blob: f6d066e1f7116c41bc4809979a747e51edd1af80 [file] [log] [blame]
/* ------------------------------------------------------------------
* Copyright (C) 1998-2009 PacketVideo
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied.
* See the License for the specific language governing permissions
* and limitations under the License.
* -------------------------------------------------------------------
*/
#include "avcenc_lib.h"
AVCEnc_Status AVCEncodeSlice(AVCEncObject *encvid)
{
AVCEnc_Status status = AVCENC_SUCCESS;
AVCCommonObj *video = encvid->common;
AVCPicParamSet *pps = video->currPicParams;
AVCSliceHeader *sliceHdr = video->sliceHdr;
AVCMacroblock *currMB ;
AVCEncBitstream *stream = encvid->bitstream;
uint slice_group_id;
int CurrMbAddr, slice_type;
slice_type = video->slice_type;
/* set the first mb in slice */
video->mbNum = CurrMbAddr = sliceHdr->first_mb_in_slice;// * (1+video->MbaffFrameFlag);
slice_group_id = video->MbToSliceGroupMap[CurrMbAddr];
video->mb_skip_run = 0;
/* while loop , see subclause 7.3.4 */
while (1)
{
video->mbNum = CurrMbAddr;
currMB = video->currMB = &(video->mblock[CurrMbAddr]);
currMB->slice_id = video->slice_id; // for deblocking
video->mb_x = CurrMbAddr % video->PicWidthInMbs;
video->mb_y = CurrMbAddr / video->PicWidthInMbs;
/* initialize QP for this MB here*/
/* calculate currMB->QPy */
RCInitMBQP(encvid);
/* check the availability of neighboring macroblocks */
InitNeighborAvailability(video, CurrMbAddr);
/* Assuming that InitNeighborAvailability has been called prior to this function */
video->intraAvailA = video->intraAvailB = video->intraAvailC = video->intraAvailD = 0;
/* this is necessary for all subsequent intra search */
if (!video->currPicParams->constrained_intra_pred_flag)
{
video->intraAvailA = video->mbAvailA;
video->intraAvailB = video->mbAvailB;
video->intraAvailC = video->mbAvailC;
video->intraAvailD = video->mbAvailD;
}
else
{
if (video->mbAvailA)
{
video->intraAvailA = video->mblock[video->mbAddrA].mb_intra;
}
if (video->mbAvailB)
{
video->intraAvailB = video->mblock[video->mbAddrB].mb_intra ;
}
if (video->mbAvailC)
{
video->intraAvailC = video->mblock[video->mbAddrC].mb_intra;
}
if (video->mbAvailD)
{
video->intraAvailD = video->mblock[video->mbAddrD].mb_intra;
}
}
/* encode_one_macroblock() */
status = EncodeMB(encvid);
if (status != AVCENC_SUCCESS)
{
break;
}
/* go to next MB */
CurrMbAddr++;
while ((uint)video->MbToSliceGroupMap[CurrMbAddr] != slice_group_id &&
(uint)CurrMbAddr < video->PicSizeInMbs)
{
CurrMbAddr++;
}
if ((uint)CurrMbAddr >= video->PicSizeInMbs)
{
/* end of slice, return, but before that check to see if there are other slices
to be encoded. */
encvid->currSliceGroup++;
if (encvid->currSliceGroup > (int)pps->num_slice_groups_minus1) /* no more slice group */
{
status = AVCENC_PICTURE_READY;
break;
}
else
{
/* find first_mb_num for the next slice */
CurrMbAddr = 0;
