| /* |
| * Apple ProRes compatible decoder |
| * |
| * Copyright (c) 2010-2011 Maxim Poliakovski |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444. |
| * It is used for storing and editing high definition video data in Apple's Final Cut Pro. |
| * |
| * @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes |
| */ |
| |
| #define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once |
| |
| #include <stdint.h> |
| |
| #include "libavutil/intmath.h" |
| #include "avcodec.h" |
| #include "idctdsp.h" |
| #include "internal.h" |
| #include "proresdata.h" |
| #include "proresdsp.h" |
| #include "get_bits.h" |
| |
| typedef struct ProresThreadData { |
| const uint8_t *index; ///< pointers to the data of this slice |
| int slice_num; |
| int x_pos, y_pos; |
| int slice_width; |
| int prev_slice_sf; ///< scalefactor of the previous decoded slice |
| DECLARE_ALIGNED(16, int16_t, blocks)[8 * 4 * 64]; |
| DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled)[64]; |
| DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled)[64]; |
| } ProresThreadData; |
| |
| typedef struct ProresContext { |
| ProresDSPContext dsp; |
| AVFrame *frame; |
| ScanTable scantable; |
| int scantable_type; ///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced |
| |
| int frame_type; ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first |
| int pic_format; ///< 2 = 422, 3 = 444 |
| uint8_t qmat_luma[64]; ///< dequantization matrix for luma |
| uint8_t qmat_chroma[64]; ///< dequantization matrix for chroma |
| int qmat_changed; ///< 1 - global quantization matrices changed |
| int total_slices; ///< total number of slices in a picture |
| ProresThreadData *slice_data; |
| int pic_num; |
| int chroma_factor; |
| int mb_chroma_factor; |
| int num_chroma_blocks; ///< number of chrominance blocks in a macroblock |
| int num_x_slices; |
| int num_y_slices; |
| int slice_width_factor; |
| int slice_height_factor; |
| int num_x_mbs; |
| int num_y_mbs; |
| int alpha_info; |
| } ProresContext; |
| |
| |
| static av_cold int decode_init(AVCodecContext *avctx) |
| { |
| ProresContext *ctx = avctx->priv_data; |
| |
| ctx->total_slices = 0; |
| ctx->slice_data = NULL; |
| |
| avctx->bits_per_raw_sample = PRORES_BITS_PER_SAMPLE; |
| ff_proresdsp_init(&ctx->dsp, avctx); |
| |
| ctx->scantable_type = -1; // set scantable type to uninitialized |
| memset(ctx->qmat_luma, 4, 64); |
| memset(ctx->qmat_chroma, 4, 64); |
| |
| return 0; |
| } |
| |
| |
| static int decode_frame_header(ProresContext *ctx, const uint8_t *buf, |
| const int data_size, AVCodecContext *avctx) |
| { |
| int hdr_size, version, width, height, flags; |
| const uint8_t *ptr; |
| |
| hdr_size = AV_RB16(buf); |
| if (hdr_size > data_size) { |
| av_log(avctx, AV_LOG_ERROR, "frame data too small\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| version = AV_RB16(buf + 2); |
| if (version >= 2) { |
| av_log(avctx, AV_LOG_ERROR, |
| "unsupported header version: %d\n", version); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| width = AV_RB16(buf + 8); |
| height = AV_RB16(buf + 10); |
| if (width != avctx->width || height != avctx->height) { |
| av_log(avctx, AV_LOG_ERROR, |
| "picture dimension changed: old: %d x %d, new: %d x %d\n", |
