blob: 3845ade39f27ddc1036290006a1a71f799a797be [file] [log] [blame]
/*
* Written by Doug Lea and Martin Buchholz with assistance from members of
* JCP JSR-166 Expert Group and released to the public domain, as explained
* at http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
import java.util.AbstractCollection;
import java.util.ArrayList;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Deque;
import java.util.Iterator;
import java.util.NoSuchElementException;
/**
* A concurrent linked-list implementation of a {@link Deque}
* (double-ended queue). Concurrent insertion, removal, and access
* operations execute safely across multiple threads. Iterators are
* <i>weakly consistent</i>, returning elements reflecting the state
* of the deque at some point at or since the creation of the
* iterator. They do <em>not</em> throw {@link
* ConcurrentModificationException}, and may proceed concurrently with
* other operations.
*
* <p>This class and its iterators implement all of the
* <em>optional</em> methods of the {@link Collection} and {@link
* Iterator} interfaces. Like most other concurrent collection
* implementations, this class does not permit the use of
* {@code null} elements. because some null arguments and return
* values cannot be reliably distinguished from the absence of
* elements. Arbitrarily, the {@link Collection#remove} method is
* mapped to {@code removeFirstOccurrence}, and {@link
* Collection#add} is mapped to {@code addLast}.
*
* <p>Beware that, unlike in most collections, the {@code size}
* method is <em>NOT</em> a constant-time operation. Because of the
* asynchronous nature of these deques, determining the current number
* of elements requires a traversal of the elements.
*
* <p>This class is {@code Serializable}, but relies on default
* serialization mechanisms. Usually, it is a better idea for any
* serializable class using a {@code ConcurrentLinkedDeque} to instead
* serialize a snapshot of the elements obtained by method
* {@code toArray}.
*
* @hide
*
* @author Doug Lea
* @author Martin Buchholz
* @param <E> the type of elements held in this collection
*/
public class ConcurrentLinkedDeque<E>
extends AbstractCollection<E>
implements Deque<E>, java.io.Serializable {
/*
* This is an implementation of a concurrent lock-free deque
* supporting interior removes but not interior insertions, as
* required to fully support the Deque interface.
*
* We extend the techniques developed for
* ConcurrentLinkedQueue and LinkedTransferQueue
* (see the internal docs for those classes).
*
* At any time, there is precisely one "first" active node with a
* null prev pointer. Similarly there is one "last" active node
* with a null next pointer. New nodes are simply enqueued by
* null-CASing.
*
* A node p is considered "active" if it either contains an
* element, or is an end node and neither next nor prev pointers
* are self-links:
*
* p.item != null ||
* (p.prev == null && p.next != p) ||
* (p.next == null && p.prev != p)
*
* The head and tail pointers are only approximations to the start
* and end of the deque. The first node can always be found by
* following prev pointers from head; likewise for tail. However,
* head and tail may be pointing at deleted nodes that have been
* unlinked and so may not be reachable from any live node.
*
* There are 3 levels of node deletion:
* - logical deletion atomically removes the element
* - "unlinking" makes a deleted node unreachable from active
* nodes, and thus eventually reclaimable by GC
* - "gc-unlinking" further does the reverse of making active
* nodes unreachable from deleted nodes, making it easier for
* the GC to reclaim future deleted nodes
*
* TODO: find a better name for "gc-unlinked"
*
* Logical deletion of a node simply involves CASing its element
* to null. Physical deletion is merely an optimization (albeit a
* critical one), and can be performed at our convenience. At any
* time, the set of non-logically-deleted nodes maintained by prev
* and next links are identical, that is the live elements found
* via next links from the first node is equal to the elements
* found via prev links from the last node. However, this is not
* true for nodes that have already been logically deleted - such
* nodes may only be reachable in one direction.
*
* When a node is dequeued at either end, e.g. via poll(), we
* would like to break any references from the node to live nodes,
* to stop old garbage from causing retention of new garbage with
* a generational or conservative GC. We develop further the
* self-linking trick that was very effective in other concurrent
* collection classes. The idea is to replace prev and next
* pointers to active nodes with special values that are
* interpreted to mean off-the-list-at-one-end. These are
* approximations, but good enough to preserve the properties we
* want in our traversals, e.g. we guarantee that a traversal will
* never hit the same element twice, but we don't guarantee
* whether a traversal that runs out of elements will be able to
* see more elements later after more elements are added at that
* end. Doing gc-unlinking safely is particularly tricky, since
* any node can be in use indefinitely (for example by an
* iterator). We must make sure that the nodes pointed at by
* head/tail do not get gc-unlinked, since head/tail are needed to
* get "back on track" by other nodes that are gc-unlinked.
