blob: b1fe12ea666629c6b9f48b92717d5f12f593edf3 [file] [log] [blame]
/* -----------------------------------------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
of the MPEG specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
individually for the purpose of encoding or decoding bit streams in products that are compliant with
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
software may already be covered under those patent licenses when it is used for those licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
applications information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification, are permitted without
payment of copyright license fees provided that you satisfy the following conditions:
You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation and/or other materials
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived from this library without
prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
and the date of any change. For modified versions of the FDK AAC Codec, the term
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
respect to this software.
You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
or business interruption, however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of this software, even if
advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------------------------------------- */
/***************************** MPEG Audio Encoder ***************************
Initial author: N. Rettelbach
contents/description: Parametric Stereo bitstream encoder
******************************************************************************/
#include "ps_main.h"
#include "ps_const.h"
#include "ps_bitenc.h"
static
inline UCHAR FDKsbrEnc_WriteBits_ps(HANDLE_FDK_BITSTREAM hBitStream, UINT value,
const UINT numberOfBits)
{
/* hBitStream == NULL happens here intentionally */
if(hBitStream!=NULL){
FDKwriteBits(hBitStream, value, numberOfBits);
}
return numberOfBits;
}
#define SI_SBR_EXTENSION_SIZE_BITS 4
#define SI_SBR_EXTENSION_ESC_COUNT_BITS 8
#define SI_SBR_EXTENSION_ID_BITS 2
#define EXTENSION_ID_PS_CODING 2
#define PS_EXT_ID_V0 0
static const INT iidDeltaCoarse_Offset = 14;
static const INT iidDeltaCoarse_MaxVal = 28;
static const INT iidDeltaFine_Offset = 30;
static const INT iidDeltaFine_MaxVal = 60;
/* PS Stereo Huffmantable: iidDeltaFreqCoarse */
static const UINT iidDeltaFreqCoarse_Length[] =
{
17, 17, 17, 17, 16, 15, 13, 10, 9, 7,
6, 5, 4, 3, 1, 3, 4, 5, 6, 6,
8, 11, 13, 14, 14, 15, 17, 18, 18
};
static const UINT iidDeltaFreqCoarse_Code[] =
{
0x0001fffb, 0x0001fffc, 0x0001fffd, 0x0001fffa, 0x0000fffc, 0x00007ffc, 0x00001ffd, 0x000003fe, 0x000001fe, 0x0000007e,
