blob: 7fd680dbaf392b5ce378e4fc84c5260d65784ac2 [file] [log] [blame]
/* ------------------------------------------------------------------
* Copyright (C) 1998-2009 PacketVideo
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied.
* See the License for the specific language governing permissions
* and limitations under the License.
* -------------------------------------------------------------------
*/
/****************************************************************************************
Portions of this file are derived from the following 3GPP standard:
3GPP TS 26.173
ANSI-C code for the Adaptive Multi-Rate - Wideband (AMR-WB) speech codec
Available from http://www.3gpp.org
(C) 2007, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC)
Permission to distribute, modify and use this file under the standard license
terms listed above has been obtained from the copyright holder.
****************************************************************************************/
/*
------------------------------------------------------------------------------
Pathname: ./src/pvamrwbdecoder_basic_op_cequivalent.h
Date: 05/07/2007
------------------------------------------------------------------------------
REVISION HISTORY
Description:
------------------------------------------------------------------------------
INCLUDE DESCRIPTION
------------------------------------------------------------------------------
*/
#ifndef PVAMRWBDECODER_BASIC_OP_CEQUIVALENT_H
#define PVAMRWBDECODER_BASIC_OP_CEQUIVALENT_H
#ifdef __cplusplus
extern "C"
{
#endif
#include "normalize_amr_wb.h"
#if defined(C_EQUIVALENT)
/*----------------------------------------------------------------------------
Function Name : add_int16
Purpose :
Performs the addition (var1+var2) with overflow control and saturation;
the 16 bit result is set at +32767 when overflow occurs or at -32768
when underflow occurs.
Inputs :
var1
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var1 <= 0x0000 7fff.
var2
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var1 <= 0x0000 7fff.
Outputs :
none
Return Value :
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var_out <= 0x0000 7fff.
----------------------------------------------------------------------------*/
__inline int16 add_int16(int16 var1, int16 var2)
{
int32 L_sum;
L_sum = (int32) var1 + var2;
if ((L_sum >> 15) != (L_sum >> 31))
{
L_sum = (L_sum >> 31) ^ MAX_16;
}
return ((int16)(L_sum));
}
/*----------------------------------------------------------------------------
Function Name : sub_int16
Performs the subtraction (var1+var2) with overflow control and satu-
ration; the 16 bit result is set at +32767 when overflow occurs or at
-32768 when underflow occurs.
Inputs :
var1
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var1 <= 0x0000 7fff.
var2
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var1 <= 0x0000 7fff.
Outputs :
none
Return Value :
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var_out <= 0x0000 7fff.
----------------------------------------------------------------------------*/
__inline int16 sub_int16(int16 var1, int16 var2)
{
int32 L_diff;
L_diff = (int32) var1 - var2;
if ((L_diff >> 15) != (L_diff >> 31))
{
L_diff = (L_diff >> 31) ^ MAX_16;
}
return ((int16)(L_diff));
}
/*----------------------------------------------------------------------------
Function Name : mult_int16
Performs the multiplication of var1 by var2 and gives a 16 bit result
which is scaled i.e.:
mult_int16(var1,var2) = extract_l(L_shr((var1 times var2),15)) and
mult_int16(-32768,-32768) = 32767.
Inputs :
var1
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var1 <= 0x0000 7fff.
var2
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var1 <= 0x0000 7fff.
Return Value :
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var_out <= 0x0000 7fff.
----------------------------------------------------------------------------*/
__inline int16 mult_int16(int16 var1, int16 var2)
{
int32 L_product;
L_product = ((int32) var1 * (int32) var2) >> 15;
if ((L_product >> 15) != (L_product >> 31))
{
L_product = (L_product >> 31) ^ MAX_16;
}
return ((int16)L_product);
}
/*----------------------------------------------------------------------------
Function Name : add_int32
32 bits addition of the two 32 bits variables (L_var1+L_var2) with
overflow control and saturation; the result is set at +2147483647 when
overflow occurs or at -2147483648 when underflow occurs.
Inputs :
L_var1 32 bit long signed integer (int32) whose value falls in the
range : 0x8000 0000 <= L_var3 <= 0x7fff ffff.
L_var2 32 bit long signed integer (int32) whose value falls in the
range : 0x8000 0000 <= L_var3 <= 0x7fff ffff.
