blob: 224da114d9cd0a7bf73bc789272719fe9ac43650 [file] [log] [blame]
/* -----------------------------------------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
of the MPEG specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
individually for the purpose of encoding or decoding bit streams in products that are compliant with
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
software may already be covered under those patent licenses when it is used for those licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
applications information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification, are permitted without
payment of copyright license fees provided that you satisfy the following conditions:
You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation and/or other materials
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived from this library without
prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
and the date of any change. For modified versions of the FDK AAC Codec, the term
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
respect to this software.
You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
or business interruption, however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of this software, even if
advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------------------------------------- */
#include "ton_corr.h"
#include "sbr_ram.h"
#include "sbr_misc.h"
#include "genericStds.h"
#include "autocorr2nd.h"
/***************************************************************************
Send autoCorrSecondOrder to mlfile
****************************************************************************/
/**************************************************************************/
/*!
\brief Calculates the tonal to noise ration for different frequency bands
and time segments.
The ratio between the predicted energy (tonal energy A) and the total
energy (A + B) is calculated. This is converted to the ratio between
the predicted energy (tonal energy A) and the non-predictable energy
(noise energy B). Hence the quota-matrix contains A/B = q/(1-q).
The samples in nrgVector are scaled by 1.0/16.0
The samples in pNrgVectorFreq are scaled by 1.0/2.0
The samples in quotaMatrix are scaled by RELAXATION
\return none.
*/
/**************************************************************************/
void
FDKsbrEnc_CalculateTonalityQuotas( HANDLE_SBR_TON_CORR_EST hTonCorr, /*!< Handle to SBR_TON_CORR struct. */
FIXP_DBL **RESTRICT sourceBufferReal, /*!< The real part of the QMF-matrix. */
FIXP_DBL **RESTRICT sourceBufferImag, /*!< The imaginary part of the QMF-matrix. */
INT usb, /*!< upper side band, highest + 1 QMF band in the SBR range. */
INT qmfScale /*!< sclefactor of QMF subsamples */
)
{
INT i, k, r, r2, timeIndex, autoCorrScaling;
INT startIndexMatrix = hTonCorr->startIndexMatrix;
INT totNoEst = hTonCorr->numberOfEstimates;
INT noEstPerFrame = hTonCorr->numberOfEstimatesPerFrame;
INT move = hTonCorr->move;
INT noQmfChannels = hTonCorr->noQmfChannels; /* Numer of Bands */
INT buffLen = hTonCorr->bufferLength; /* Numer of Slots */
INT stepSize = hTonCorr->stepSize;
INT *pBlockLength = hTonCorr->lpcLength;
INT** RESTRICT signMatrix = hTonCorr->signMatrix;
FIXP_DBL* RESTRICT nrgVector = hTonCorr->nrgVector;
FIXP_DBL** RESTRICT quotaMatrix = hTonCorr->quotaMatrix;
FIXP_DBL* RESTRICT pNrgVectorFreq = hTonCorr->nrgVectorFreq;
#define BAND_V_SIZE QMF_MAX_TIME_SLOTS
#define NUM_V_COMBINE 8 /* Must be a divisor of 64 and fulfill the ASSERTs below */
FIXP_DBL *realBuf;
FIXP_DBL *imagBuf;
FIXP_DBL alphar[2],alphai[2],fac;
C_ALLOC_SCRATCH_START(ac, ACORR_COEFS, 1);
C_ALLOC_SCRATCH_START(realBufRef, FIXP_DBL, 2*BAND_V_SIZE*NUM_V_COMBINE);
realBuf = realBufRef;
imagBuf = realBuf + BAND_V_SIZE*NUM_V_COMBINE;
FDK_ASSERT(buffLen <= BAND_V_SIZE);
FDK_ASSERT(sizeof(FIXP_DBL)*NUM_V_COMBINE*BAND_V_SIZE*2 < (1024*sizeof(FIXP_DBL)-sizeof(ACORR_COEFS)) );
/*
* Buffering of the quotaMatrix and the quotaMatrixTransp.