while (video->MbToSliceGroupMap[CurrMbAddr] != encvid->currSliceGroup &&
(uint)CurrMbAddr < video->PicSizeInMbs)
{
CurrMbAddr++;
}
if ((uint)CurrMbAddr >= video->PicSizeInMbs)
{
status = AVCENC_SLICE_EMPTY; /* error, one slice group has no MBs in it */
}
video->mbNum = CurrMbAddr;
status = AVCENC_SUCCESS;
break;
}
}
}
if (video->mb_skip_run > 0)
{
/* write skip_run */
if (slice_type != AVC_I_SLICE && slice_type != AVC_SI_SLICE)
{
ue_v(stream, video->mb_skip_run);
video->mb_skip_run = 0;
}
else /* shouldn't happen */
{
status = AVCENC_FAIL;
}
}
return status;
}
AVCEnc_Status EncodeMB(AVCEncObject *encvid)
{
AVCEnc_Status status = AVCENC_SUCCESS;
AVCCommonObj *video = encvid->common;
AVCPictureData *currPic = video->currPic;
AVCFrameIO *currInput = encvid->currInput;
AVCMacroblock *currMB = video->currMB;
AVCMacroblock *MB_A, *MB_B;
AVCEncBitstream *stream = encvid->bitstream;
AVCRateControl *rateCtrl = encvid->rateCtrl;
uint8 *cur, *curL, *curCb, *curCr;
uint8 *orgL, *orgCb, *orgCr, *org4;
int CurrMbAddr = video->mbNum;
int picPitch = currPic->pitch;
int orgPitch = currInput->pitch;
int x_position = (video->mb_x << 4);
int y_position = (video->mb_y << 4);
int offset;
int b8, b4, blkidx;
AVCResidualType resType;
int slice_type;
int numcoeff; /* output from residual_block_cavlc */
int cost16, cost8;
int num_bits, start_mb_bits, start_text_bits;
slice_type = video->slice_type;
/* now, point to the reconstructed frame */
offset = y_position * picPitch + x_position;
curL = currPic->Sl + offset;
orgL = currInput->YCbCr[0] + offset;
offset = (offset + x_position) >> 2;
curCb = currPic->Scb + offset;
curCr = currPic->Scr + offset;
orgCb = currInput->YCbCr[1] + offset;
orgCr = currInput->YCbCr[2] + offset;
if (orgPitch != picPitch)
{
offset = y_position * (orgPitch - picPitch);
orgL += offset;
offset >>= 2;
orgCb += offset;
orgCr += offset;
}
/******* determine MB prediction mode *******/
if (encvid->intraSearch[CurrMbAddr])
{
MBIntraSearch(encvid, CurrMbAddr, curL, picPitch);
}
/******* This part should be determined somehow ***************/
if (currMB->mbMode == AVC_I_PCM)
{
/* write down mb_type and PCM data */
/* and copy from currInput to currPic */
status = EncodeIntraPCM(encvid);
return status;
}
/****** for intra prediction, pred is already done *******/
/****** for I4, the recon is ready and Xfrm coefs are ready to be encoded *****/
//RCCalculateMAD(encvid,currMB,orgL,orgPitch); // no need to re-calculate MAD for Intra
// not used since totalSAD is used instead
/* compute the prediction */
/* output is video->pred_block */
if (!currMB->mb_intra)
{
AVCMBMotionComp(encvid, video); /* perform prediction and residue calculation */
/* we can do the loop here and call dct_luma */
video->pred_pitch = picPitch;
currMB->CBP = 0;
cost16 = 0;
cur = curL;
org4 = orgL;
for (b8 = 0; b8 < 4; b8++)
{
cost8 = 0;
for (b4 = 0; b4 < 4; b4++)
{
blkidx = blkIdx2blkXY[b8][b4];
video->pred_block = cur;