0x0000003c, 0x0000001d, 0x0000000d, 0x00000005, 0000000000, 0x00000004, 0x0000000c, 0x0000001c, 0x0000003d, 0x0000003e,
0x000000fe, 0x000007fe, 0x00001ffc, 0x00003ffc, 0x00003ffd, 0x00007ffd, 0x0001fffe, 0x0003fffe, 0x0003ffff
};
/* PS Stereo Huffmantable: iidDeltaFreqFine */
static const UINT iidDeltaFreqFine_Length[] =
{
18, 18, 18, 18, 18, 18, 18, 18, 18, 17,
18, 17, 17, 16, 16, 15, 14, 14, 13, 12,
12, 11, 10, 10, 8, 7, 6, 5, 4, 3,
1, 3, 4, 5, 6, 7, 8, 9, 10, 11,
11, 12, 13, 14, 14, 15, 16, 16, 17, 17,
18, 17, 18, 18, 18, 18, 18, 18, 18, 18,
18
};
static const UINT iidDeltaFreqFine_Code[] =
{
0x0001feb4, 0x0001feb5, 0x0001fd76, 0x0001fd77, 0x0001fd74, 0x0001fd75, 0x0001fe8a, 0x0001fe8b, 0x0001fe88, 0x0000fe80,
0x0001feb6, 0x0000fe82, 0x0000feb8, 0x00007f42, 0x00007fae, 0x00003faf, 0x00001fd1, 0x00001fe9, 0x00000fe9, 0x000007ea,
0x000007fb, 0x000003fb, 0x000001fb, 0x000001ff, 0x0000007c, 0x0000003c, 0x0000001c, 0x0000000c, 0000000000, 0x00000001,
0x00000001, 0x00000002, 0x00000001, 0x0000000d, 0x0000001d, 0x0000003d, 0x0000007d, 0x000000fc, 0x000001fc, 0x000003fc,
0x000003f4, 0x000007eb, 0x00000fea, 0x00001fea, 0x00001fd6, 0x00003fd0, 0x00007faf, 0x00007f43, 0x0000feb9, 0x0000fe83,
0x0001feb7, 0x0000fe81, 0x0001fe89, 0x0001fe8e, 0x0001fe8f, 0x0001fe8c, 0x0001fe8d, 0x0001feb2, 0x0001feb3, 0x0001feb0,
0x0001feb1
};
/* PS Stereo Huffmantable: iidDeltaTimeCoarse */
static const UINT iidDeltaTimeCoarse_Length[] =
{
19, 19, 19, 20, 20, 20, 17, 15, 12, 10,
8, 6, 4, 2, 1, 3, 5, 7, 9, 11,
13, 14, 17, 19, 20, 20, 20, 20, 20
};
static const UINT iidDeltaTimeCoarse_Code[] =
{
0x0007fff9, 0x0007fffa, 0x0007fffb, 0x000ffff8, 0x000ffff9, 0x000ffffa, 0x0001fffd, 0x00007ffe, 0x00000ffe, 0x000003fe,
0x000000fe, 0x0000003e, 0x0000000e, 0x00000002, 0000000000, 0x00000006, 0x0000001e, 0x0000007e, 0x000001fe, 0x000007fe,
0x00001ffe, 0x00003ffe, 0x0001fffc, 0x0007fff8, 0x000ffffb, 0x000ffffc, 0x000ffffd, 0x000ffffe, 0x000fffff
};
/* PS Stereo Huffmantable: iidDeltaTimeFine */
static const UINT iidDeltaTimeFine_Length[] =
{
16, 16, 16, 16, 16, 16, 16, 16, 16, 15,
15, 15, 15, 15, 15, 14, 14, 13, 13, 13,
12, 12, 11, 10, 9, 9, 7, 6, 5, 3,
1, 2, 5, 6, 7, 8, 9, 10, 11, 11,
12, 12, 13, 13, 14, 14, 15, 15, 15, 15,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16
};
static const UINT iidDeltaTimeFine_Code[] =
{
0x00004ed4, 0x00004ed5, 0x00004ece, 0x00004ecf, 0x00004ecc, 0x00004ed6, 0x00004ed8, 0x00004f46, 0x00004f60, 0x00002718,
0x00002719, 0x00002764, 0x00002765, 0x0000276d, 0x000027b1, 0x000013b7, 0x000013d6, 0x000009c7, 0x000009e9, 0x000009ed,
0x000004ee, 0x000004f7, 0x00000278, 0x00000139, 0x0000009a, 0x0000009f, 0x00000020, 0x00000011, 0x0000000a, 0x00000003,
0x00000001, 0000000000, 0x0000000b, 0x00000012, 0x00000021, 0x0000004c, 0x0000009b, 0x0000013a, 0x00000279, 0x00000270,