*********************************************************/
for(i = 0 ; i < move; i++){
FDKmemcpy(quotaMatrix[i],quotaMatrix[i + noEstPerFrame],noQmfChannels * sizeof(FIXP_DBL));
FDKmemcpy(signMatrix[i],signMatrix[i + noEstPerFrame],noQmfChannels * sizeof(INT));
}
FDKmemmove(nrgVector,nrgVector+noEstPerFrame,move*sizeof(FIXP_DBL));
FDKmemclear(nrgVector+startIndexMatrix,(totNoEst-startIndexMatrix)*sizeof(FIXP_DBL));
FDKmemclear(pNrgVectorFreq,noQmfChannels * sizeof(FIXP_DBL));
/*
* Calculate the quotas for the current time steps.
**************************************************/
for (r = 0; r < usb; r++)
{
int blockLength;
k = hTonCorr->nextSample; /* startSample */
timeIndex = startIndexMatrix;
/* Copy as many as possible Band accross all Slots at once */
if (realBuf != realBufRef) {
realBuf -= BAND_V_SIZE;
imagBuf -= BAND_V_SIZE;
} else {
realBuf += BAND_V_SIZE*(NUM_V_COMBINE-1);
imagBuf += BAND_V_SIZE*(NUM_V_COMBINE-1);
for (i = 0; i < buffLen; i++) {
int v;
FIXP_DBL *ptr;
ptr = realBuf+i;
for (v=0; v<NUM_V_COMBINE; v++)
{
ptr[0] = sourceBufferReal[i][r+v];
ptr[0+BAND_V_SIZE*NUM_V_COMBINE] = sourceBufferImag[i][r+v];
ptr -= BAND_V_SIZE;
}
}
}
blockLength = pBlockLength[0];
while(k <= buffLen - blockLength)
{
autoCorrScaling = fixMin(getScalefactor(&realBuf[k-LPC_ORDER], LPC_ORDER+blockLength), getScalefactor(&imagBuf[k-LPC_ORDER], LPC_ORDER+blockLength));
autoCorrScaling = fixMax(0, autoCorrScaling-1);
scaleValues(&realBuf[k-LPC_ORDER], LPC_ORDER+blockLength, autoCorrScaling);
scaleValues(&imagBuf[k-LPC_ORDER], LPC_ORDER+blockLength, autoCorrScaling);
autoCorrScaling <<= 1; /* consider qmf buffer scaling twice */
autoCorrScaling += autoCorr2nd_cplx ( ac, realBuf+k, imagBuf+k, blockLength );
if(ac->det == FL2FXCONST_DBL(0.0f)){
alphar[1] = alphai[1] = FL2FXCONST_DBL(0.0f);
alphar[0] = (ac->r01r)>>2;
alphai[0] = (ac->r01i)>>2;
fac = fMultDiv2(ac->r00r, ac->r11r)>>1;
}
else{
alphar[1] = (fMultDiv2(ac->r01r, ac->r12r)>>1) - (fMultDiv2(ac->r01i, ac->r12i)>>1) - (fMultDiv2(ac->r02r, ac->r11r)>>1);
alphai[1] = (fMultDiv2(ac->r01i, ac->r12r)>>1) + (fMultDiv2(ac->r01r, ac->r12i)>>1) - (fMultDiv2(ac->r02i, ac->r11r)>>1);
alphar[0] = (fMultDiv2(ac->r01r, ac->det)>>(ac->det_scale+1)) + fMult(alphar[1], ac->r12r) + fMult(alphai[1], ac->r12i);
alphai[0] = (fMultDiv2(ac->r01i, ac->det)>>(ac->det_scale+1)) + fMult(alphai[1], ac->r12r) - fMult(alphar[1], ac->r12i);
fac = fMultDiv2(ac->r00r, fMult(ac->det, ac->r11r))>>(ac->det_scale+1);
}
if(fac == FL2FXCONST_DBL(0.0f)){
quotaMatrix[timeIndex][r] = FL2FXCONST_DBL(0.0f);
signMatrix[timeIndex][r] = 0;
}
else {
/* quotaMatrix is scaled with the factor RELAXATION
