blob: 5b80e2ab580792f6c4a5059e1517f4175bf408e9 [file] [log] [blame]
/* ------------------------------------------------------------------
* Copyright (C) 1998-2009 PacketVideo
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied.
* See the License for the specific language governing permissions
* and limitations under the License.
* -------------------------------------------------------------------
*/
/****************************************************************************************
Portions of this file are derived from the following 3GPP standard:
3GPP TS 26.073
ANSI-C code for the Adaptive Multi-Rate (AMR) speech codec
Available from http://www.3gpp.org
(C) 2004, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC)
Permission to distribute, modify and use this file under the standard license
terms listed above has been obtained from the copyright holder.
****************************************************************************************/
/*
------------------------------------------------------------------------------
Pathname: ./audio/gsm-amr/c/src/g_pitch.c
Date: 06/12/2000
------------------------------------------------------------------------------
REVISION HISTORY
Description: Placed into template and began to optimize.
Description: Synchronized file with UMTS version 3.2.0. Updated coding
template. Removed unnecessary include files.
Description: Replaced basic_op.h and oper_32b.h with the header files of the
math functions used in the file. Fixed typecasting issue with
TI compiler.
Description: Passing in pointer to overflow flag for EPOC compatibility. .
Description:
1. Eliminated unused include files.
2. Replaced array addressing by pointers
3. Eliminated math operations that unnecessary checked for
saturation, in some cases this by shifting before adding and
in other cases by evaluating the operands
4. Unrolled loops to speed up processing
Description: Replaced OSCL mem type functions and eliminated include
files that now are chosen by OSCL definitions
Description: Replaced "int" and/or "char" with OSCL defined types.
Description: Changed round function name to pv_round to avoid conflict with
round function in C standard library.
Description: Using inlines from fxp_arithmetic.h .
Description: Replacing fxp_arithmetic.h with basic_op.h.
Description:
------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
; INCLUDES
----------------------------------------------------------------------------*/
#include "g_pitch.h"
#include "mode.h"
#include "cnst.h"
#include "basic_op.h"
/*----------------------------------------------------------------------------
; MACROS
; Define module specific macros here
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; DEFINES
; Include all pre-processor statements here. Include conditional
; compile variables also.
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; LOCAL FUNCTION DEFINITIONS
; Function Prototype declaration
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; LOCAL STORE/BUFFER/POINTER DEFINITIONS
; Variable declaration - defined here and used outside this module
----------------------------------------------------------------------------*/
/*
------------------------------------------------------------------------------
FUNCTION NAME: G_pitch
------------------------------------------------------------------------------
INPUT AND OUTPUT DEFINITIONS
Inputs:
mode = AMR mode (enum Mode)
xn = pointer to pitch target buffer (Word16)
y1 = pointer to filtered adaptive codebook buffer (Word16)
g_coeff = pointer to buffer of correlations needed for gain quantization
(Word16)
L_subfr = length of subframe (Word16)
pOverflow = pointer to overflow flag (Flag)
Outputs:
g_coeff contains the mantissa and exponent of the two dot products.
pOverflow -> 1 if an overflow occurs
Returns:
gain = ratio of dot products.(Word16)
Global Variables Used:
None.
Local Variables Needed:
None.
------------------------------------------------------------------------------
FUNCTION DESCRIPTION
This function computes the pitch (adaptive codebook) gain. The adaptive
codebook gain is given by
g = <x[], y[]> / <y[], y[]>
where: x[] is the target vector
y[] is the filtered adaptive codevector
<> denotes dot product.
The gain is limited to the range [0,1.2] (=0..19661 Q14)
------------------------------------------------------------------------------
REQUIREMENTS
None.
------------------------------------------------------------------------------
REFERENCES
g_pitch.c, UMTS GSM AMR speech codec, R99 - Version 3.2.0, March 2, 2001
------------------------------------------------------------------------------
PSEUDO-CODE
Word16 G_pitch ( // o : Gain of pitch lag saturated to 1.2
enum Mode mode, // i : AMR mode
Word16 xn[], // i : Pitch target.
Word16 y1[], // i : Filtered adaptive codebook.
Word16 g_coeff[], // i : Correlations need for gain quantization
Word16 L_subfr // i : Length of subframe.