| avctx->width, avctx->height, width, height); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ctx->frame_type = (buf[12] >> 2) & 3; |
| if (ctx->frame_type > 2) { |
| av_log(avctx, AV_LOG_ERROR, |
| "unsupported frame type: %d\n", ctx->frame_type); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ctx->chroma_factor = (buf[12] >> 6) & 3; |
| ctx->mb_chroma_factor = ctx->chroma_factor + 2; |
| ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1; |
| ctx->alpha_info = buf[17] & 0xf; |
| |
| if (ctx->alpha_info > 2) { |
| av_log(avctx, AV_LOG_ERROR, "Invalid alpha mode %d\n", ctx->alpha_info); |
| return AVERROR_INVALIDDATA; |
| } |
| if (avctx->skip_alpha) ctx->alpha_info = 0; |
| |
| switch (ctx->chroma_factor) { |
| case 2: |
| avctx->pix_fmt = ctx->alpha_info ? AV_PIX_FMT_YUVA422P10 |
| : AV_PIX_FMT_YUV422P10; |
| break; |
| case 3: |
| avctx->pix_fmt = ctx->alpha_info ? AV_PIX_FMT_YUVA444P10 |
| : AV_PIX_FMT_YUV444P10; |
| break; |
| default: |
| av_log(avctx, AV_LOG_ERROR, |
| "unsupported picture format: %d\n", ctx->pic_format); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (ctx->scantable_type != ctx->frame_type) { |
| if (!ctx->frame_type) |
| ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable, |
| ff_prores_progressive_scan); |
| else |
| ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable, |
| ff_prores_interlaced_scan); |
| ctx->scantable_type = ctx->frame_type; |
| } |
| |
| if (ctx->frame_type) { /* if interlaced */ |
| ctx->frame->interlaced_frame = 1; |
| ctx->frame->top_field_first = ctx->frame_type & 1; |
| } else { |
| ctx->frame->interlaced_frame = 0; |
| } |
| |
| avctx->color_primaries = buf[14]; |
| avctx->color_trc = buf[15]; |
| avctx->colorspace = buf[16]; |
| |
| ctx->qmat_changed = 0; |
| ptr = buf + 20; |
| flags = buf[19]; |
| if (flags & 2) { |
| if (ptr - buf > hdr_size - 64) { |
| av_log(avctx, AV_LOG_ERROR, "header data too small\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| if (memcmp(ctx->qmat_luma, ptr, 64)) { |
| memcpy(ctx->qmat_luma, ptr, 64); |
| ctx->qmat_changed = 1; |
| } |
| ptr += 64; |
| } else { |
| memset(ctx->qmat_luma, 4, 64); |
| ctx->qmat_changed = 1; |
| } |
| |
| if (flags & 1) { |
| if (ptr - buf > hdr_size - 64) { |
| av_log(avctx, AV_LOG_ERROR, "header data too small\n"); |
| return -1; |
| } |
| if (memcmp(ctx->qmat_chroma, ptr, 64)) { |
| memcpy(ctx->qmat_chroma, ptr, 64); |
| ctx->qmat_changed = 1; |
| } |
| } else { |
| memset(ctx->qmat_chroma, 4, 64); |
| ctx->qmat_changed = 1; |
| } |
| |
| return hdr_size; |
| } |
| |
| |
| static int decode_picture_header(ProresContext *ctx, const uint8_t *buf, |
| const int data_size, AVCodecContext *avctx) |
| { |
| int i, hdr_size, pic_data_size, num_slices; |
| int slice_width_factor, slice_height_factor; |
| int remainder, num_x_slices; |
| const uint8_t *data_ptr, *index_ptr; |
| |
| hdr_size = data_size > 0 ? buf[0] >> 3 : 0; |
| if (hdr_size < 8 || hdr_size > data_size) { |
| av_log(avctx, AV_LOG_ERROR, "picture header too small\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| pic_data_size = AV_RB32(buf + 1); |
| if (pic_data_size > data_size) { |