parse RELAXATION in fractional part and shift factor: 1/(1/0.524288 * 2^RELAXATION_SHIFT) */
FIXP_DBL tmp,num,denom;
INT numShift,denomShift,commonShift;
INT sign;
num = fMultDiv2(alphar[0], ac->r01r) + fMultDiv2(alphai[0], ac->r01i) - fMultDiv2(alphar[1], fMult(ac->r02r, ac->r11r)) - fMultDiv2(alphai[1], fMult(ac->r02i, ac->r11r));
num = fixp_abs(num);
denom = (fac>>1) + (fMultDiv2(fac,RELAXATION_FRACT)>>RELAXATION_SHIFT) - num;
denom = fixp_abs(denom);
num = fMult(num,RELAXATION_FRACT);
numShift = CountLeadingBits(num) - 2;
num = scaleValue(num, numShift);
denomShift = CountLeadingBits(denom);
denom = (FIXP_DBL)denom << denomShift;
if ((num > FL2FXCONST_DBL(0.0f)) && (denom != FL2FXCONST_DBL(0.0f))) {
commonShift = fixMin(numShift - denomShift + RELAXATION_SHIFT, DFRACT_BITS-1);
if (commonShift < 0) {
commonShift = -commonShift;
tmp = schur_div(num,denom,16);
commonShift = fixMin(commonShift,CountLeadingBits(tmp));
quotaMatrix[timeIndex][r] = tmp << commonShift;
}
else {
quotaMatrix[timeIndex][r] = schur_div(num,denom,16) >> commonShift;
}
}
else {
quotaMatrix[timeIndex][r] = FL2FXCONST_DBL(0.0f);
}
if (ac->r11r != FL2FXCONST_DBL(0.0f)) {
if ( ( (ac->r01r >= FL2FXCONST_DBL(0.0f) ) && ( ac->r11r >= FL2FXCONST_DBL(0.0f) ) )
||( (ac->r01r < FL2FXCONST_DBL(0.0f) ) && ( ac->r11r < FL2FXCONST_DBL(0.0f) ) ) ) {
sign = 1;
}
else {
sign = -1;
}
}
else {
sign = 1;
}
if(sign < 0) {
r2 = r; /* (INT) pow(-1, band); */
}
else {
r2 = r + 1; /* (INT) pow(-1, band+1); */
}
signMatrix[timeIndex][r] = 1 - 2*(r2 & 0x1);
}
nrgVector[timeIndex] += ((ac->r00r) >> fixMin(DFRACT_BITS-1,(2*qmfScale+autoCorrScaling + SCALE_NRGVEC)));
/* pNrgVectorFreq[r] finally has to be divided by noEstPerFrame, replaced division by shifting with one */
pNrgVectorFreq[r] = pNrgVectorFreq[r] + ((ac->r00r) >> fixMin(DFRACT_BITS-1,(2*qmfScale+autoCorrScaling + SCALE_NRGVEC)));
blockLength = pBlockLength[1];
k += stepSize;
timeIndex++;
}
}
C_ALLOC_SCRATCH_END(realBuf, FIXP_DBL, 2*BAND_V_SIZE*NUM_V_COMBINE);
C_ALLOC_SCRATCH_END(ac, ACORR_COEFS, 1);
}
/**************************************************************************/
/*!
\brief Extracts the parameters required in the decoder to obtain the
correct tonal to noise ratio after SBR.
Estimates the tonal to noise ratio of the original signal (using LPC).
Predicts the tonal to noise ration of the SBR signal (in the decoder) by
patching the tonal to noise ratio values similar to the patching of the
lowband in the decoder. Given the tonal to noise ratio of the original
and the SBR signal, it estimates the required amount of inverse filtering,
additional noise as well as any additional sines.
\return none.