)
{
Word16 i;
Word16 xy, yy, exp_xy, exp_yy, gain;
Word32 s;
Word16 scaled_y1[L_SUBFR]; // Usually dynamic allocation of (L_subfr)
// divide "y1[]" by 4 to avoid overflow
// The reference ETSI code uses a global overflow Flag. However in the actual
// implementation a pointer to the overflow flag is passed into the function.
for (i = 0; i < L_subfr; i++)
{
scaled_y1[i] = shr (y1[i], 2);
}
// Compute scalar product <y1[],y1[]>
// Q12 scaling / MR122
Overflow = 0;
s = 1L; // Avoid case of all zeros
for (i = 0; i < L_subfr; i++)
{
s = L_mac (s, y1[i], y1[i]);
}
if (Overflow == 0) // Test for overflow
{
exp_yy = norm_l (s);
yy = pv_round (L_shl (s, exp_yy));
}
else
{
s = 1L; // Avoid case of all zeros
for (i = 0; i < L_subfr; i++)
{
s = L_mac (s, scaled_y1[i], scaled_y1[i]);
}
exp_yy = norm_l (s);
yy = pv_round (L_shl (s, exp_yy));
exp_yy = sub (exp_yy, 4);
}
// Compute scalar product <xn[],y1[]>
Overflow = 0;
s = 1L; // Avoid case of all zeros
for (i = 0; i < L_subfr; i++)
{
s = L_mac(s, xn[i], y1[i]);
}
if (Overflow == 0)
{
exp_xy = norm_l (s);
xy = pv_round (L_shl (s, exp_xy));
}
else
{
s = 1L; // Avoid case of all zeros
for (i = 0; i < L_subfr; i++)
{
s = L_mac (s, xn[i], scaled_y1[i]);
}
exp_xy = norm_l (s);
xy = pv_round (L_shl (s, exp_xy));
exp_xy = sub (exp_xy, 2);
}
g_coeff[0] = yy;
g_coeff[1] = sub (15, exp_yy);
g_coeff[2] = xy;
g_coeff[3] = sub (15, exp_xy);
// If (xy < 4) gain = 0
i = sub (xy, 4);
if (i < 0)
return ((Word16) 0);
// compute gain = xy/yy
xy = shr (xy, 1); // Be sure xy < yy
gain = div_s (xy, yy);
i = sub (exp_xy, exp_yy); // Denormalization of division
gain = shr (gain, i);
// if(gain >1.2) gain = 1.2
if (sub (gain, 19661) > 0)
{
gain = 19661;
}
if (sub(mode, MR122) == 0)
{
// clear 2 LSBits
gain = gain & 0xfffC;
}
return (gain);
}
------------------------------------------------------------------------------
RESOURCES USED [optional]
When the code is written for a specific target processor the
the resources used should be documented below.
HEAP MEMORY USED: x bytes
STACK MEMORY USED: x bytes
CLOCK CYCLES: (cycle count equation for this function) + (variable
used to represent cycle count for each subroutine
called)
where: (cycle count variable) = cycle count for [subroutine
name]
------------------------------------------------------------------------------
CAUTION [optional]
[State any special notes, constraints or cautions for users of this function]
------------------------------------------------------------------------------
*/
Word16 G_pitch( /* o : Gain of pitch lag saturated to 1.2 */
enum Mode mode, /* i : AMR mode */
Word16 xn[], /* i : Pitch target. Q0 */
Word16 y1[], /* i : Filtered adaptive codebook. Q12 */
Word16 g_coeff[], /* i : Correlations need for gain quantization */
Word16 L_subfr, /* i : Length of subframe. */
Flag *pOverflow /* i/o : Overflow flag */