numcoeff = dct_luma(encvid, blkidx, cur, org4, &cost8);
currMB->nz_coeff[blkidx] = numcoeff;
if (numcoeff)
{
video->cbp4x4 |= (1 << blkidx);
currMB->CBP |= (1 << b8);
}
if (b4&1)
{
cur += ((picPitch << 2) - 4);
org4 += ((orgPitch << 2) - 4);
}
else
{
cur += 4;
org4 += 4;
}
}
/* move the IDCT part out of dct_luma to accommodate the check
for coeff_cost. */
if ((currMB->CBP&(1 << b8)) && (cost8 <= _LUMA_COEFF_COST_))
{
cost8 = 0; // reset it
currMB->CBP ^= (1 << b8);
blkidx = blkIdx2blkXY[b8][0];
currMB->nz_coeff[blkidx] = 0;
currMB->nz_coeff[blkidx+1] = 0;
currMB->nz_coeff[blkidx+4] = 0;
currMB->nz_coeff[blkidx+5] = 0;
}
cost16 += cost8;
if (b8&1)
{
cur -= 8;
org4 -= 8;
}
else
{
cur += (8 - (picPitch << 3));
org4 += (8 - (orgPitch << 3));
}
}
/* after the whole MB, we do another check for coeff_cost */
if ((currMB->CBP&0xF) && (cost16 <= _LUMA_MB_COEFF_COST_))
{
currMB->CBP = 0; // reset it to zero
memset(currMB->nz_coeff, 0, sizeof(uint8)*16);
}
// now we do IDCT
MBInterIdct(video, curL, currMB, picPitch);
// video->pred_block = video->pred + 256;
}
else /* Intra prediction */
{
encvid->numIntraMB++;
if (currMB->mbMode == AVC_I16) /* do prediction for the whole macroblock */
{
currMB->CBP = 0;
/* get the prediction from encvid->pred_i16 */
dct_luma_16x16(encvid, curL, orgL);
}
video->pred_block = encvid->pred_ic[currMB->intra_chroma_pred_mode];
}
/* chrominance */
/* not need to do anything, the result is in encvid->pred_ic
chroma dct must be aware that prediction block can come from either intra or inter. */
dct_chroma(encvid, curCb, orgCb, 0);
dct_chroma(encvid, curCr, orgCr, 1);
/* 4.1 if there's nothing in there, video->mb_skip_run++ */
/* 4.2 if coded, check if there is a run of skipped MB, encodes it,
set video->QPyprev = currMB->QPy; */
/* 5. vlc encode */
/* check for skipped macroblock, INTER only */
if (!currMB->mb_intra)
{
/* decide whether this MB (for inter MB) should be skipped if there's nothing left. */
if (!currMB->CBP && currMB->NumMbPart == 1 && currMB->QPy == video->QPy)
{
if (currMB->MBPartPredMode[0][0] == AVC_Pred_L0 && currMB->ref_idx_L0[0] == 0)
{
MB_A = &video->mblock[video->mbAddrA];
MB_B = &video->mblock[video->mbAddrB];
if (!video->mbAvailA || !video->mbAvailB)
{
if (currMB->mvL0[0] == 0) /* both mv components are zeros.*/
{
currMB->mbMode = AVC_SKIP;
video->mvd_l0[0][0][0] = 0;
video->mvd_l0[0][0][1] = 0;
}
}
else
{
if ((MB_A->ref_idx_L0[1] == 0 && MB_A->mvL0[3] == 0) ||
(MB_B->ref_idx_L0[2] == 0 && MB_B->mvL0[12] == 0))
{
if (currMB->mvL0[0] == 0) /* both mv components are zeros.*/
{
currMB->mbMode = AVC_SKIP;
video->mvd_l0[0][0][0] = 0;
video->mvd_l0[0][0][1] = 0;
}
}
else if (video->mvd_l0[0][0][0] == 0 && video->mvd_l0[0][0][1] == 0)
{
currMB->mbMode = AVC_SKIP;
}
}
}
if (currMB->mbMode == AVC_SKIP)
{
video->mb_skip_run++;
/* set parameters */
/* not sure whether we need the followings */
if (slice_type == AVC_P_SLICE)
{