| av_log(avctx, AV_LOG_ERROR, "picture data too small\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| slice_width_factor = buf[7] >> 4; |
| slice_height_factor = buf[7] & 0xF; |
| if (slice_width_factor > 3 || slice_height_factor) { |
| av_log(avctx, AV_LOG_ERROR, |
| "unsupported slice dimension: %d x %d\n", |
| 1 << slice_width_factor, 1 << slice_height_factor); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ctx->slice_width_factor = slice_width_factor; |
| ctx->slice_height_factor = slice_height_factor; |
| |
| ctx->num_x_mbs = (avctx->width + 15) >> 4; |
| ctx->num_y_mbs = (avctx->height + |
| (1 << (4 + ctx->frame->interlaced_frame)) - 1) >> |
| (4 + ctx->frame->interlaced_frame); |
| |
| remainder = av_mod_uintp2(ctx->num_x_mbs, slice_width_factor); |
| num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) + |
| ((remainder >> 1) & 1) + ((remainder >> 2) & 1); |
| |
| num_slices = num_x_slices * ctx->num_y_mbs; |
| if (num_slices != AV_RB16(buf + 5)) { |
| av_log(avctx, AV_LOG_ERROR, "invalid number of slices\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (ctx->total_slices != num_slices) { |
| av_freep(&ctx->slice_data); |
| ctx->slice_data = av_malloc_array(num_slices + 1, sizeof(ctx->slice_data[0])); |
| if (!ctx->slice_data) |
| return AVERROR(ENOMEM); |
| ctx->total_slices = num_slices; |
| } |
| |
| if (hdr_size + num_slices * 2 > data_size) { |
| av_log(avctx, AV_LOG_ERROR, "slice table too small\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| /* parse slice table allowing quick access to the slice data */ |
| index_ptr = buf + hdr_size; |
| data_ptr = index_ptr + num_slices * 2; |
| |
| for (i = 0; i < num_slices; i++) { |
| ctx->slice_data[i].index = data_ptr; |
| ctx->slice_data[i].prev_slice_sf = 0; |
| data_ptr += AV_RB16(index_ptr + i * 2); |
| } |
| ctx->slice_data[i].index = data_ptr; |
| ctx->slice_data[i].prev_slice_sf = 0; |
| |
| if (data_ptr > buf + data_size) { |
| av_log(avctx, AV_LOG_ERROR, "out of slice data\n"); |
| return -1; |
| } |
| |
| return pic_data_size; |
| } |
| |
| |
| /** |
| * Read an unsigned rice/exp golomb codeword. |
| */ |
| static inline int decode_vlc_codeword(GetBitContext *gb, unsigned codebook) |
| { |
| unsigned int rice_order, exp_order, switch_bits; |
| unsigned int buf, code; |
| int log, prefix_len, len; |
| |
| OPEN_READER(re, gb); |
| UPDATE_CACHE(re, gb); |
| buf = GET_CACHE(re, gb); |
| |
| /* number of prefix bits to switch between Rice and expGolomb */ |
| switch_bits = (codebook & 3) + 1; |
| rice_order = codebook >> 5; /* rice code order */ |
| exp_order = (codebook >> 2) & 7; /* exp golomb code order */ |
| |
| log = 31 - av_log2(buf); /* count prefix bits (zeroes) */ |
| |
| if (log < switch_bits) { /* ok, we got a rice code */ |
| if (!rice_order) { |
| /* shortcut for faster decoding of rice codes without remainder */ |
| code = log; |
| LAST_SKIP_BITS(re, gb, log + 1); |
| } else { |
| prefix_len = log + 1; |
| code = (log << rice_order) + NEG_USR32(buf << prefix_len, rice_order); |
| LAST_SKIP_BITS(re, gb, prefix_len + rice_order); |
| } |
| } else { /* otherwise we got a exp golomb code */ |
| len = (log << 1) - switch_bits + exp_order + 1; |
| code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order); |