)
{
Word16 i;
Word16 xy;
Word16 yy;
Word16 exp_xy;
Word16 exp_yy;
Word16 gain;
Word16 tmp;
Word32 s;
Word32 s1;
Word32 L_temp; /* Use this as an intermediate value */
Word16 *p_xn = &xn[0];
Word16 *p_y1 = &y1[0];
/* Compute scalar product <y1[],y1[]> */
/* Q12 scaling / MR122 */
*pOverflow = 0;
s = 0;
for (i = L_subfr >> 2; i != 0; i--)
{
s = amrnb_fxp_mac_16_by_16bb((Word32) * (p_y1), (Word32) * (p_y1), s);
p_y1++;
s = amrnb_fxp_mac_16_by_16bb((Word32) * (p_y1), (Word32) * (p_y1), s);
p_y1++;
s = amrnb_fxp_mac_16_by_16bb((Word32) * (p_y1), (Word32) * (p_y1), s);
p_y1++;
s = amrnb_fxp_mac_16_by_16bb((Word32) * (p_y1), (Word32) * (p_y1), s);
p_y1++;
}
if ((s >= 0) & (s < 0x40000000))
{
s <<= 1;
s += 1; /* Avoid case of all zeros */
exp_yy = norm_l(s); /* Note 0<=exp_yy <= 31 */
L_temp = s << exp_yy;
yy = pv_round(L_temp, pOverflow);
}
else
{
s = 0; /* Avoid case of all zeros */
p_y1 = &y1[0];
for (i = (L_subfr >> 1); i != 0; i--)
{
tmp = *(p_y1++) >> 2;
s = amrnb_fxp_mac_16_by_16bb((Word32) tmp, (Word32) tmp, s);
tmp = *(p_y1++) >> 2;
s = amrnb_fxp_mac_16_by_16bb((Word32) tmp, (Word32) tmp, s);
}
s <<= 1;
s += 1; /* Avoid case of all zeros */
exp_yy = norm_l(s);
L_temp = s << exp_yy;
yy = pv_round(L_temp, pOverflow);
exp_yy = exp_yy - 4;
}
/* Compute scalar product <xn[],y1[]> */
s = 0;
p_y1 = &y1[0];
*pOverflow = 0;
for (i = L_subfr; i != 0; i--)
{
L_temp = ((Word32) * (p_xn++) * *(p_y1++));
s1 = s;
s = s1 + L_temp;
if ((s1 ^ L_temp) > 0)
{
if ((s1 ^ s) < 0)
{
*pOverflow = 1;
break;
}
}
}
if (!(*pOverflow))
{
s <<= 1;
s += 1; /* Avoid case of all zeros */
exp_xy = norm_l(s); /* Note 0<=exp_yy <= 31 */
L_temp = s << exp_xy;
xy = pv_round(L_temp, pOverflow);
}
else
{
s = 0; /* re-initialize calculations */
p_y1 = &y1[0];
p_xn = &xn[0];
for (i = (L_subfr >> 2); i != 0; i--)
{
L_temp = (Word32)(*(p_y1++) >> 2);
s = amrnb_fxp_mac_16_by_16bb((Word32) * (p_xn++), L_temp, s);
L_temp = (Word32)(*(p_y1++) >> 2);
s = amrnb_fxp_mac_16_by_16bb((Word32) * (p_xn++), L_temp, s);
L_temp = (Word32)(*(p_y1++) >> 2);
s = amrnb_fxp_mac_16_by_16bb((Word32) * (p_xn++), L_temp, s);
L_temp = (Word32)(*(p_y1++) >> 2);
s = amrnb_fxp_mac_16_by_16bb((Word32) * (p_xn++), L_temp, s);
}
s <<= 1;
s += 1; /* Avoid case of all zeros */
exp_xy = norm_l(s);
L_temp = s << exp_xy;
xy = pv_round(L_temp, pOverflow);
exp_xy = exp_xy - 4;
}
g_coeff[0] = yy;
g_coeff[1] = 15 - exp_yy;
g_coeff[2] = xy;
g_coeff[3] = 15 - exp_xy;
/* If (xy < 4) gain = 0 */
if (xy < 4)
{
return ((Word16) 0);
}
/* compute gain = xy/yy */
/* Be sure xy < yy */
xy = xy >> 1;
gain = div_s(xy, yy);
i = exp_xy - exp_yy; /* Denormalization of division */
gain = shr(gain, i, pOverflow);
/* if(gain >1.2) gain = 1.2 */
if (gain > 19661)
{
gain = 19661;
}
if (mode == MR122)
{
/* clear 2 LSBits */
gain = gain & 0xfffC;
}
return(gain);
}