| /* |
| * (I)RDFT transforms |
| * Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include <stdlib.h> |
| #include <math.h> |
| #include "libavutil/mathematics.h" |
| #include "rdft.h" |
| |
| /** |
| * @file |
| * (Inverse) Real Discrete Fourier Transforms. |
| */ |
| |
| /* sin(2*pi*x/n) for 0<=x<n/4, followed by n/2<=x<3n/4 */ |
| #if !CONFIG_HARDCODED_TABLES |
| SINTABLE(16); |
| SINTABLE(32); |
| SINTABLE(64); |
| SINTABLE(128); |
| SINTABLE(256); |
| SINTABLE(512); |
| SINTABLE(1024); |
| SINTABLE(2048); |
| SINTABLE(4096); |
| SINTABLE(8192); |
| SINTABLE(16384); |
| SINTABLE(32768); |
| SINTABLE(65536); |
| #endif |
| static SINTABLE_CONST FFTSample * const ff_sin_tabs[] = { |
| NULL, NULL, NULL, NULL, |
| ff_sin_16, ff_sin_32, ff_sin_64, ff_sin_128, ff_sin_256, ff_sin_512, ff_sin_1024, |
| ff_sin_2048, ff_sin_4096, ff_sin_8192, ff_sin_16384, ff_sin_32768, ff_sin_65536, |
| }; |
| |
| /** Map one real FFT into two parallel real even and odd FFTs. Then interleave |
| * the two real FFTs into one complex FFT. Unmangle the results. |
| * ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM |
| */ |
| static void rdft_calc_c(RDFTContext *s, FFTSample *data) |
| { |
| int i, i1, i2; |
| FFTComplex ev, od; |
| const int n = 1 << s->nbits; |
| const float k1 = 0.5; |
| const float k2 = 0.5 - s->inverse; |
| const FFTSample *tcos = s->tcos; |
| const FFTSample *tsin = s->tsin; |
| |
| if (!s->inverse) { |
| s->fft.fft_permute(&s->fft, (FFTComplex*)data); |
| s->fft.fft_calc(&s->fft, (FFTComplex*)data); |
| } |
| /* i=0 is a special case because of packing, the DC term is real, so we |
| are going to throw the N/2 term (also real) in with it. */ |
| ev.re = data[0]; |
| data[0] = ev.re+data[1]; |
| data[1] = ev.re-data[1]; |
| for (i = 1; i < (n>>2); i++) { |
| i1 = 2*i; |
| i2 = n-i1; |
| /* Separate even and odd FFTs */ |
| ev.re = k1*(data[i1 ]+data[i2 ]); |
| od.im = -k2*(data[i1 ]-data[i2 ]); |
| ev.im = k1*(data[i1+1]-data[i2+1]); |
| od.re = k2*(data[i1+1]+data[i2+1]); |
| /* Apply twiddle factors to the odd FFT and add to the even FFT */ |
| data[i1 ] = ev.re + od.re*tcos[i] - od.im*tsin[i]; |
| data[i1+1] = ev.im + od.im*tcos[i] + od.re*tsin[i]; |
| data[i2 ] = ev.re - od.re*tcos[i] + od.im*tsin[i]; |
| data[i2+1] = -ev.im + od.im*tcos[i] + od.re*tsin[i]; |
| } |
| data[2*i+1]=s->sign_convention*data[2*i+1]; |
| if (s->inverse) { |
| data[0] *= k1; |
| data[1] *= k1; |
| s->fft.fft_permute(&s->fft, (FFTComplex*)data); |
| s->fft.fft_calc(&s->fft, (FFTComplex*)data); |
| } |
| } |
| |
| av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans) |
| { |
| int n = 1 << nbits; |
| int ret; |
| |
| s->nbits = nbits; |
| s->inverse = trans == IDFT_C2R || trans == DFT_C2R; |
| s->sign_convention = trans == IDFT_R2C || trans == DFT_C2R ? 1 : -1; |
| |
| if (nbits < 4 || nbits > 16) |
| return AVERROR(EINVAL); |
| |
| if ((ret = ff_fft_init(&s->fft, nbits-1, trans == IDFT_C2R || trans == IDFT_R2C)) < 0) |
| return ret; |
| |
| ff_init_ff_cos_tabs(nbits); |
| s->tcos = ff_cos_tabs[nbits]; |
| s->tsin = ff_sin_tabs[nbits]+(trans == DFT_R2C || trans == DFT_C2R)*(n>>2); |
| #if !CONFIG_HARDCODED_TABLES |
| { |
| int i; |
| const double theta = (trans == DFT_R2C || trans == DFT_C2R ? -1 : 1) * 2 * M_PI / n; |
| for (i = 0; i < (n >> 2); i++) |
| s->tsin[i] = sin(i * theta); |
| } |
| #endif |
| s->rdft_calc = rdft_calc_c; |
| |
| if (ARCH_ARM) ff_rdft_init_arm(s); |
| |
| return 0; |
| } |
| |
| av_cold void ff_rdft_end(RDFTContext *s) |
| { |
| ff_fft_end(&s->fft); |
| } |