Return Value :
L_var_out
32 bit long signed integer (int32) whose value falls in the
range : 0x8000 0000 <= L_var_out <= 0x7fff ffff.
----------------------------------------------------------------------------*/
__inline int32 add_int32(int32 L_var1, int32 L_var2)
{
int32 L_var_out;
L_var_out = L_var1 + L_var2;
if (((L_var1 ^ L_var2) & MIN_32) == 0) /* same sign ? */
{
if ((L_var_out ^ L_var1) & MIN_32) /* addition matches sign ? */
{
L_var_out = (L_var1 >> 31) ^ MAX_32;
}
}
return (L_var_out);
}
/*----------------------------------------------------------------------------
Function Name : sub_int32
32 bits subtraction of the two 32 bits variables (L_var1-L_var2) with
overflow control and saturation; the result is set at +2147483647 when
overflow occurs or at -2147483648 when underflow occurs.
Inputs :
L_var1 32 bit long signed integer (int32) whose value falls in the
range : 0x8000 0000 <= L_var3 <= 0x7fff ffff.
L_var2 32 bit long signed integer (int32) whose value falls in the
range : 0x8000 0000 <= L_var3 <= 0x7fff ffff.
Return Value :
L_var_out
32 bit long signed integer (int32) whose value falls in the
range : 0x8000 0000 <= L_var_out <= 0x7fff ffff.
----------------------------------------------------------------------------*/
__inline int32 sub_int32(int32 L_var1, int32 L_var2)
{
int32 L_var_out;
L_var_out = L_var1 - L_var2;
if (((L_var1 ^ L_var2) & MIN_32) != 0) /* different sign ? */
{
if ((L_var_out ^ L_var1) & MIN_32) /* difference matches sign ? */
{
L_var_out = (L_var1 >> 31) ^ MAX_32;
}
}
return (L_var_out);
}
/*----------------------------------------------------------------------------
Function Name : mac_16by16_to_int32
Multiply var1 by var2 and shift the result left by 1. Add the 32 bit
result to L_var3 with saturation, return a 32 bit result:
L_mac(L_var3,var1,var2) = L_add(L_var3,L_mult(var1,var2)).
Inputs :
L_var3 32 bit long signed integer (int32) whose value falls in the
range : 0x8000 0000 <= L_var3 <= 0x7fff ffff.
var1
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var1 <= 0x0000 7fff.
var2
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var1 <= 0x0000 7fff.
Return Value :
32 bit long signed integer (int32) whose value falls in the
range : 0x8000 0000 <= L_var_out <= 0x7fff ffff.
----------------------------------------------------------------------------*/
__inline int32 mac_16by16_to_int32(int32 L_var3, int16 var1, int16 var2)
{
int32 L_var_out;
int32 L_mul;
L_mul = ((int32) var1 * (int32) var2);
if (L_mul != 0x40000000)
{
L_mul <<= 1;
}
else
{
L_mul = MAX_32; /* saturation */
}
L_var_out = L_var3 + L_mul;
if (((L_mul ^ L_var3) & MIN_32) == 0) /* same sign ? */
{
if ((L_var_out ^ L_var3) & MIN_32) /* addition matches sign ? */
{
L_var_out = (L_var3 >> 31) ^ MAX_32;
}
}
return (L_var_out);
}
/*----------------------------------------------------------------------------
Function Name : msu_16by16_from_int32
Multiply var1 by var2 and shift the result left by 1. Subtract the 32 bit
result to L_var3 with saturation, return a 32 bit result:
L_msu(L_var3,var1,var2) = L_sub(L_var3,L_mult(var1,var2)).
Inputs :
L_var3 32 bit long signed integer (int32) whose value falls in the
range : 0x8000 0000 <= L_var3 <= 0x7fff ffff.
var1
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var1 <= 0x0000 7fff.
var2
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var1 <= 0x0000 7fff.
Return Value :
32 bit long signed integer (int32) whose value falls in the
range : 0x8000 0000 <= L_var_out <= 0x7fff ffff.