* gc-unlinking accounts for much of the implementation complexity.
*
* Since neither unlinking nor gc-unlinking are necessary for
* correctness, there are many implementation choices regarding
* frequency (eagerness) of these operations. Since volatile
* reads are likely to be much cheaper than CASes, saving CASes by
* unlinking multiple adjacent nodes at a time may be a win.
* gc-unlinking can be performed rarely and still be effective,
* since it is most important that long chains of deleted nodes
* are occasionally broken.
*
* The actual representation we use is that p.next == p means to
* goto the first node, and p.next == null && p.prev == p means
* that the iteration is at an end and that p is a (final static)
* dummy node, NEXT_TERMINATOR, and not the last active node.
* Finishing the iteration when encountering such a TERMINATOR is
* good enough for read-only traversals. When the last active
* node is desired, for example when enqueueing, goto tail and
* continue traversal.
*
* The implementation is completely directionally symmetrical,
* except that most public methods that iterate through the list
* follow next pointers ("forward" direction).
*
* There is one desirable property we would like to have, but
* don't: it is possible, when an addFirst(A) is racing with
* pollFirst() removing B, for an iterating observer to see A B C
* and subsequently see A C, even though no interior removes are
* ever performed. I believe this wart can only be removed at
* significant runtime cost.
*
* Empirically, microbenchmarks suggest that this class adds about
* 40% overhead relative to ConcurrentLinkedQueue, which feels as
* good as we can hope for.
*/
/**
* A node from which the first node on list (that is, the unique
* node with node.prev == null) can be reached in O(1) time.
* Invariants:
* - the first node is always O(1) reachable from head via prev links
* - all live nodes are reachable from the first node via succ()
* - head != null
* - (tmp = head).next != tmp || tmp != head
* Non-invariants:
* - head.item may or may not be null
* - head may not be reachable from the first or last node, or from tail
*/
private transient volatile Node<E> head = new Node<E>(null);
private final static Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
static {
PREV_TERMINATOR = new Node<Object>(null);
PREV_TERMINATOR.next = PREV_TERMINATOR;
NEXT_TERMINATOR = new Node<Object>(null);
NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
}
@SuppressWarnings("unchecked")
Node<E> prevTerminator() {
return (Node<E>) PREV_TERMINATOR;
}
@SuppressWarnings("unchecked")
Node<E> nextTerminator() {
return (Node<E>) NEXT_TERMINATOR;
}
/**
* A node from which the last node on list (that is, the unique
* node with node.next == null) can be reached in O(1) time.
* Invariants:
* - the last node is always O(1) reachable from tail via next links
* - all live nodes are reachable from the last node via pred()
* - tail != null
* Non-invariants:
* - tail.item may or may not be null
* - tail may not be reachable from the first or last node, or from head
*/
private transient volatile Node<E> tail = head;
static final class Node<E> {
volatile Node<E> prev;
volatile E item;
volatile Node<E> next;
Node(E item) {
// Piggyback on imminent casNext() or casPrev()
lazySetItem(item);
}
boolean casItem(E cmp, E val) {
return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
}
void lazySetItem(E val) {
UNSAFE.putOrderedObject(this, itemOffset, val);
}
void lazySetNext(Node<E> val) {
UNSAFE.putOrderedObject(this, nextOffset, val);
}
boolean casNext(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
}
void lazySetPrev(Node<E> val) {
UNSAFE.putOrderedObject(this, prevOffset, val);
}
boolean casPrev(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE =
sun.misc.Unsafe.getUnsafe();
private static final long prevOffset =
objectFieldOffset(UNSAFE, "prev", Node.class);
private static final long itemOffset =
objectFieldOffset(UNSAFE, "item", Node.class);
private static final long nextOffset =
objectFieldOffset(UNSAFE, "next", Node.class);
}
/**
* Links e as first element.