| LAST_SKIP_BITS(re, gb, len); |
| } |
| |
| CLOSE_READER(re, gb); |
| |
| return code; |
| } |
| |
| #define LSB2SIGN(x) (-((x) & 1)) |
| #define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x)) |
| |
| /** |
| * Decode DC coefficients for all blocks in a slice. |
| */ |
| static inline void decode_dc_coeffs(GetBitContext *gb, int16_t *out, |
| int nblocks) |
| { |
| int16_t prev_dc; |
| int i, sign; |
| int16_t delta; |
| unsigned int code; |
| |
| code = decode_vlc_codeword(gb, FIRST_DC_CB); |
| out[0] = prev_dc = TOSIGNED(code); |
| |
| out += 64; /* move to the DC coeff of the next block */ |
| delta = 3; |
| |
| for (i = 1; i < nblocks; i++, out += 64) { |
| code = decode_vlc_codeword(gb, ff_prores_dc_codebook[FFMIN(FFABS(delta), 3)]); |
| |
| sign = -(((delta >> 15) & 1) ^ (code & 1)); |
| delta = (((code + 1) >> 1) ^ sign) - sign; |
| prev_dc += delta; |
| out[0] = prev_dc; |
| } |
| } |
| |
| #define MAX_PADDING 16 |
| |
| /** |
| * Decode AC coefficients for all blocks in a slice. |
| */ |
| static inline int decode_ac_coeffs(GetBitContext *gb, int16_t *out, |
| int blocks_per_slice, |
| int plane_size_factor, |
| const uint8_t *scan) |
| { |
| int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index; |
| int max_coeffs, bits_left; |
| |
| /* set initial prediction values */ |
| run = 4; |
| level = 2; |
| |
| max_coeffs = blocks_per_slice << 6; |
| block_mask = blocks_per_slice - 1; |
| |
| for (pos = blocks_per_slice - 1; pos < max_coeffs;) { |
| run_cb_index = ff_prores_run_to_cb_index[FFMIN(run, 15)]; |
| lev_cb_index = ff_prores_lev_to_cb_index[FFMIN(level, 9)]; |
| |
| bits_left = get_bits_left(gb); |
| if (bits_left <= 0 || (bits_left <= MAX_PADDING && !show_bits(gb, bits_left))) |
| return 0; |
| |
| run = decode_vlc_codeword(gb, ff_prores_ac_codebook[run_cb_index]); |
| if (run < 0) |
| return AVERROR_INVALIDDATA; |
| |
| bits_left = get_bits_left(gb); |
| if (bits_left <= 0 || (bits_left <= MAX_PADDING && !show_bits(gb, bits_left))) |
| return AVERROR_INVALIDDATA; |
| |
| level = decode_vlc_codeword(gb, ff_prores_ac_codebook[lev_cb_index]) + 1; |
| if (level < 0) |
| return AVERROR_INVALIDDATA; |
| |
| pos += run + 1; |
| if (pos >= max_coeffs) |
| break; |
| |
| sign = get_sbits(gb, 1); |
| out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] = |
| (level ^ sign) - sign; |
| } |
| |
| return 0; |
| } |
| |
| |
| /** |
| * Decode a slice plane (luma or chroma). |
| */ |
| static int decode_slice_plane(ProresContext *ctx, ProresThreadData *td, |
| const uint8_t *buf, |
| int data_size, uint16_t *out_ptr, |
| int linesize, int mbs_per_slice, |
| int blocks_per_mb, int plane_size_factor, |
| const int16_t *qmat, int is_chroma) |
| { |
| GetBitContext gb; |
| int16_t *block_ptr; |
| int mb_num, blocks_per_slice, ret; |
| |
| blocks_per_slice = mbs_per_slice * blocks_per_mb; |
| |
| memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks)); |
| |
| init_get_bits(&gb, buf, data_size << 3); |
| |
| decode_dc_coeffs(&gb, td->blocks, blocks_per_slice); |
| |
| ret = decode_ac_coeffs(&gb, td->blocks, blocks_per_slice, |
| plane_size_factor, ctx->scantable.permutated); |
| if (ret < 0) |
| return ret; |
| |
| /* inverse quantization, inverse transform and output */ |