----------------------------------------------------------------------------*/
__inline int32 msu_16by16_from_int32(int32 L_var3, int16 var1, int16 var2)
{
int32 L_var_out;
int32 L_mul;
L_mul = ((int32) var1 * (int32) var2);
if (L_mul != 0x40000000)
{
L_mul <<= 1;
}
else
{
L_mul = MAX_32; /* saturation */
}
L_var_out = L_var3 - L_mul;
if (((L_mul ^ L_var3) & MIN_32) != 0) /* different sign ? */
{
if ((L_var_out ^ L_var3) & MIN_32) /* difference matches sign ? */
{
L_var_out = (L_var3 >> 31) ^ MAX_32;
}
}
return (L_var_out);
}
/*----------------------------------------------------------------------------
Function Name : mul_16by16_to_int32
mul_16by16_to_int32 is the 32 bit result of the multiplication of var1
times var2 with one shift left i.e.:
L_mult(var1,var2) = L_shl((var1 times var2),1) and
L_mult(-32768,-32768) = 2147483647.
Inputs :
var1
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var1 <= 0x0000 7fff.
var2
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var1 <= 0x0000 7fff.
Return Value :
32 bit long signed integer (int32) whose value falls in the
range : 0x8000 0000 <= L_var_out <= 0x7fff ffff.
----------------------------------------------------------------------------*/
__inline int32 mul_16by16_to_int32(int16 var1, int16 var2)
{
int32 L_mul;
L_mul = ((int32) var1 * (int32) var2);
if (L_mul != 0x40000000)
{
L_mul <<= 1;
}
else
{
L_mul = MAX_32; /* saturation */
}
return (L_mul);
}
/*----------------------------------------------------------------------------
Function Name : amr_wb_round
Round the lower 16 bits of the 32 bit input number into the MS 16 bits
with saturation. Shift the resulting bits right by 16 and return the 16
bit number:
round(L_var1) = extract_h(L_add(L_var1,32768))
Inputs :
L_var1
32 bit long signed integer (int32 ) whose value falls in the
range : 0x8000 0000 <= L_var1 <= 0x7fff ffff.
Return Value :
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var_out <= 0x0000 7fff.
----------------------------------------------------------------------------*/
__inline int16 amr_wb_round(int32 L_var1)
{
if (L_var1 != MAX_32)
{
L_var1 += 0x00008000L;
}
return ((int16)(L_var1 >> 16));
}
/*----------------------------------------------------------------------------
Function Name : amr_wb_shl1_round
Shift the 32 bit input number to the left by 1, round up the result and
shift down by 16
amr_wb_shl1_round(L_var1) = round(L_shl(L_var1,1))
Inputs :
L_var1
32 bit long signed integer (int32 ) whose value falls in the
range : 0x8000 0000 <= L_var1 <= 0x7fff ffff.
Return Value :
16 bit short signed integer (int16) whose value falls in the
range : 0xffff 8000 <= var_out <= 0x0000 7fff.
----------------------------------------------------------------------------*/
__inline int16 amr_wb_shl1_round(int32 L_var1)
{
int16 var_out;
if ((L_var1 << 1) >> 1 == L_var1)
{
var_out = (int16)((L_var1 + 0x00004000) >> 15);
}
else
{
var_out = (int16)(((L_var1 >> 31) ^ MAX_32) >> 16);
}
return (var_out);
}
/*----------------------------------------------------------------------------
Function Name : mul_32by16
Multiply a 16 bit integer by a 32 bit (DPF). The result is divided
by 2^15
L_32 = (hi1*lo2)<<1 + ((lo1*lo2)>>15)<<1
Inputs :
hi hi part of 32 bit number.
lo lo part of 32 bit number.
n 16 bit number.
----------------------------------------------------------------------------*/
__inline int32 mul_32by16(int16 hi, int16 lo, int16 n)
{
return (((((int32)hi*n)) + ((((int32)lo*n) >> 15))) << 1);
}
__inline int32 fxp_mac_16by16(int16 var1, int16 var2, int32 L_add)
{
L_add += (int32)var1 * var2;
return L_add;
}
__inline int32 fxp_mul_16by16(int16 var1, const int16 var2)
{
int32 L_mul = (int32)var1 * var2;
return L_mul;
}
__inline int32 fxp_mul32_by_16b(int32 L_var1, const int32 L_var2)
{
int32 L_mul = (int32)(((int64)L_var1 * (L_var2 << 16)) >> 32);
return L_mul;
}
#ifdef __cplusplus
}
#endif
#endif
#endif /* PVAMRWBDECODER_BASIC_OP_CEQUIVALENT_H */