0x000004ef, 0x000004e2, 0x000009ea, 0x000009d8, 0x000013d7, 0x000013d0, 0x000027b2, 0x000027a2, 0x0000271a, 0x0000271b,
0x00004f66, 0x00004f67, 0x00004f61, 0x00004f47, 0x00004ed9, 0x00004ed7, 0x00004ecd, 0x00004ed2, 0x00004ed3, 0x00004ed0,
0x00004ed1
};
static const INT iccDelta_Offset = 7;
static const INT iccDelta_MaxVal = 14;
/* PS Stereo Huffmantable: iccDeltaFreq */
static const UINT iccDeltaFreq_Length[] =
{
14, 14, 12, 10, 7, 5, 3, 1, 2, 4,
6, 8, 9, 11, 13
};
static const UINT iccDeltaFreq_Code[] =
{
0x00003fff, 0x00003ffe, 0x00000ffe, 0x000003fe, 0x0000007e, 0x0000001e, 0x00000006, 0000000000, 0x00000002, 0x0000000e,
0x0000003e, 0x000000fe, 0x000001fe, 0x000007fe, 0x00001ffe
};
/* PS Stereo Huffmantable: iccDeltaTime */
static const UINT iccDeltaTime_Length[] =
{
14, 13, 11, 9, 7, 5, 3, 1, 2, 4,
6, 8, 10, 12, 14
};
static const UINT iccDeltaTime_Code[] =
{
0x00003ffe, 0x00001ffe, 0x000007fe, 0x000001fe, 0x0000007e, 0x0000001e, 0x00000006, 0000000000, 0x00000002, 0x0000000e,
0x0000003e, 0x000000fe, 0x000003fe, 0x00000ffe, 0x00003fff
};
static const INT ipdDelta_Offset = 0;
static const INT ipdDelta_MaxVal = 7;
/* PS Stereo Huffmantable: ipdDeltaFreq */
static const UINT ipdDeltaFreq_Length[] =
{
1, 3, 4, 4, 4, 4, 4, 4
};
static const UINT ipdDeltaFreq_Code[] =
{
0x00000001, 0000000000, 0x00000006, 0x00000004, 0x00000002, 0x00000003, 0x00000005, 0x00000007
};
/* PS Stereo Huffmantable: ipdDeltaTime */
static const UINT ipdDeltaTime_Length[] =
{
1, 3, 4, 5, 5, 4, 4, 3
};
static const UINT ipdDeltaTime_Code[] =
{
0x00000001, 0x00000002, 0x00000002, 0x00000003, 0x00000002, 0000000000, 0x00000003, 0x00000003
};
static const INT opdDelta_Offset = 0;
static const INT opdDelta_MaxVal = 7;
/* PS Stereo Huffmantable: opdDeltaFreq */
static const UINT opdDeltaFreq_Length[] =
{
1, 3, 4, 4, 5, 5, 4, 3
};
static const UINT opdDeltaFreq_Code[] =
{
0x00000001, 0x00000001, 0x00000006, 0x00000004, 0x0000000f, 0x0000000e, 0x00000005, 0000000000,
};
/* PS Stereo Huffmantable: opdDeltaTime */
static const UINT opdDeltaTime_Length[] =
{
1, 3, 4, 5, 5, 4, 4, 3
};
static const UINT opdDeltaTime_Code[] =
{
0x00000001, 0x00000002, 0x00000001, 0x00000007, 0x00000006, 0000000000, 0x00000002, 0x00000003
};
static const INT psBands[] =
{
PS_BANDS_COARSE,
PS_BANDS_MID
};
static INT getNoBands(PS_RESOLUTION mode)
{
if(mode>=6)
return 0;
if(mode>=3)
mode = (PS_RESOLUTION)(mode-3);
return psBands[mode];
}
static INT getIIDRes(INT iidMode)
{
if(iidMode<3)
return PS_IID_RES_COARSE;
else
return PS_IID_RES_FINE;
}
static INT
encodeDeltaFreq(HANDLE_FDK_BITSTREAM hBitBuf,
const INT *val,
const INT nBands,
const UINT *codeTable,
const UINT *lengthTable,