*/
/**************************************************************************/
void
FDKsbrEnc_TonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr,/*!< Handle to SBR_TON_CORR struct. */
INVF_MODE* infVec, /*!< Vector where the inverse filtering levels will be stored. */
FIXP_DBL * noiseLevels, /*!< Vector where the noise levels will be stored. */
INT* missingHarmonicFlag, /*!< Flag set to one or zero, dependent on if any strong sines are missing.*/
UCHAR * missingHarmonicsIndex, /*!< Vector indicating where sines are missing. */
UCHAR * envelopeCompensation, /*!< Vector to store compensation values for the energies in. */
const SBR_FRAME_INFO *frameInfo, /*!< Frame info struct, contains the time and frequency grid of the current frame.*/
UCHAR* transientInfo, /*!< Transient info.*/
UCHAR* freqBandTable, /*!< Frequency band tables for high-res.*/
INT nSfb, /*!< Number of scalefactor bands for high-res. */
XPOS_MODE xposType, /*!< Type of transposer used in the decoder.*/
UINT sbrSyntaxFlags
)
{
INT band;
INT transientFlag = transientInfo[1] ; /*!< Flag indicating if a transient is present in the current frame. */
INT transientPos = transientInfo[0]; /*!< Position of the transient.*/
INT transientFrame, transientFrameInvfEst;
INVF_MODE* infVecPtr;
/* Determine if this is a frame where a transient starts...
The detection of noise-floor, missing harmonics and invf_est, is not in sync for the
non-buf-opt decoder such as AAC. Hence we need to keep track on the transient in the
present frame as well as in the next.
*/
transientFrame = 0;
if(hTonCorr->transientNextFrame){ /* The transient was detected in the previous frame, but is actually */
transientFrame = 1;
hTonCorr->transientNextFrame = 0;
if(transientFlag){
if(transientPos + hTonCorr->transientPosOffset >= frameInfo->borders[frameInfo->nEnvelopes]){
hTonCorr->transientNextFrame = 1;
}
}
}
else{
if(transientFlag){
if(transientPos + hTonCorr->transientPosOffset < frameInfo->borders[frameInfo->nEnvelopes]){
transientFrame = 1;
hTonCorr->transientNextFrame = 0;
}
else{
hTonCorr->transientNextFrame = 1;
}
}
}
transientFrameInvfEst = transientFrame;
/*
Estimate the required invese filtereing level.
*/
if (hTonCorr->switchInverseFilt)
FDKsbrEnc_qmfInverseFilteringDetector(&hTonCorr->sbrInvFilt,
hTonCorr->quotaMatrix,
hTonCorr->nrgVector,
hTonCorr->indexVector,
hTonCorr->frameStartIndexInvfEst,
hTonCorr->numberOfEstimatesPerFrame + hTonCorr->frameStartIndexInvfEst,
transientFrameInvfEst,
infVec);
/*
Detect what tones will be missing.
*/
if (xposType == XPOS_LC ){
FDKsbrEnc_SbrMissingHarmonicsDetectorQmf(&hTonCorr->sbrMissingHarmonicsDetector,
hTonCorr->quotaMatrix,
hTonCorr->signMatrix,
hTonCorr->indexVector,
frameInfo,
transientInfo,
missingHarmonicFlag,
missingHarmonicsIndex,
freqBandTable,
nSfb,
envelopeCompensation,
hTonCorr->nrgVectorFreq);
}
else{
*missingHarmonicFlag = 0;
FDKmemclear(missingHarmonicsIndex,nSfb*sizeof(UCHAR));
}
/*
Noise floor estimation
*/
infVecPtr = hTonCorr->sbrInvFilt.prevInvfMode;
FDKsbrEnc_sbrNoiseFloorEstimateQmf(&hTonCorr->sbrNoiseFloorEstimate,
frameInfo,
noiseLevels,
hTonCorr->quotaMatrix,
hTonCorr->indexVector,
*missingHarmonicFlag,
hTonCorr->frameStartIndex,
hTonCorr->numberOfEstimatesPerFrame,
transientFrame,
infVecPtr,
sbrSyntaxFlags);
/* Store the invfVec data for the next frame...*/
for(band = 0 ; band < hTonCorr->sbrInvFilt.noDetectorBands; band++){
hTonCorr->sbrInvFilt.prevInvfMode[band] = infVec[band];
}
}
/**************************************************************************/
/*!