| block_ptr = td->blocks; |
| |
| if (!is_chroma) { |
| for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) { |
| ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat); |
| block_ptr += 64; |
| if (blocks_per_mb > 2) { |
| ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat); |
| block_ptr += 64; |
| } |
| ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat); |
| block_ptr += 64; |
| if (blocks_per_mb > 2) { |
| ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat); |
| block_ptr += 64; |
| } |
| } |
| } else { |
| for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) { |
| ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat); |
| block_ptr += 64; |
| ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat); |
| block_ptr += 64; |
| if (blocks_per_mb > 2) { |
| ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat); |
| block_ptr += 64; |
| ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat); |
| block_ptr += 64; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| |
| static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs, |
| const int num_bits) |
| { |
| const int mask = (1 << num_bits) - 1; |
| int i, idx, val, alpha_val; |
| |
| idx = 0; |
| alpha_val = mask; |
| do { |
| do { |
| if (get_bits1(gb)) |
| val = get_bits(gb, num_bits); |
| else { |
| int sign; |
| val = get_bits(gb, num_bits == 16 ? 7 : 4); |
| sign = val & 1; |
| val = (val + 2) >> 1; |
| if (sign) |
| val = -val; |
| } |
| alpha_val = (alpha_val + val) & mask; |
| if (num_bits == 16) |
| dst[idx++] = alpha_val >> 6; |
| else |
| dst[idx++] = (alpha_val << 2) | (alpha_val >> 6); |
| if (idx >= num_coeffs) { |
| break; |
| } |
| } while (get_bits1(gb)); |
| val = get_bits(gb, 4); |
| if (!val) |
| val = get_bits(gb, 11); |
| if (idx + val > num_coeffs) |
| val = num_coeffs - idx; |
| if (num_bits == 16) |
| for (i = 0; i < val; i++) |
| dst[idx++] = alpha_val >> 6; |
| else |
| for (i = 0; i < val; i++) |
| dst[idx++] = (alpha_val << 2) | (alpha_val >> 6); |
| } while (idx < num_coeffs); |
| } |
| |
| /** |
| * Decode alpha slice plane. |
| */ |
| static void decode_alpha_plane(ProresContext *ctx, ProresThreadData *td, |
| const uint8_t *buf, int data_size, |
| uint16_t *out_ptr, int linesize, |
| int mbs_per_slice) |
| { |
| GetBitContext gb; |
| int i; |
| uint16_t *block_ptr; |
| |
| memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks)); |
| |
| init_get_bits(&gb, buf, data_size << 3); |
| |
| if (ctx->alpha_info == 2) |
| unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 16); |
| else |
| unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 8); |
| |
| block_ptr = td->blocks; |
| |
| for (i = 0; i < 16; i++) { |
| memcpy(out_ptr, block_ptr, 16 * mbs_per_slice * sizeof(*out_ptr)); |
| out_ptr += linesize >> 1; |
| block_ptr += 16 * mbs_per_slice; |
| } |
| } |
| |
| static int decode_slice(AVCodecContext *avctx, void *tdata) |
| { |
| ProresThreadData *td = tdata; |
| ProresContext *ctx = avctx->priv_data; |
| int mb_x_pos = td->x_pos; |
| int mb_y_pos = td->y_pos; |
| int pic_num = ctx->pic_num; |
| int slice_num = td->slice_num; |
| int mbs_per_slice = td->slice_width; |
| const uint8_t *buf; |