const INT tableOffset,
const INT maxVal,
INT *error)
{
INT bitCnt = 0;
INT lastVal = 0;
INT band;
for(band=0;band<nBands;band++) {
INT delta = (val[band] - lastVal) + tableOffset;
lastVal = val[band];
if( (delta>maxVal) || (delta<0) ) {
*error = 1;
delta = delta>0?maxVal:0;
}
bitCnt += FDKsbrEnc_WriteBits_ps(hBitBuf, codeTable[delta], lengthTable[delta]);
}
return bitCnt;
}
static INT
encodeDeltaTime(HANDLE_FDK_BITSTREAM hBitBuf,
const INT *val,
const INT *valLast,
const INT nBands,
const UINT *codeTable,
const UINT *lengthTable,
const INT tableOffset,
const INT maxVal,
INT *error)
{
INT bitCnt = 0;
INT band;
for(band=0;band<nBands;band++) {
INT delta = (val[band] - valLast[band]) + tableOffset;
if( (delta>maxVal) || (delta<0) ) {
*error = 1;
delta = delta>0?maxVal:0;
}
bitCnt += FDKsbrEnc_WriteBits_ps(hBitBuf, codeTable[delta], lengthTable[delta]);
}
return bitCnt;
}
INT FDKsbrEnc_EncodeIid(HANDLE_FDK_BITSTREAM hBitBuf,
const INT *iidVal,
const INT *iidValLast,
const INT nBands,
const PS_IID_RESOLUTION res,
const PS_DELTA mode,
INT *error)
{
const UINT *codeTable;
const UINT *lengthTable;
INT bitCnt = 0;
bitCnt = 0;
switch(mode) {
case PS_DELTA_FREQ:
switch(res) {
case PS_IID_RES_COARSE:
codeTable = iidDeltaFreqCoarse_Code;
lengthTable = iidDeltaFreqCoarse_Length;
bitCnt += encodeDeltaFreq(hBitBuf, iidVal, nBands, codeTable,
lengthTable, iidDeltaCoarse_Offset,
iidDeltaCoarse_MaxVal, error);
break;
case PS_IID_RES_FINE:
codeTable = iidDeltaFreqFine_Code;
lengthTable = iidDeltaFreqFine_Length;
bitCnt += encodeDeltaFreq(hBitBuf, iidVal, nBands, codeTable,
lengthTable, iidDeltaFine_Offset,
iidDeltaFine_MaxVal, error);
break;
default:
*error = 1;
}
break;
case PS_DELTA_TIME:
switch(res) {
case PS_IID_RES_COARSE:
codeTable = iidDeltaTimeCoarse_Code;
lengthTable = iidDeltaTimeCoarse_Length;
bitCnt += encodeDeltaTime(hBitBuf, iidVal, iidValLast, nBands, codeTable,
lengthTable, iidDeltaCoarse_Offset,
iidDeltaCoarse_MaxVal, error);
break;
case PS_IID_RES_FINE:
codeTable = iidDeltaTimeFine_Code;
lengthTable = iidDeltaTimeFine_Length;
bitCnt += encodeDeltaTime(hBitBuf, iidVal, iidValLast, nBands, codeTable,
lengthTable, iidDeltaFine_Offset,
iidDeltaFine_MaxVal, error);
break;
default:
*error = 1;
}
break;
default:
*error = 1;
}
return bitCnt;
}
INT FDKsbrEnc_EncodeIcc(HANDLE_FDK_BITSTREAM hBitBuf,
const INT *iccVal,
const INT *iccValLast,
const INT nBands,
const PS_DELTA mode,
INT *error)
{
const UINT *codeTable;
const UINT *lengthTable;
INT bitCnt = 0;
switch(mode) {
case PS_DELTA_FREQ:
codeTable = iccDeltaFreq_Code;
lengthTable = iccDeltaFreq_Length;
bitCnt += encodeDeltaFreq(hBitBuf, iccVal, nBands, codeTable,
lengthTable, iccDelta_Offset, iccDelta_MaxVal, error);
break;
case PS_DELTA_TIME:
codeTable = iccDeltaTime_Code;
lengthTable = iccDeltaTime_Length;
bitCnt += encodeDeltaTime(hBitBuf, iccVal, iccValLast, nBands, codeTable,
lengthTable, iccDelta_Offset, iccDelta_MaxVal, error);
break;
default:
*error = 1;
}
return bitCnt;
}
INT FDKsbrEnc_EncodeIpd(HANDLE_FDK_BITSTREAM hBitBuf,
const INT *ipdVal,
const INT *ipdValLast,
const INT nBands,
const PS_DELTA mode,
INT *error)
{
const UINT *codeTable;
const UINT *lengthTable;
INT bitCnt = 0;
switch(mode) {
case PS_DELTA_FREQ:
codeTable = ipdDeltaFreq_Code;
lengthTable = ipdDeltaFreq_Length;
bitCnt += encodeDeltaFreq(hBitBuf, ipdVal, nBands, codeTable,
lengthTable, ipdDelta_Offset, ipdDelta_MaxVal, error);
break;
case PS_DELTA_TIME:
codeTable = ipdDeltaTime_Code;
lengthTable = ipdDeltaTime_Length;
bitCnt += encodeDeltaTime(hBitBuf, ipdVal, ipdValLast, nBands, codeTable,
lengthTable, ipdDelta_Offset, ipdDelta_MaxVal, error);
break;
default:
*error = 1;
}
return bitCnt;
}
INT FDKsbrEnc_EncodeOpd(HANDLE_FDK_BITSTREAM hBitBuf,
const INT *opdVal,
const INT *opdValLast,
const INT nBands,
const PS_DELTA mode,
INT *error)
{
const UINT *codeTable;
const UINT *lengthTable;
INT bitCnt = 0;
switch(mode) {
case PS_DELTA_FREQ:
codeTable = opdDeltaFreq_Code;
lengthTable = opdDeltaFreq_Length;
bitCnt += encodeDeltaFreq(hBitBuf, opdVal, nBands, codeTable,
lengthTable, opdDelta_Offset, opdDelta_MaxVal, error);
break;
case PS_DELTA_TIME:
codeTable = opdDeltaTime_Code;
lengthTable = opdDeltaTime_Length;
bitCnt += encodeDeltaTime(hBitBuf, opdVal, opdValLast, nBands, codeTable,
lengthTable, opdDelta_Offset, opdDelta_MaxVal, error);
break;
default:
*error = 1;
}
return bitCnt;
}
static INT encodeIpdOpd(HANDLE_PS_OUT psOut,
HANDLE_FDK_BITSTREAM hBitBuf )
{
INT bitCnt = 0;
INT error = 0;
INT env;
FDKsbrEnc_WriteBits_ps(hBitBuf, psOut->enableIpdOpd, 1);
if(psOut->enableIpdOpd==1) {
INT *ipdLast = psOut->ipdLast;
INT *opdLast = psOut->opdLast;
for(env=0; env<psOut->nEnvelopes; env++) {
bitCnt += FDKsbrEnc_WriteBits_ps( hBitBuf, psOut->deltaIPD[env], 1);
bitCnt += FDKsbrEnc_EncodeIpd( hBitBuf,
psOut->ipd[env],
ipdLast,
getNoBands((PS_RESOLUTION)psOut->iidMode),
psOut->deltaIPD[env],
&error);
bitCnt += FDKsbrEnc_WriteBits_ps( hBitBuf, psOut->deltaOPD[env], 1);
bitCnt += FDKsbrEnc_EncodeOpd( hBitBuf,
psOut->opd[env],
opdLast,
getNoBands((PS_RESOLUTION)psOut->iidMode),
psOut->deltaOPD[env],
&error );
}
/* reserved bit */
bitCnt += FDKsbrEnc_WriteBits_ps( hBitBuf, 0, 1);
}
return bitCnt;
}
static INT getEnvIdx(const INT nEnvelopes, const INT frameClass)
{
INT envIdx = 0;
switch(nEnvelopes) {
case 0:
envIdx = 0;
break;
case 1:
if (frameClass==0)
envIdx = 1;
else
envIdx = 0;
break;
case 2:
if (frameClass==0)
envIdx = 2;
else
envIdx = 1;