currMB->mbMode = AVC_SKIP;
currMB->MbPartWidth = currMB->MbPartHeight = 16;
currMB->MBPartPredMode[0][0] = AVC_Pred_L0;
currMB->NumMbPart = 1;
currMB->NumSubMbPart[0] = currMB->NumSubMbPart[1] =
currMB->NumSubMbPart[2] = currMB->NumSubMbPart[3] = 1;
currMB->SubMbPartWidth[0] = currMB->SubMbPartWidth[1] =
currMB->SubMbPartWidth[2] = currMB->SubMbPartWidth[3] = currMB->MbPartWidth;
currMB->SubMbPartHeight[0] = currMB->SubMbPartHeight[1] =
currMB->SubMbPartHeight[2] = currMB->SubMbPartHeight[3] = currMB->MbPartHeight;
}
else if (slice_type == AVC_B_SLICE)
{
currMB->mbMode = AVC_SKIP;
currMB->MbPartWidth = currMB->MbPartHeight = 8;
currMB->MBPartPredMode[0][0] = AVC_Direct;
currMB->NumMbPart = -1;
}
/* for skipped MB, always look at the first entry in RefPicList */
currMB->RefIdx[0] = currMB->RefIdx[1] =
currMB->RefIdx[2] = currMB->RefIdx[3] = video->RefPicList0[0]->RefIdx;
/* do not return yet, need to do some copies */
}
}
}
/* non-skipped MB */
/************* START ENTROPY CODING *************************/
start_mb_bits = 32 + (encvid->bitstream->write_pos << 3) - encvid->bitstream->bit_left;
/* encode mb_type, mb_pred, sub_mb_pred, CBP */
if (slice_type != AVC_I_SLICE && slice_type != AVC_SI_SLICE && currMB->mbMode != AVC_SKIP)
{
//if(!pps->entropy_coding_mode_flag) ALWAYS true
{
ue_v(stream, video->mb_skip_run);
video->mb_skip_run = 0;
}
}
if (currMB->mbMode != AVC_SKIP)
{
status = EncodeMBHeader(currMB, encvid);
if (status != AVCENC_SUCCESS)
{
return status;
}
}
start_text_bits = 32 + (encvid->bitstream->write_pos << 3) - encvid->bitstream->bit_left;
/**** now decoding part *******/
resType = AVC_Luma;
/* DC transform for luma I16 mode */
if (currMB->mbMode == AVC_I16)
{
/* vlc encode level/run */
status = enc_residual_block(encvid, AVC_Intra16DC, encvid->numcoefdc, currMB);
if (status != AVCENC_SUCCESS)
{
return status;
}
resType = AVC_Intra16AC;
}
/* VLC encoding for luma */
for (b8 = 0; b8 < 4; b8++)
{
if (currMB->CBP&(1 << b8))
{
for (b4 = 0; b4 < 4; b4++)
{
/* vlc encode level/run */
status = enc_residual_block(encvid, resType, (b8 << 2) + b4, currMB);
if (status != AVCENC_SUCCESS)
{
return status;
}
}
}
}
/* chroma */
if (currMB->CBP & (3 << 4)) /* chroma DC residual present */
{
for (b8 = 0; b8 < 2; b8++) /* for iCbCr */
{
/* vlc encode level/run */
status = enc_residual_block(encvid, AVC_ChromaDC, encvid->numcoefcdc[b8] + (b8 << 3), currMB);
if (status != AVCENC_SUCCESS)
{
return status;
}
}
}
if (currMB->CBP & (2 << 4))
{
/* AC part */
for (b8 = 0; b8 < 2; b8++) /* for iCbCr */
{
for (b4 = 0; b4 < 4; b4++) /* for each block inside Cb or Cr */
{
/* vlc encode level/run */
status = enc_residual_block(encvid, AVC_ChromaAC, 16 + (b8 << 2) + b4, currMB);
if (status != AVCENC_SUCCESS)
{
return status;
}
}
}
}
num_bits = 32 + (encvid->bitstream->write_pos << 3) - encvid->bitstream->bit_left;
RCPostMB(video, rateCtrl, start_text_bits - start_mb_bits,