*/
private void linkFirst(E e) {
checkNotNull(e);
final Node<E> newNode = new Node<E>(e);
retry:
for (;;) {
for (Node<E> h = head, p = h;;) {
Node<E> q = p.prev;
if (q == null) {
if (p.next == p)
continue retry;
newNode.lazySetNext(p); // CAS piggyback
if (p.casPrev(null, newNode)) {
if (p != h) // hop two nodes at a time
casHead(h, newNode);
return;
} else {
p = p.prev; // lost CAS race to another thread
}
}
else if (p == q)
continue retry;
else
p = q;
}
}
}
/**
* Links e as last element.
*/
private void linkLast(E e) {
checkNotNull(e);
final Node<E> newNode = new Node<E>(e);
retry:
for (;;) {
for (Node<E> t = tail, p = t;;) {
Node<E> q = p.next;
if (q == null) {
if (p.prev == p)
continue retry;
newNode.lazySetPrev(p); // CAS piggyback
if (p.casNext(null, newNode)) {
if (p != t) // hop two nodes at a time
casTail(t, newNode);
return;
} else {
p = p.next; // lost CAS race to another thread
}
}
else if (p == q)
continue retry;
else
p = q;
}
}
}
// TODO: Is there a better cheap way of performing some cleanup
// operation "occasionally"?
static class Count {
int count = 0;
}
private final static ThreadLocal<Count> tlc =
new ThreadLocal<Count>() {
protected Count initialValue() { return new Count(); }
};
private static boolean shouldGCUnlinkOccasionally() {
return (tlc.get().count++ & 0x3) == 0;
}
private final static int HOPS = 2;
/**
* Unlinks non-null node x.
*/
void unlink(Node<E> x) {
assert x != null;
assert x.item == null;
assert x != PREV_TERMINATOR;
assert x != NEXT_TERMINATOR;
final Node<E> prev = x.prev;
final Node<E> next = x.next;
if (prev == null) {
unlinkFirst(x, next);
} else if (next == null) {
unlinkLast(x, prev);
} else {
// Unlink interior node.
//
// This is the common case, since a series of polls at the
// same end will be "interior" removes, except perhaps for
// the first one, since end nodes cannot be physically removed.
//
// At any time, all active nodes are mutually reachable by
// following a sequence of either next or prev pointers.
//
// Our strategy is to find the unique active predecessor
// and successor of x. Try to fix up their links so that
// they point to each other, leaving x unreachable from
// active nodes. If successful, and if x has no live
// predecessor/successor, we additionally try to leave
// active nodes unreachable from x, by rechecking that
// the status of predecessor and successor are unchanged
// and ensuring that x is not reachable from tail/head,
// before setting x's prev/next links to their logical
// approximate replacements, self/TERMINATOR.
Node<E> activePred, activeSucc;
boolean isFirst, isLast;
int hops = 1;
// Find active predecessor
for (Node<E> p = prev;; ++hops) {
if (p.item != null) {
activePred = p;
isFirst = false;
break;
}
Node<E> q = p.prev;
if (q == null) {
if (p == p.next)
return;
activePred = p;
isFirst = true;
break;
}
else if (p == q)
return;
else
p = q;
}
// Find active successor
for (Node<E> p = next;; ++hops) {
if (p.item != null) {
activeSucc = p;
isLast = false;
break;
}
Node<E> q = p.next;
if (q == null) {
if (p == p.prev)
return;
activeSucc = p;
isLast = true;
break;
}
else if (p == q)
return;
else
p = q;
}
// TODO: better HOP heuristics
if (hops < HOPS
// always squeeze out interior deleted nodes
&& (isFirst | isLast))
return;
// Squeeze out deleted nodes between activePred and
// activeSucc, including x.
skipDeletedSuccessors(activePred);
skipDeletedPredecessors(activeSucc);
// Try to gc-unlink, if possible
if ((isFirst | isLast) &&
//shouldGCUnlinkOccasionally() &&
// Recheck expected state of predecessor and successor
(activePred.next == activeSucc) &&
(activeSucc.prev == activePred) &&
(isFirst ? activePred.prev == null : activePred.item != null) &&
(isLast ? activeSucc.next == null : activeSucc.item != null)) {
// Ensure x is not reachable from head or tail
updateHead();
updateTail();
x.lazySetPrev(isFirst ? prevTerminator() : x);
x.lazySetNext(isLast ? nextTerminator() : x);
}
}
}
/**
* Unlinks non-null first node.