\brief Searches for the closest match in the frequency master table.
\return closest entry.
*/
/**************************************************************************/
static INT
findClosestEntry(INT goalSb,
UCHAR *v_k_master,
INT numMaster,
INT direction)
{
INT index;
if( goalSb <= v_k_master[0] )
return v_k_master[0];
if( goalSb >= v_k_master[numMaster] )
return v_k_master[numMaster];
if(direction) {
index = 0;
while( v_k_master[index] < goalSb ) {
index++;
}
} else {
index = numMaster;
while( v_k_master[index] > goalSb ) {
index--;
}
}
return v_k_master[index];
}
/**************************************************************************/
/*!
\brief resets the patch
\return errorCode, noError if successful.
*/
/**************************************************************************/
static INT
resetPatch(HANDLE_SBR_TON_CORR_EST hTonCorr, /*!< Handle to SBR_TON_CORR struct. */
INT xposctrl, /*!< Different patch modes. */
INT highBandStartSb, /*!< Start band of the SBR range. */
UCHAR *v_k_master, /*!< Master frequency table from which all other table are derived.*/
INT numMaster, /*!< Number of elements in the master table. */
INT fs, /*!< Sampling frequency. */
INT noChannels) /*!< Number of QMF-channels. */
{
INT patch,k,i;
INT targetStopBand;
PATCH_PARAM *patchParam = hTonCorr->patchParam;
INT sbGuard = hTonCorr->guard;
INT sourceStartBand;
INT patchDistance;
INT numBandsInPatch;
INT lsb = v_k_master[0]; /* Lowest subband related to the synthesis filterbank */
INT usb = v_k_master[numMaster]; /* Stop subband related to the synthesis filterbank */
INT xoverOffset = highBandStartSb - v_k_master[0]; /* Calculate distance in subbands between k0 and kx */
INT goalSb;
/*
* Initialize the patching parameter
*/
if (xposctrl == 1) {
lsb += xoverOffset;
xoverOffset = 0;
}
goalSb = (INT)( (2 * noChannels * 16000 + (fs>>1)) / fs ); /* 16 kHz band */
goalSb = findClosestEntry(goalSb, v_k_master, numMaster, 1); /* Adapt region to master-table */
/* First patch */
sourceStartBand = hTonCorr->shiftStartSb + xoverOffset;
targetStopBand = lsb + xoverOffset;
/* even (odd) numbered channel must be patched to even (odd) numbered channel */
patch = 0;
while(targetStopBand < usb) {
/* To many patches */
if (patch >= MAX_NUM_PATCHES)
return(1); /*Number of patches to high */
patchParam[patch].guardStartBand = targetStopBand;
targetStopBand += sbGuard;
patchParam[patch].targetStartBand = targetStopBand;
numBandsInPatch = goalSb - targetStopBand; /* get the desired range of the patch */
if ( numBandsInPatch >= lsb - sourceStartBand ) {
/* desired number bands are not available -> patch whole source range */
patchDistance = targetStopBand - sourceStartBand; /* get the targetOffset */
patchDistance = patchDistance & ~1; /* rounding off odd numbers and make all even */
numBandsInPatch = lsb - (targetStopBand - patchDistance);
numBandsInPatch = findClosestEntry(targetStopBand + numBandsInPatch, v_k_master, numMaster, 0) -
targetStopBand; /* Adapt region to master-table */
}
/* desired number bands are available -> get the minimal even patching distance */
patchDistance = numBandsInPatch + targetStopBand - lsb; /* get minimal distance */
patchDistance = (patchDistance + 1) & ~1; /* rounding up odd numbers and make all even */
if (numBandsInPatch <= 0) {
patch--;
} else {
patchParam[patch].sourceStartBand = targetStopBand - patchDistance;
patchParam[patch].targetBandOffs = patchDistance;
patchParam[patch].numBandsInPatch = numBandsInPatch;
patchParam[patch].sourceStopBand = patchParam[patch].sourceStartBand + numBandsInPatch;
targetStopBand += patchParam[patch].numBandsInPatch;
}
/* All patches but first */
sourceStartBand = hTonCorr->shiftStartSb;
/* Check if we are close to goalSb */
if( fixp_abs(targetStopBand - goalSb) < 3) {
goalSb = usb;
}
patch++;
}
patch--;
/* if highest patch contains less than three subband: skip it */
if ( patchParam[patch].numBandsInPatch < 3 && patch > 0 ) {
patch--;
targetStopBand = patchParam[patch].targetStartBand + patchParam[patch].numBandsInPatch;
}
hTonCorr->noOfPatches = patch + 1;
/* Assign the index-vector, so we know where to look for the high-band.