num_bits - start_text_bits);
// num_bits -= start_mb_bits;
// fprintf(fdebug,"MB #%d: %d bits\n",CurrMbAddr,num_bits);
// fclose(fdebug);
return status;
}
/* copy the content from predBlock back to the reconstructed YUV frame */
void Copy_MB(uint8 *curL, uint8 *curCb, uint8 *curCr, uint8 *predBlock, int picPitch)
{
int j, offset;
uint32 *dst, *dst2, *src;
dst = (uint32*)curL;
src = (uint32*)predBlock;
offset = (picPitch - 16) >> 2;
for (j = 0; j < 16; j++)
{
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
dst += offset;
}
dst = (uint32*)curCb;
dst2 = (uint32*)curCr;
offset >>= 1;
for (j = 0; j < 8; j++)
{
*dst++ = *src++;
*dst++ = *src++;
*dst2++ = *src++;
*dst2++ = *src++;
dst += offset;
dst2 += offset;
}
return ;
}
/* encode mb_type, mb_pred, sub_mb_pred, CBP */
/* decide whether this MB (for inter MB) should be skipped */
AVCEnc_Status EncodeMBHeader(AVCMacroblock *currMB, AVCEncObject *encvid)
{
AVCEnc_Status status = AVCENC_SUCCESS;
uint mb_type;
AVCCommonObj *video = encvid->common;
AVCEncBitstream *stream = encvid->bitstream;
if (currMB->CBP > 47) /* chroma CBP is 11 */
{
currMB->CBP -= 16; /* remove the 5th bit from the right */
}
mb_type = InterpretMBType(currMB, video->slice_type);
status = ue_v(stream, mb_type);
if (currMB->mbMode == AVC_P8 || currMB->mbMode == AVC_P8ref0)
{
status = sub_mb_pred(video, currMB, stream);
}
else
{
status = mb_pred(video, currMB, stream) ;
}
if (currMB->mbMode != AVC_I16)
{
/* decode coded_block_pattern */
status = EncodeCBP(currMB, stream);
}
/* calculate currMB->mb_qp_delta = currMB->QPy - video->QPyprev */
if (currMB->CBP > 0 || currMB->mbMode == AVC_I16)
{
status = se_v(stream, currMB->QPy - video->QPy);
video->QPy = currMB->QPy; /* = (video->QPyprev + currMB->mb_qp_delta + 52)%52; */
// no need video->QPc = currMB->QPc;
}
else
{
if (currMB->QPy != video->QPy) // current QP is not the same as previous QP
{
/* restore these values */
RCRestoreQP(currMB, video, encvid);
}
}
return status;
}
/* inputs are mbMode, mb_intra, i16Mode, CBP, NumMbPart, MbPartWidth, MbPartHeight */
uint InterpretMBType(AVCMacroblock *currMB, int slice_type)
{
int CBP_chrom;
int mb_type;// part1, part2, part3;
// const static int MapParts2Type[2][3][3]={{{4,8,12},{10,6,14},{16,18,20}},
// {{5,9,13},{11,7,15},{17,19,21}}};
if (currMB->mb_intra)
{
if (currMB->mbMode == AVC_I4)
{
mb_type = 0;
}
else if (currMB->mbMode == AVC_I16)
{
CBP_chrom = (currMB->CBP & 0x30);
if (currMB->CBP&0xF)
{
currMB->CBP |= 0xF; /* either 0x0 or 0xF */
mb_type = 13;
}
else
{
mb_type = 1;
}
mb_type += (CBP_chrom >> 2) + currMB->i16Mode;
}
else /* if(currMB->mbMode == AVC_I_PCM) */
{
mb_type = 25;
}
}
else
{ /* P-MB *//* note that the order of the enum AVCMBMode cannot be changed
since we use it here. */
mb_type = currMB->mbMode - AVC_P16;
}
if (slice_type == AVC_P_SLICE)
{
if (currMB->mb_intra)
{
mb_type += 5;
}
}
// following codes have not been tested yet, not needed.