*/
private void unlinkFirst(Node<E> first, Node<E> next) {
assert first != null && next != null && first.item == null;
Node<E> o = null, p = next;
for (int hops = 0;; ++hops) {
Node<E> q;
if (p.item != null || (q = p.next) == null) {
if (hops >= HOPS) {
if (p == p.prev)
return;
if (first.casNext(next, p)) {
skipDeletedPredecessors(p);
if (//shouldGCUnlinkOccasionally() &&
first.prev == null &&
(p.next == null || p.item != null) &&
p.prev == first) {
updateHead();
updateTail();
o.lazySetNext(o);
o.lazySetPrev(prevTerminator());
}
}
}
return;
}
else if (p == q)
return;
else {
o = p;
p = q;
}
}
}
/**
* Unlinks non-null last node.
*/
private void unlinkLast(Node<E> last, Node<E> prev) {
assert last != null && prev != null && last.item == null;
Node<E> o = null, p = prev;
for (int hops = 0;; ++hops) {
Node<E> q;
if (p.item != null || (q = p.prev) == null) {
if (hops >= HOPS) {
if (p == p.next)
return;
if (last.casPrev(prev, p)) {
skipDeletedSuccessors(p);
if (//shouldGCUnlinkOccasionally() &&
last.next == null &&
(p.prev == null || p.item != null) &&
p.next == last) {
updateHead();
updateTail();
o.lazySetPrev(o);
o.lazySetNext(nextTerminator());
}
}
}
return;
}
else if (p == q)
return;
else {
o = p;
p = q;
}
}
}
private final void updateHead() {
first();
}
private final void updateTail() {
last();
}
private void skipDeletedPredecessors(Node<E> x) {
whileActive:
do {
Node<E> prev = x.prev;
assert prev != null;
assert x != NEXT_TERMINATOR;
assert x != PREV_TERMINATOR;
Node<E> p = prev;
findActive:
for (;;) {
if (p.item != null)
break findActive;
Node<E> q = p.prev;
if (q == null) {
if (p.next == p)
continue whileActive;
break findActive;
}
else if (p == q)
continue whileActive;
else
p = q;
}
// found active CAS target
if (prev == p || x.casPrev(prev, p))
return;
} while (x.item != null || x.next == null);
}
private void skipDeletedSuccessors(Node<E> x) {
whileActive:
do {
Node<E> next = x.next;
assert next != null;
assert x != NEXT_TERMINATOR;
assert x != PREV_TERMINATOR;
Node<E> p = next;
findActive:
for (;;) {
if (p.item != null)
break findActive;
Node<E> q = p.next;
if (q == null) {
if (p.prev == p)
continue whileActive;
break findActive;
}
else if (p == q)
continue whileActive;
else
p = q;
}
// found active CAS target
if (next == p || x.casNext(next, p))
return;
} while (x.item != null || x.prev == null);
}
/**
* Returns the successor of p, or the first node if p.next has been
* linked to self, which will only be true if traversing with a
* stale pointer that is now off the list.
*/
final Node<E> succ(Node<E> p) {
// TODO: should we skip deleted nodes here?
Node<E> q = p.next;
return (p == q) ? first() : q;
}
/**
* Returns the predecessor of p, or the last node if p.prev has been
* linked to self, which will only be true if traversing with a
* stale pointer that is now off the list.
*/
final Node<E> pred(Node<E> p) {
Node<E> q = p.prev;
return (p == q) ? last() : q;
}
/**
* Returns the first node, the unique node which has a null prev link.
* The returned node may or may not be logically deleted.
* Guarantees that head is set to the returned node.
*/
Node<E> first() {
retry:
for (;;) {
for (Node<E> h = head, p = h;;) {
Node<E> q = p.prev;
if (q == null) {
if (p == h
// It is possible that p is PREV_TERMINATOR,
// but if so, the CAS will fail.
|| casHead(h, p))
return p;
else
continue retry;
} else if (p == q) {
continue retry;
} else {
p = q;
}
}
}
}
/**
* Returns the last node, the unique node which has a null next link.