-1 represents a guard-band. */
for(k = 0; k < hTonCorr->patchParam[0].guardStartBand; k++)
hTonCorr->indexVector[k] = k;
for(i = 0; i < hTonCorr->noOfPatches; i++)
{
INT sourceStart = hTonCorr->patchParam[i].sourceStartBand;
INT targetStart = hTonCorr->patchParam[i].targetStartBand;
INT numberOfBands = hTonCorr->patchParam[i].numBandsInPatch;
INT startGuardBand = hTonCorr->patchParam[i].guardStartBand;
for(k = 0; k < (targetStart- startGuardBand); k++)
hTonCorr->indexVector[startGuardBand+k] = -1;
for(k = 0; k < numberOfBands; k++)
hTonCorr->indexVector[targetStart+k] = sourceStart+k;
}
return (0);
}
/**************************************************************************/
/*!
\brief Creates an instance of the tonality correction parameter module.
The module includes modules for inverse filtering level estimation,
missing harmonics detection and noise floor level estimation.
\return errorCode, noError if successful.
*/
/**************************************************************************/
INT
FDKsbrEnc_CreateTonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr, /*!< Pointer to handle to SBR_TON_CORR struct. */
INT chan) /*!< Channel index, needed for mem allocation */
{
INT i;
FIXP_DBL* quotaMatrix = GetRam_Sbr_quotaMatrix(chan);
INT* signMatrix = GetRam_Sbr_signMatrix(chan);
FDKmemclear(hTonCorr, sizeof(SBR_TON_CORR_EST));
for (i=0; i<MAX_NO_OF_ESTIMATES; i++) {
hTonCorr->quotaMatrix[i] = quotaMatrix + (i*QMF_CHANNELS);
hTonCorr->signMatrix[i] = signMatrix + (i*QMF_CHANNELS);
}
FDKsbrEnc_CreateSbrMissingHarmonicsDetector (&hTonCorr->sbrMissingHarmonicsDetector, chan);
return 0;
}
/**************************************************************************/
/*!
\brief Initialize an instance of the tonality correction parameter module.
The module includes modules for inverse filtering level estimation,
missing harmonics detection and noise floor level estimation.
\return errorCode, noError if successful.
*/
/**************************************************************************/
INT
FDKsbrEnc_InitTonCorrParamExtr (INT frameSize, /*!< Current SBR frame size. */
HANDLE_SBR_TON_CORR_EST hTonCorr, /*!< Pointer to handle to SBR_TON_CORR struct. */
HANDLE_SBR_CONFIG_DATA sbrCfg, /*!< Pointer to SBR configuration parameters. */
INT timeSlots, /*!< Number of time-slots per frame */
INT xposCtrl, /*!< Different patch modes. */
INT ana_max_level, /*!< Maximum level of the adaptive noise. */
INT noiseBands, /*!< Number of noise bands per octave. */
INT noiseFloorOffset, /*!< Noise floor offset. */
UINT useSpeechConfig) /*!< Speech or music tuning. */
{
INT nCols = sbrCfg->noQmfSlots;
INT fs = sbrCfg->sampleFreq;
INT noQmfChannels = sbrCfg->noQmfBands;
INT highBandStartSb = sbrCfg->freqBandTable[LOW_RES][0];
UCHAR *v_k_master = sbrCfg->v_k_master;
INT numMaster = sbrCfg->num_Master;
UCHAR **freqBandTable = sbrCfg->freqBandTable;
INT *nSfb = sbrCfg->nSfb;
INT i;
/*
Reset the patching and allocate memory for the quota matrix.
