp = p[0 * 64];\ |
| op1(sum1, (w1)[0 * 64], tmp);\ |
| op2(sum2, (w2)[0 * 64], tmp);\ |
| tmp = p[1 * 64];\ |
| op1(sum1, (w1)[1 * 64], tmp);\ |
| op2(sum2, (w2)[1 * 64], tmp);\ |
| tmp = p[2 * 64];\ |
| op1(sum1, (w1)[2 * 64], tmp);\ |
| op2(sum2, (w2)[2 * 64], tmp);\ |
| tmp = p[3 * 64];\ |
| op1(sum1, (w1)[3 * 64], tmp);\ |
| op2(sum2, (w2)[3 * 64], tmp);\ |
| tmp = p[4 * 64];\ |
| op1(sum1, (w1)[4 * 64], tmp);\ |
| op2(sum2, (w2)[4 * 64], tmp);\ |
| tmp = p[5 * 64];\ |
| op1(sum1, (w1)[5 * 64], tmp);\ |
| op2(sum2, (w2)[5 * 64], tmp);\ |
| tmp = p[6 * 64];\ |
| op1(sum1, (w1)[6 * 64], tmp);\ |
| op2(sum2, (w2)[6 * 64], tmp);\ |
| tmp = p[7 * 64];\ |
| op1(sum1, (w1)[7 * 64], tmp);\ |
| op2(sum2, (w2)[7 * 64], tmp);\ |
| } |
| |
| void RENAME(ff_mpadsp_apply_window)(MPA_INT *synth_buf, MPA_INT *window, |
| int *dither_state, OUT_INT *samples, |
| int incr) |
| { |
| register const MPA_INT *w, *w2, *p; |
| int j; |
| OUT_INT *samples2; |
| #if USE_FLOATS |
| float sum, sum2; |
| #else |
| int64_t sum, sum2; |
| #endif |
| |
| /* copy to avoid wrap */ |
| memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf)); |
| |
| samples2 = samples + 31 * incr; |
| w = window; |
| w2 = window + 31; |
| |
| sum = *dither_state; |
| p = synth_buf + 16; |
| SUM8(MACS, sum, w, p); |
| p = synth_buf + 48; |
| SUM8(MLSS, sum, w + 32, p); |
| *samples = round_sample(&sum); |
| samples += incr; |
| w++; |
| |
| /* we calculate two samples at the same time to avoid one memory |
| access per two sample */ |
| for(j=1;j<16;j++) { |
| sum2 = 0; |
| p = synth_buf + 16 + j; |
| SUM8P2(sum, MACS, sum2, MLSS, w, w2, p); |
| p = synth_buf + 48 - j; |
| SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p); |
| |
| *samples = round_sample(&sum); |
| samples += incr; |
| sum += sum2; |
| *samples2 = round_sample(&sum); |
| samples2 -= incr; |
| w++; |
| w2--; |
| } |
| |
| p = synth_buf + 32; |
| SUM8(MLSS, sum, w + 32, p); |
| *samples = round_sample(&sum); |
| *dither_state= sum; |
| } |
| |
| /* 32 sub band synthesis filter. Input: 32 sub band samples, Output: |
| 32 samples. */ |
| void RENAME(ff_mpa_synth_filter)(MPADSPContext *s, MPA_INT *synth_buf_ptr, |
| int *synth_buf_offset, |
| MPA_INT *window, int *dither_state, |
| OUT_INT *samples, int incr, |
| MPA_INT *sb_samples) |
| { |
| MPA_INT *synth_buf; |
| int offset; |
| |
| offset = *synth_buf_offset; |
| synth_buf = synth_buf_ptr + offset; |
| |
| s->RENAME(dct32)(synth_buf, sb_samples); |
| s->RENAME(apply_window)(synth_buf, window, dither_state, samples, incr); |
| |
| offset = (offset - 32) & 511; |
| *synth_buf_offset = offset; |
| } |
| |
| av_cold void RENAME(ff_mpa_synth_init)(MPA_INT *window) |
| { |
| int i, j; |
| |
| /* max = 18760, max sum over all 16 coefs : 44736 */ |
| for(i=0;i<257;i++) { |
| INTFLOAT v; |
| v = ff_mpa_enwindow[i]; |
| #if USE_FLOATS |
| v *= 1.0 / (1LL<<(16 + FRAC_BITS)); |
| #endif |
| window[i] = v; |
| if ((i & 63) != 0) |
| v = -v; |
| if (i != 0) |