| uint8_t *y_data, *u_data, *v_data, *a_data; |
| AVFrame *pic = ctx->frame; |
| int i, sf, slice_width_factor; |
| int slice_data_size, hdr_size; |
| int y_data_size, u_data_size, v_data_size, a_data_size; |
| int y_linesize, u_linesize, v_linesize, a_linesize; |
| int coff[4]; |
| int ret; |
| |
| buf = ctx->slice_data[slice_num].index; |
| slice_data_size = ctx->slice_data[slice_num + 1].index - buf; |
| |
| slice_width_factor = av_log2(mbs_per_slice); |
| |
| y_data = pic->data[0]; |
| u_data = pic->data[1]; |
| v_data = pic->data[2]; |
| a_data = pic->data[3]; |
| y_linesize = pic->linesize[0]; |
| u_linesize = pic->linesize[1]; |
| v_linesize = pic->linesize[2]; |
| a_linesize = pic->linesize[3]; |
| |
| if (pic->interlaced_frame) { |
| if (!(pic_num ^ pic->top_field_first)) { |
| y_data += y_linesize; |
| u_data += u_linesize; |
| v_data += v_linesize; |
| if (a_data) |
| a_data += a_linesize; |
| } |
| y_linesize <<= 1; |
| u_linesize <<= 1; |
| v_linesize <<= 1; |
| a_linesize <<= 1; |
| } |
| y_data += (mb_y_pos << 4) * y_linesize + (mb_x_pos << 5); |
| u_data += (mb_y_pos << 4) * u_linesize + (mb_x_pos << ctx->mb_chroma_factor); |
| v_data += (mb_y_pos << 4) * v_linesize + (mb_x_pos << ctx->mb_chroma_factor); |
| if (a_data) |
| a_data += (mb_y_pos << 4) * a_linesize + (mb_x_pos << 5); |
| |
| if (slice_data_size < 6) { |
| av_log(avctx, AV_LOG_ERROR, "slice data too small\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| /* parse slice header */ |
| hdr_size = buf[0] >> 3; |
| coff[0] = hdr_size; |
| y_data_size = AV_RB16(buf + 2); |
| coff[1] = coff[0] + y_data_size; |
| u_data_size = AV_RB16(buf + 4); |
| coff[2] = coff[1] + u_data_size; |
| v_data_size = hdr_size > 7 ? AV_RB16(buf + 6) : slice_data_size - coff[2]; |
| coff[3] = coff[2] + v_data_size; |
| a_data_size = ctx->alpha_info ? slice_data_size - coff[3] : 0; |
| |
| /* if V or alpha component size is negative that means that previous |
| component sizes are too large */ |
| if (v_data_size < 0 || a_data_size < 0 || hdr_size < 6) { |
| av_log(avctx, AV_LOG_ERROR, "invalid data size\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| sf = av_clip(buf[1], 1, 224); |
| sf = sf > 128 ? (sf - 96) << 2 : sf; |
| |
| /* scale quantization matrixes according with slice's scale factor */ |
| /* TODO: this can be SIMD-optimized a lot */ |
| if (ctx->qmat_changed || sf != td->prev_slice_sf) { |
| td->prev_slice_sf = sf; |
| for (i = 0; i < 64; i++) { |
| td->qmat_luma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_luma[i] * sf; |
| td->qmat_chroma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_chroma[i] * sf; |
| } |
| } |
| |
| /* decode luma plane */ |
| ret = decode_slice_plane(ctx, td, buf + coff[0], y_data_size, |
| (uint16_t*) y_data, y_linesize, |
| mbs_per_slice, 4, slice_width_factor + 2, |
| td->qmat_luma_scaled, 0); |
| |
| if (ret < 0) |
| return ret; |
| |
| /* decode U chroma plane */ |
| ret = decode_slice_plane(ctx, td, buf + coff[1], u_data_size, |
| (uint16_t*) u_data, u_linesize, |
| mbs_per_slice, ctx->num_chroma_blocks, |
| slice_width_factor + ctx->chroma_factor - 1, |
| td->qmat_chroma_scaled, 1); |
| if (ret < 0) |
| return ret; |
| |
| /* decode V chroma plane */ |