Assing parameters for the LPC analysis.
*/
if (sbrCfg->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) {
switch (timeSlots) {
case NUMBER_TIME_SLOTS_1920:
hTonCorr->lpcLength[0] = 8 - LPC_ORDER;
hTonCorr->lpcLength[1] = 7 - LPC_ORDER;
hTonCorr->numberOfEstimates = NO_OF_ESTIMATES_LD;
hTonCorr->numberOfEstimatesPerFrame = sbrCfg->noQmfSlots / 7;
hTonCorr->frameStartIndexInvfEst = 0;
hTonCorr->transientPosOffset = FRAME_MIDDLE_SLOT_512LD;
break;
case NUMBER_TIME_SLOTS_2048:
hTonCorr->lpcLength[0] = 8 - LPC_ORDER;
hTonCorr->lpcLength[1] = 8 - LPC_ORDER;
hTonCorr->numberOfEstimates = NO_OF_ESTIMATES_LD;
hTonCorr->numberOfEstimatesPerFrame = sbrCfg->noQmfSlots / 8;
hTonCorr->frameStartIndexInvfEst = 0;
hTonCorr->transientPosOffset = FRAME_MIDDLE_SLOT_512LD;
break;
}
} else
switch (timeSlots) {
case NUMBER_TIME_SLOTS_2048:
hTonCorr->lpcLength[0] = 16 - LPC_ORDER; /* blockLength[0] */
hTonCorr->lpcLength[1] = 16 - LPC_ORDER; /* blockLength[0] */
hTonCorr->numberOfEstimates = NO_OF_ESTIMATES_LC;
hTonCorr->numberOfEstimatesPerFrame = sbrCfg->noQmfSlots / 16;
hTonCorr->frameStartIndexInvfEst = 0;
hTonCorr->transientPosOffset = FRAME_MIDDLE_SLOT_2048;
break;
case NUMBER_TIME_SLOTS_1920:
hTonCorr->lpcLength[0] = 15 - LPC_ORDER; /* blockLength[0] */
hTonCorr->lpcLength[1] = 15 - LPC_ORDER; /* blockLength[0] */
hTonCorr->numberOfEstimates = NO_OF_ESTIMATES_LC;
hTonCorr->numberOfEstimatesPerFrame = sbrCfg->noQmfSlots / 15;
hTonCorr->frameStartIndexInvfEst = 0;
hTonCorr->transientPosOffset = FRAME_MIDDLE_SLOT_1920;
break;
default:
return -1;
}
hTonCorr->bufferLength = nCols;
hTonCorr->stepSize = hTonCorr->lpcLength[0] + LPC_ORDER; /* stepSize[0] implicitly 0. */
hTonCorr->nextSample = LPC_ORDER; /* firstSample */
hTonCorr->move = hTonCorr->numberOfEstimates - hTonCorr->numberOfEstimatesPerFrame; /* Number of estimates to move when buffering.*/
hTonCorr->startIndexMatrix = hTonCorr->numberOfEstimates - hTonCorr->numberOfEstimatesPerFrame; /* Where to store the latest estimations in the tonality Matrix.*/
hTonCorr->frameStartIndex = 0; /* Where in the tonality matrix the current frame (to be sent to the decoder) starts. */
hTonCorr->prevTransientFlag = 0;
hTonCorr->transientNextFrame = 0;
hTonCorr->noQmfChannels = noQmfChannels;
for (i=0; i<hTonCorr->numberOfEstimates; i++) {
FDKmemclear (hTonCorr->quotaMatrix[i] , sizeof(FIXP_DBL)*noQmfChannels);
FDKmemclear (hTonCorr->signMatrix[i] , sizeof(INT)*noQmfChannels);
}
/* Reset the patch.*/
hTonCorr->guard = 0;
hTonCorr->shiftStartSb = 1;
if(resetPatch(hTonCorr,
xposCtrl,
highBandStartSb,
v_k_master,
numMaster,
fs,
noQmfChannels))
return(1);
if(FDKsbrEnc_InitSbrNoiseFloorEstimate (&hTonCorr->sbrNoiseFloorEstimate,