| window[512 - i] = v; |
| } |
| |
| |
| // Needed for avoiding shuffles in ASM implementations |
| for(i=0; i < 8; i++) |
| for(j=0; j < 16; j++) |
| window[512+16*i+j] = window[64*i+32-j]; |
| |
| for(i=0; i < 8; i++) |
| for(j=0; j < 16; j++) |
| window[512+128+16*i+j] = window[64*i+48-j]; |
| } |
| |
| av_cold void RENAME(ff_init_mpadsp_tabs)(void) |
| { |
| int i, j; |
| /* compute mdct windows */ |
| for (i = 0; i < 36; i++) { |
| for (j = 0; j < 4; j++) { |
| double d; |
| |
| if (j == 2 && i % 3 != 1) |
| continue; |
| |
| d = sin(M_PI * (i + 0.5) / 36.0); |
| if (j == 1) { |
| if (i >= 30) d = 0; |
| else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0); |
| else if (i >= 18) d = 1; |
| } else if (j == 3) { |
| if (i < 6) d = 0; |
| else if (i < 12) d = sin(M_PI * (i - 6 + 0.5) / 12.0); |
| else if (i < 18) d = 1; |
| } |
| //merge last stage of imdct into the window coefficients |
| d *= 0.5 * IMDCT_SCALAR / cos(M_PI * (2 * i + 19) / 72); |
| |
| if (j == 2) |
| RENAME(ff_mdct_win)[j][i/3] = FIXHR((d / (1<<5))); |
| else { |
| int idx = i < 18 ? i : i + (MDCT_BUF_SIZE/2 - 18); |
| RENAME(ff_mdct_win)[j][idx] = FIXHR((d / (1<<5))); |
| } |
| } |
| } |
| |
| /* NOTE: we do frequency inversion adter the MDCT by changing |
| the sign of the right window coefs */ |
| for (j = 0; j < 4; j++) { |
| for (i = 0; i < MDCT_BUF_SIZE; i += 2) { |
| RENAME(ff_mdct_win)[j + 4][i ] = RENAME(ff_mdct_win)[j][i ]; |
| RENAME(ff_mdct_win)[j + 4][i + 1] = -RENAME(ff_mdct_win)[j][i + 1]; |
| } |
| } |
| } |
| /* cos(pi*i/18) */ |
| #define C1 FIXHR(0.98480775301220805936/2) |
| #define C2 FIXHR(0.93969262078590838405/2) |
| #define C3 FIXHR(0.86602540378443864676/2) |
| #define C4 FIXHR(0.76604444311897803520/2) |
| #define C5 FIXHR(0.64278760968653932632/2) |
| #define C6 FIXHR(0.5/2) |
| #define C7 FIXHR(0.34202014332566873304/2) |
| #define C8 FIXHR(0.17364817766693034885/2) |
| |
| /* 0.5 / cos(pi*(2*i+1)/36) */ |
| static const INTFLOAT icos36[9] = { |
| FIXR(0.50190991877167369479), |
| FIXR(0.51763809020504152469), //0 |
| FIXR(0.55168895948124587824), |
| FIXR(0.61038729438072803416), |
| FIXR(0.70710678118654752439), //1 |
| FIXR(0.87172339781054900991), |
| FIXR(1.18310079157624925896), |
| FIXR(1.93185165257813657349), //2 |
| FIXR(5.73685662283492756461), |
| }; |
| |
| /* 0.5 / cos(pi*(2*i+1)/36) */ |
| static const INTFLOAT icos36h[9] = { |
| FIXHR(0.50190991877167369479/2), |
| FIXHR(0.51763809020504152469/2), //0 |
| FIXHR(0.55168895948124587824/2), |
| FIXHR(0.61038729438072803416/2), |
| FIXHR(0.70710678118654752439/2), //1 |
| FIXHR(0.87172339781054900991/2), |
| FIXHR(1.18310079157624925896/4), |
| FIXHR(1.93185165257813657349/4), //2 |
| // FIXHR(5.73685662283492756461), |
| }; |
| |
| /* using Lee like decomposition followed by hand coded 9 points DCT */ |
| static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win) |
| { |
| int i, j; |
| INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3; |