* The returned node may or may not be logically deleted.
* Guarantees that tail is set to the returned node.
*/
Node<E> last() {
retry:
for (;;) {
for (Node<E> t = tail, p = t;;) {
Node<E> q = p.next;
if (q == null) {
if (p == t
// It is possible that p is NEXT_TERMINATOR,
// but if so, the CAS will fail.
|| casTail(t, p))
return p;
else
continue retry;
} else if (p == q) {
continue retry;
} else {
p = q;
}
}
}
}
// Minor convenience utilities
/**
* Throws NullPointerException if argument is null.
*
* @param v the element
*/
private static void checkNotNull(Object v) {
if (v == null)
throw new NullPointerException();
}
/**
* Returns element unless it is null, in which case throws
* NoSuchElementException.
*
* @param v the element
* @return the element
*/
private E screenNullResult(E v) {
if (v == null)
throw new NoSuchElementException();
return v;
}
/**
* Creates an array list and fills it with elements of this list.
* Used by toArray.
*
* @return the arrayList
*/
private ArrayList<E> toArrayList() {
ArrayList<E> c = new ArrayList<E>();
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.item;
if (item != null)
c.add(item);
}
return c;
}
// Fields and constructors
private static final long serialVersionUID = 876323262645176354L;
/**
* Constructs an empty deque.
*/
public ConcurrentLinkedDeque() {}
/**
* Constructs a deque initially containing the elements of
* the given collection, added in traversal order of the
* collection's iterator.
*
* @param c the collection of elements to initially contain
* @throws NullPointerException if the specified collection or any
* of its elements are null
*/
public ConcurrentLinkedDeque(Collection<? extends E> c) {
this();
addAll(c);
}
/**
* Inserts the specified element at the front of this deque.
*
* @throws NullPointerException {@inheritDoc}
*/
public void addFirst(E e) {
linkFirst(e);
}
/**
* Inserts the specified element at the end of this deque.
* This is identical in function to the {@code add} method.
*
* @throws NullPointerException {@inheritDoc}
*/
public void addLast(E e) {
linkLast(e);
}
/**
* Inserts the specified element at the front of this deque.
*
* @return {@code true} always
* @throws NullPointerException {@inheritDoc}
*/
public boolean offerFirst(E e) {
linkFirst(e);
return true;
}
/**
* Inserts the specified element at the end of this deque.
*
* <p>This method is equivalent to {@link #add}.
*
* @return {@code true} always
* @throws NullPointerException {@inheritDoc}
*/
public boolean offerLast(E e) {
linkLast(e);
return true;
}
public E peekFirst() {
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.item;
if (item != null)
return item;
}
return null;
}
public E peekLast() {
for (Node<E> p = last(); p != null; p = pred(p)) {
E item = p.item;
if (item != null)
return item;
}
return null;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E getFirst() {
return screenNullResult(peekFirst());
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E getLast() {
return screenNullResult(peekLast());
}
public E pollFirst() {
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.item;
if (item != null && p.casItem(item, null)) {
unlink(p);
return item;
}
}
return null;
}
public E pollLast() {
for (Node<E> p = last(); p != null; p = pred(p)) {
E item = p.item;
if (item != null && p.casItem(item, null)) {
unlink(p);
return item;
}
}
return null;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E removeFirst() {
return screenNullResult(pollFirst());
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E removeLast() {
return screenNullResult(pollLast());
}
// *** Queue and stack methods ***
/**
* Inserts the specified element at the tail of this deque.
*
* @return {@code true} (as specified by {@link java.util.Queue#offer})
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
return offerLast(e);
}
/**
* Inserts the specified element at the tail of this deque.
*
* @return {@code true} (as specified by {@link Collection#add})
* @throws NullPointerException if the specified element is null
*/
public boolean add(E e) {
return offerLast(e);
}
public E poll() { return pollFirst(); }
public E remove() { return removeFirst(); }
public E peek() { return peekFirst(); }
public E element() { return getFirst(); }
public void push(E e) { addFirst(e); }
public E pop() { return removeFirst(); }
/**
* Removes the first element {@code e} such that
* {@code o.equals(e)}, if such an element exists in this deque.
* If the deque does not contain the element, it is unchanged.