ana_max_level,
freqBandTable[LO],
nSfb[LO],
noiseBands,
noiseFloorOffset,
timeSlots,
useSpeechConfig))
return(1);
if(FDKsbrEnc_initInvFiltDetector(&hTonCorr->sbrInvFilt,
hTonCorr->sbrNoiseFloorEstimate.freqBandTableQmf,
hTonCorr->sbrNoiseFloorEstimate.noNoiseBands,
useSpeechConfig))
return(1);
if(FDKsbrEnc_InitSbrMissingHarmonicsDetector(
&hTonCorr->sbrMissingHarmonicsDetector,
fs,
frameSize,
nSfb[HI],
noQmfChannels,
hTonCorr->numberOfEstimates,
hTonCorr->move,
hTonCorr->numberOfEstimatesPerFrame,
sbrCfg->sbrSyntaxFlags))
return(1);
return (0);
}
/**************************************************************************/
/*!
\brief resets tonality correction parameter module.
\return errorCode, noError if successful.
*/
/**************************************************************************/
INT
FDKsbrEnc_ResetTonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr, /*!< Handle to SBR_TON_CORR struct. */
INT xposctrl, /*!< Different patch modes. */
INT highBandStartSb, /*!< Start band of the SBR range. */
UCHAR *v_k_master, /*!< Master frequency table from which all other table are derived.*/
INT numMaster, /*!< Number of elements in the master table. */
INT fs, /*!< Sampling frequency (of the SBR part). */
UCHAR ** freqBandTable, /*!< Frequency band table for low-res and high-res. */
INT* nSfb, /*!< Number of frequency bands (hig-res and low-res). */
INT noQmfChannels /*!< Number of QMF channels. */
)
{
/* Reset the patch.*/
hTonCorr->guard = 0;
hTonCorr->shiftStartSb = 1;
if(resetPatch(hTonCorr,
xposctrl,
highBandStartSb,
v_k_master,
numMaster,
fs,
noQmfChannels))
return(1);
/* Reset the noise floor estimate.*/
if(FDKsbrEnc_resetSbrNoiseFloorEstimate (&hTonCorr->sbrNoiseFloorEstimate,
freqBandTable[LO],
nSfb[LO]))
return(1);
/*
Reset the inveerse filtereing detector.
*/
if(FDKsbrEnc_resetInvFiltDetector(&hTonCorr->sbrInvFilt,
hTonCorr->sbrNoiseFloorEstimate.freqBandTableQmf,
hTonCorr->sbrNoiseFloorEstimate.noNoiseBands))
return(1);
/* Reset the missing harmonics detector. */
if(FDKsbrEnc_ResetSbrMissingHarmonicsDetector (&hTonCorr->sbrMissingHarmonicsDetector,
nSfb[HI]))
return(1);
return (0);
}
/**************************************************************************/
/*!
\brief Deletes the tonality correction paramtere module.
\return none
*/
/**************************************************************************/
void
FDKsbrEnc_DeleteTonCorrParamExtr (HANDLE_SBR_TON_CORR_EST hTonCorr) /*!< Handle to SBR_TON_CORR struct. */
{
if (hTonCorr) {
FreeRam_Sbr_quotaMatrix(hTonCorr->quotaMatrix);
FreeRam_Sbr_signMatrix(hTonCorr->signMatrix);
FDKsbrEnc_DeleteSbrMissingHarmonicsDetector (&hTonCorr->sbrMissingHarmonicsDetector);
}
}