break;
case 3:
envIdx = 2;
break;
case 4:
envIdx = 3;
break;
default:
/* unsupported number of envelopes */
envIdx = 0;
}
return envIdx;
}
static INT encodePSExtension(const HANDLE_PS_OUT psOut,
HANDLE_FDK_BITSTREAM hBitBuf )
{
INT bitCnt = 0;
if(psOut->enableIpdOpd==1) {
INT ipdOpdBits = 0;
INT extSize = (2 + encodeIpdOpd(psOut,NULL)+7)>>3;
if(extSize<15) {
bitCnt += FDKsbrEnc_WriteBits_ps(hBitBuf, extSize, 4);
}
else {
bitCnt += FDKsbrEnc_WriteBits_ps(hBitBuf, 15 , 4);
bitCnt += FDKsbrEnc_WriteBits_ps(hBitBuf, (extSize-15), 8);
}
/* write ipd opd data */
ipdOpdBits += FDKsbrEnc_WriteBits_ps(hBitBuf, PS_EXT_ID_V0, 2);
ipdOpdBits += encodeIpdOpd(psOut, hBitBuf );
/* byte align the ipd opd data */
if(ipdOpdBits%8)
ipdOpdBits += FDKsbrEnc_WriteBits_ps(hBitBuf, 0, (8-(ipdOpdBits%8)) );
bitCnt += ipdOpdBits;
}
return (bitCnt);
}
INT FDKsbrEnc_WritePSBitstream(const HANDLE_PS_OUT psOut,
HANDLE_FDK_BITSTREAM hBitBuf )
{
INT psExtEnable = 0;
INT bitCnt = 0;
INT error = 0;
INT env;
if(psOut != NULL){
/* PS HEADER */
bitCnt += FDKsbrEnc_WriteBits_ps( hBitBuf, psOut->enablePSHeader, 1);
if(psOut->enablePSHeader) {
bitCnt += FDKsbrEnc_WriteBits_ps( hBitBuf, psOut->enableIID, 1);
if(psOut->enableIID) {
bitCnt += FDKsbrEnc_WriteBits_ps( hBitBuf, psOut->iidMode, 3);
}
bitCnt += FDKsbrEnc_WriteBits_ps( hBitBuf, psOut->enableICC, 1);
if(psOut->enableICC) {
bitCnt += FDKsbrEnc_WriteBits_ps( hBitBuf, psOut->iccMode, 3);
}
if(psOut->enableIpdOpd) {
psExtEnable = 1;
}
bitCnt += FDKsbrEnc_WriteBits_ps( hBitBuf, psExtEnable, 1);
}
/* Frame class, number of envelopes */
bitCnt += FDKsbrEnc_WriteBits_ps( hBitBuf, psOut->frameClass, 1);
bitCnt += FDKsbrEnc_WriteBits_ps( hBitBuf, getEnvIdx(psOut->nEnvelopes, psOut->frameClass), 2);
if(psOut->frameClass==1) {
for(env=0; env<psOut->nEnvelopes; env++) {
bitCnt += FDKsbrEnc_WriteBits_ps( hBitBuf, psOut->frameBorder[env], 5);
}
}
if(psOut->enableIID==1) {
INT *iidLast = psOut->iidLast;
for(env=0; env<psOut->nEnvelopes; env++) {
bitCnt += FDKsbrEnc_WriteBits_ps( hBitBuf, psOut->deltaIID[env], 1);
bitCnt += FDKsbrEnc_EncodeIid( hBitBuf,
psOut->iid[env],
iidLast,
getNoBands((PS_RESOLUTION)psOut->iidMode),
(PS_IID_RESOLUTION)getIIDRes(psOut->iidMode),
psOut->deltaIID[env],
&error );
iidLast = psOut->iid[env];
}
}
if(psOut->enableICC==1) {
INT *iccLast = psOut->iccLast;
for(env=0; env<psOut->nEnvelopes; env++) {
bitCnt += FDKsbrEnc_WriteBits_ps( hBitBuf, psOut->deltaICC[env], 1);
bitCnt += FDKsbrEnc_EncodeIcc( hBitBuf,
psOut->icc[env],
iccLast,
getNoBands((PS_RESOLUTION)psOut->iccMode),
psOut->deltaICC[env],
&error);
iccLast = psOut->icc[env];
}
}
if(psExtEnable!=0) {
bitCnt += encodePSExtension(psOut, hBitBuf);
}
} /* if(psOut != NULL) */
return bitCnt;
}