*
* @param o element to be removed from this deque, if present
* @return {@code true} if the deque contained the specified element
* @throws NullPointerException if the specified element is {@code null}
*/
public boolean removeFirstOccurrence(Object o) {
checkNotNull(o);
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.item;
if (item != null && o.equals(item) && p.casItem(item, null)) {
unlink(p);
return true;
}
}
return false;
}
/**
* Removes the last element {@code e} such that
* {@code o.equals(e)}, if such an element exists in this deque.
* If the deque does not contain the element, it is unchanged.
*
* @param o element to be removed from this deque, if present
* @return {@code true} if the deque contained the specified element
* @throws NullPointerException if the specified element is {@code null}
*/
public boolean removeLastOccurrence(Object o) {
checkNotNull(o);
for (Node<E> p = last(); p != null; p = pred(p)) {
E item = p.item;
if (item != null && o.equals(item) && p.casItem(item, null)) {
unlink(p);
return true;
}
}
return false;
}
/**
* Returns {@code true} if this deque contains at least one
* element {@code e} such that {@code o.equals(e)}.
*
* @param o element whose presence in this deque is to be tested
* @return {@code true} if this deque contains the specified element
*/
public boolean contains(Object o) {
if (o == null) return false;
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.item;
if (item != null && o.equals(item))
return true;
}
return false;
}
/**
* Returns {@code true} if this collection contains no elements.
*
* @return {@code true} if this collection contains no elements
*/
public boolean isEmpty() {
return peekFirst() == null;
}
/**
* Returns the number of elements in this deque. If this deque
* contains more than {@code Integer.MAX_VALUE} elements, it
* returns {@code Integer.MAX_VALUE}.
*
* <p>Beware that, unlike in most collections, this method is
* <em>NOT</em> a constant-time operation. Because of the
* asynchronous nature of these deques, determining the current
* number of elements requires traversing them all to count them.
* Additionally, it is possible for the size to change during
* execution of this method, in which case the returned result
* will be inaccurate. Thus, this method is typically not very
* useful in concurrent applications.
*
* @return the number of elements in this deque
*/
public int size() {
long count = 0;
for (Node<E> p = first(); p != null; p = succ(p))
if (p.item != null)
++count;
return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
}
/**
* Removes the first element {@code e} such that
* {@code o.equals(e)}, if such an element exists in this deque.
* If the deque does not contain the element, it is unchanged.
*
* @param o element to be removed from this deque, if present
* @return {@code true} if the deque contained the specified element
* @throws NullPointerException if the specified element is {@code null}
*/
public boolean remove(Object o) {
return removeFirstOccurrence(o);
}
/**
* Appends all of the elements in the specified collection to the end of
* this deque, in the order that they are returned by the specified
* collection's iterator. The behavior of this operation is undefined if
* the specified collection is modified while the operation is in
* progress. (This implies that the behavior of this call is undefined if
* the specified Collection is this deque, and this deque is nonempty.)
*
* @param c the elements to be inserted into this deque
* @return {@code true} if this deque changed as a result of the call
* @throws NullPointerException if {@code c} or any element within it
* is {@code null}
*/
public boolean addAll(Collection<? extends E> c) {
Iterator<? extends E> it = c.iterator();
if (!it.hasNext())
return false;
do {
addLast(it.next());
} while (it.hasNext());
return true;
}
/**
* Removes all of the elements from this deque.
*/
public void clear() {
while (pollFirst() != null)
;
}
/**
* Returns an array containing all of the elements in this deque, in
* proper sequence (from first to last element).
*
* <p>The returned array will be "safe" in that no references to it are
* maintained by this deque. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
* <p>This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this deque
*/
public Object[] toArray() {
return toArrayList().toArray();
}
/**
* Returns an array containing all of the elements in this deque,
* in proper sequence (from first to last element); the runtime
* type of the returned array is that of the specified array. If
* the deque fits in the specified array, it is returned therein.
* Otherwise, a new array is allocated with the runtime type of
* the specified array and the size of this deque.
*
* <p>If this deque fits in the specified array with room to spare
* (i.e., the array has more elements than this deque), the element in
* the array immediately following the end of the deque is set to
* {@code null}.
*
* <p>Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* <p>Suppose {@code x} is a deque known to contain only strings.