| INTFLOAT tmp[18], *tmp1, *in1; |
| |
| for (i = 17; i >= 1; i--) |
| in[i] += in[i-1]; |
| for (i = 17; i >= 3; i -= 2) |
| in[i] += in[i-2]; |
| |
| for (j = 0; j < 2; j++) { |
| tmp1 = tmp + j; |
| in1 = in + j; |
| |
| t2 = in1[2*4] + in1[2*8] - in1[2*2]; |
| |
| t3 = in1[2*0] + SHR(in1[2*6],1); |
| t1 = in1[2*0] - in1[2*6]; |
| tmp1[ 6] = t1 - SHR(t2,1); |
| tmp1[16] = t1 + t2; |
| |
| t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2); |
| t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1); |
| t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2); |
| |
| tmp1[10] = t3 - t0 - t2; |
| tmp1[ 2] = t3 + t0 + t1; |
| tmp1[14] = t3 + t2 - t1; |
| |
| tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2); |
| t2 = MULH3(in1[2*1] + in1[2*5], C1, 2); |
| t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1); |
| t0 = MULH3(in1[2*3], C3, 2); |
| |
| t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2); |
| |
| tmp1[ 0] = t2 + t3 + t0; |
| tmp1[12] = t2 + t1 - t0; |
| tmp1[ 8] = t3 - t1 - t0; |
| } |
| |
| i = 0; |
| for (j = 0; j < 4; j++) { |
| t0 = tmp[i]; |
| t1 = tmp[i + 2]; |
| s0 = t1 + t0; |
| s2 = t1 - t0; |
| |
| t2 = tmp[i + 1]; |
| t3 = tmp[i + 3]; |
| s1 = MULH3(t3 + t2, icos36h[ j], 2); |
| s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS); |
| |
| t0 = s0 + s1; |
| t1 = s0 - s1; |
| out[(9 + j) * SBLIMIT] = MULH3(t1, win[ 9 + j], 1) + buf[4*(9 + j)]; |
| out[(8 - j) * SBLIMIT] = MULH3(t1, win[ 8 - j], 1) + buf[4*(8 - j)]; |
| buf[4 * ( 9 + j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + j], 1); |
| buf[4 * ( 8 - j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - j], 1); |
| |
| t0 = s2 + s3; |
| t1 = s2 - s3; |
| out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[ 9 + 8 - j], 1) + buf[4*(9 + 8 - j)]; |
| out[ j * SBLIMIT] = MULH3(t1, win[ j], 1) + buf[4*( j)]; |
| buf[4 * ( 9 + 8 - j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 8 - j], 1); |
| buf[4 * ( j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + j], 1); |
| i += 4; |
| } |
| |
| s0 = tmp[16]; |
| s1 = MULH3(tmp[17], icos36h[4], 2); |
| t0 = s0 + s1; |
| t1 = s0 - s1; |
| out[(9 + 4) * SBLIMIT] = MULH3(t1, win[ 9 + 4], 1) + buf[4*(9 + 4)]; |
| out[(8 - 4) * SBLIMIT] = MULH3(t1, win[ 8 - 4], 1) + buf[4*(8 - 4)]; |
| buf[4 * ( 9 + 4 )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 4], 1); |
| buf[4 * ( 8 - 4 )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - 4], 1); |
| } |
| |
| void RENAME(ff_imdct36_blocks)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, |
| int count, int switch_point, int block_type) |
| { |
| int j; |
| for (j=0 ; j < count; j++) { |
| /* apply window & overlap with previous buffer */ |
| |
| /* select window */ |
| int win_idx = (switch_point && j < 2) ? 0 : block_type; |
| INTFLOAT *win = RENAME(ff_mdct_win)[win_idx + (4 & -(j & 1))]; |
| |
| imdct36(out, buf, in, win); |
| |
| in += 18; |
| buf += ((j&3) != 3 ? 1 : (72-3)); |
| out++; |
| } |
| } |
| |