| ret = decode_slice_plane(ctx, td, buf + coff[2], v_data_size, |
| (uint16_t*) v_data, v_linesize, |
| mbs_per_slice, ctx->num_chroma_blocks, |
| slice_width_factor + ctx->chroma_factor - 1, |
| td->qmat_chroma_scaled, 1); |
| if (ret < 0) |
| return ret; |
| |
| /* decode alpha plane if available */ |
| if (a_data && a_data_size) |
| decode_alpha_plane(ctx, td, buf + coff[3], a_data_size, |
| (uint16_t*) a_data, a_linesize, |
| mbs_per_slice); |
| |
| return 0; |
| } |
| |
| |
| static int decode_picture(ProresContext *ctx, int pic_num, |
| AVCodecContext *avctx) |
| { |
| int slice_num, slice_width, x_pos, y_pos; |
| |
| slice_num = 0; |
| |
| ctx->pic_num = pic_num; |
| for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) { |
| slice_width = 1 << ctx->slice_width_factor; |
| |
| for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width; |
| x_pos += slice_width) { |
| while (ctx->num_x_mbs - x_pos < slice_width) |
| slice_width >>= 1; |
| |
| ctx->slice_data[slice_num].slice_num = slice_num; |
| ctx->slice_data[slice_num].x_pos = x_pos; |
| ctx->slice_data[slice_num].y_pos = y_pos; |
| ctx->slice_data[slice_num].slice_width = slice_width; |
| |
| slice_num++; |
| } |
| } |
| |
| return avctx->execute(avctx, decode_slice, |
| ctx->slice_data, NULL, slice_num, |
| sizeof(ctx->slice_data[0])); |
| } |
| |
| |
| #define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes) |
| |
| static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, |
| AVPacket *avpkt) |
| { |
| ProresContext *ctx = avctx->priv_data; |
| const uint8_t *buf = avpkt->data; |
| int buf_size = avpkt->size; |
| int frame_hdr_size, pic_num, pic_data_size; |
| |
| ctx->frame = data; |
| ctx->frame->pict_type = AV_PICTURE_TYPE_I; |
| ctx->frame->key_frame = 1; |
| |
| /* check frame atom container */ |
| if (buf_size < 28 || buf_size < AV_RB32(buf) || |
| AV_RB32(buf + 4) != FRAME_ID) { |
| av_log(avctx, AV_LOG_ERROR, "invalid frame\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| MOVE_DATA_PTR(8); |
| |
| frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx); |
| if (frame_hdr_size < 0) |
| return AVERROR_INVALIDDATA; |
| |
| MOVE_DATA_PTR(frame_hdr_size); |
| |
| if (ff_get_buffer(avctx, ctx->frame, 0) < 0) |
| return -1; |
| |
| for (pic_num = 0; ctx->frame->interlaced_frame - pic_num + 1; pic_num++) { |
| pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx); |
| if (pic_data_size < 0) |
| return AVERROR_INVALIDDATA; |
| |
| if (decode_picture(ctx, pic_num, avctx)) |
| return -1; |
| |
| MOVE_DATA_PTR(pic_data_size); |
| } |
| |
| ctx->frame = NULL; |
| *got_frame = 1; |
| |
| return avpkt->size; |
| } |
| |
| |
| static av_cold int decode_close(AVCodecContext *avctx) |
| { |
| ProresContext *ctx = avctx->priv_data; |
| |
| av_freep(&ctx->slice_data); |
| |
| return 0; |
| } |
| |
| |
| AVCodec ff_prores_lgpl_decoder = { |
| .name = "prores_lgpl", |
| .long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"), |
| .type = AVMEDIA_TYPE_VIDEO, |
| .id = AV_CODEC_ID_PRORES, |
| .priv_data_size = sizeof(ProresContext), |
| .init = decode_init, |
| .close = decode_close, |
| .decode = decode_frame, |
| .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SLICE_THREADS, |
| }; |