* The following code can be used to dump the deque into a newly
* allocated array of {@code String}:
*
* <pre>
* String[] y = x.toArray(new String[0]);</pre>
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the deque are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose
* @return an array containing all of the elements in this deque
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this deque
* @throws NullPointerException if the specified array is null
*/
public <T> T[] toArray(T[] a) {
return toArrayList().toArray(a);
}
/**
* Returns an iterator over the elements in this deque in proper sequence.
* The elements will be returned in order from first (head) to last (tail).
*
* <p>The returned {@code Iterator} is a "weakly consistent" iterator that
* will never throw {@link java.util.ConcurrentModificationException
* ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*
* @return an iterator over the elements in this deque in proper sequence
*/
public Iterator<E> iterator() {
return new Itr();
}
/**
* Returns an iterator over the elements in this deque in reverse
* sequential order. The elements will be returned in order from
* last (tail) to first (head).
*
* <p>The returned {@code Iterator} is a "weakly consistent" iterator that
* will never throw {@link java.util.ConcurrentModificationException
* ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*/
public Iterator<E> descendingIterator() {
return new DescendingItr();
}
private abstract class AbstractItr implements Iterator<E> {
/**
* Next node to return item for.
*/
private Node<E> nextNode;
/**
* nextItem holds on to item fields because once we claim
* that an element exists in hasNext(), we must return it in
* the following next() call even if it was in the process of
* being removed when hasNext() was called.
*/
private E nextItem;
/**
* Node returned by most recent call to next. Needed by remove.
* Reset to null if this element is deleted by a call to remove.
*/
private Node<E> lastRet;
abstract Node<E> startNode();
abstract Node<E> nextNode(Node<E> p);
AbstractItr() {
advance();
}
/**
* Sets nextNode and nextItem to next valid node, or to null
* if no such.
*/
private void advance() {
lastRet = nextNode;
Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
for (;; p = nextNode(p)) {
if (p == null) {
// p might be active end or TERMINATOR node; both are OK
nextNode = null;
nextItem = null;
break;
}
E item = p.item;
if (item != null) {
nextNode = p;
nextItem = item;
break;
}
}
}
public boolean hasNext() {
return nextItem != null;
}
public E next() {
E item = nextItem;
if (item == null) throw new NoSuchElementException();
advance();
return item;
}
public void remove() {
Node<E> l = lastRet;
if (l == null) throw new IllegalStateException();
l.item = null;
unlink(l);
lastRet = null;
}
}
/** Forward iterator */
private class Itr extends AbstractItr {
Node<E> startNode() { return first(); }
Node<E> nextNode(Node<E> p) { return succ(p); }
}
/** Descending iterator */
private class DescendingItr extends AbstractItr {
Node<E> startNode() { return last(); }
Node<E> nextNode(Node<E> p) { return pred(p); }
}
/**
* Save the state to a stream (that is, serialize it).
*
* @serialData All of the elements (each an {@code E}) in
* the proper order, followed by a null
* @param s the stream
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden stuff
s.defaultWriteObject();
// Write out all elements in the proper order.
for (Node<E> p = first(); p != null; p = succ(p)) {
Object item = p.item;
if (item != null)
s.writeObject(item);
}
// Use trailing null as sentinel
s.writeObject(null);
}
/**
* Reconstitute the Queue instance from a stream (that is,
* deserialize it).
* @param s the stream
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in capacity, and any hidden stuff
s.defaultReadObject();
tail = head = new Node<E>(null);
// Read in all elements and place in queue
for (;;) {
@SuppressWarnings("unchecked")
E item = (E)s.readObject();
if (item == null)
break;
else
offer(item);
}
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE =
sun.misc.Unsafe.getUnsafe();
private static final long headOffset =
objectFieldOffset(UNSAFE, "head", ConcurrentLinkedDeque.class);
private static final long tailOffset =
objectFieldOffset(UNSAFE, "tail", ConcurrentLinkedDeque.class);
private boolean casHead(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
}
private boolean casTail(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
}
static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
String field, Class<?> klazz) {
try {
return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
} catch (NoSuchFieldException e) {
// Convert Exception to corresponding Error
NoSuchFieldError error = new NoSuchFieldError(field);
error.initCause(e);
throw error;
}
}
}