/* else if(slice_type == AVC_B_SLICE)
{
if(currMB->mbMode == AVC_BDirect16)
{
mb_type = 0;
}
else if(currMB->mbMode == AVC_P16)
{
mb_type = currMB->MBPartPredMode[0][0] + 1; // 1 or 2
}
else if(currMB->mbMode == AVC_P8)
{
mb_type = 26;
}
else if(currMB->mbMode == AVC_P8ref0)
{
mb_type = 27;
}
else
{
part1 = currMB->mbMode - AVC_P16x8;
part2 = currMB->MBPartPredMode[0][0];
part3 = currMB->MBPartPredMode[1][0];
mb_type = MapParts2Type[part1][part2][part3];
}
}
if(slice_type == AVC_SI_SLICE)
{
mb_type++;
}
*/
return (uint)mb_type;
}
//const static int mbPart2raster[3][4] = {{0,0,0,0},{1,1,0,0},{1,0,1,0}};
/* see subclause 7.3.5.1 */
AVCEnc_Status mb_pred(AVCCommonObj *video, AVCMacroblock *currMB, AVCEncBitstream *stream)
{
AVCEnc_Status status = AVCENC_SUCCESS;
int mbPartIdx;
AVCSliceHeader *sliceHdr = video->sliceHdr;
int max_ref_idx;
uint code;
if (currMB->mbMode == AVC_I4 || currMB->mbMode == AVC_I16)
{
if (currMB->mbMode == AVC_I4)
{
/* perform prediction to get the actual intra 4x4 pred mode */
EncodeIntra4x4Mode(video, currMB, stream);
/* output will be in currMB->i4Mode[4][4] */
}
/* assume already set from MBPrediction() */
status = ue_v(stream, currMB->intra_chroma_pred_mode);
}
else if (currMB->MBPartPredMode[0][0] != AVC_Direct)
{
memset(currMB->ref_idx_L0, 0, sizeof(int16)*4);
/* see subclause 7.4.5.1 for the range of ref_idx_lX */
max_ref_idx = sliceHdr->num_ref_idx_l0_active_minus1;
/* if(video->MbaffFrameFlag && currMB->mb_field_decoding_flag)
max_ref_idx = 2*sliceHdr->num_ref_idx_l0_active_minus1 + 1;
*/
/* decode ref index for L0 */
if (sliceHdr->num_ref_idx_l0_active_minus1 > 0)
{
for (mbPartIdx = 0; mbPartIdx < currMB->NumMbPart; mbPartIdx++)
{
if (/*(sliceHdr->num_ref_idx_l0_active_minus1>0 || currMB->mb_field_decoding_flag) &&*/
currMB->MBPartPredMode[mbPartIdx][0] != AVC_Pred_L1)
{
code = currMB->ref_idx_L0[mbPartIdx];
status = te_v(stream, code, max_ref_idx);
}
}
}
/* see subclause 7.4.5.1 for the range of ref_idx_lX */
max_ref_idx = sliceHdr->num_ref_idx_l1_active_minus1;
/* if(video->MbaffFrameFlag && currMB->mb_field_decoding_flag)
max_ref_idx = 2*sliceHdr->num_ref_idx_l1_active_minus1 + 1;
*/
/* decode ref index for L1 */
if (sliceHdr->num_ref_idx_l1_active_minus1 > 0)
{
for (mbPartIdx = 0; mbPartIdx < currMB->NumMbPart; mbPartIdx++)
{
if (/*(sliceHdr->num_ref_idx_l1_active_minus1>0 || currMB->mb_field_decoding_flag) &&*/
currMB->MBPartPredMode[mbPartIdx][0] != AVC_Pred_L0)
{
status = te_v(stream, currMB->ref_idx_L1[mbPartIdx], max_ref_idx);
}
}
}
/* encode mvd_l0 */
for (mbPartIdx = 0; mbPartIdx < currMB->NumMbPart; mbPartIdx++)
{
if (currMB->MBPartPredMode[mbPartIdx][0] != AVC_Pred_L1)
{
status = se_v(stream, video->mvd_l0[mbPartIdx][0][0]);
status = se_v(stream, video->mvd_l0[mbPartIdx][0][1]);
}
}
/* encode mvd_l1 */
for (mbPartIdx = 0; mbPartIdx < currMB->NumMbPart; mbPartIdx++)
{
if (currMB->MBPartPredMode[mbPartIdx][0] != AVC_Pred_L0)
{
status = se_v(stream, video->mvd_l1[mbPartIdx][0][0]);
status = se_v(stream, video->mvd_l1[mbPartIdx][0][1]);
}
}
}
return status;
}
/* see subclause 7.3.5.2 */
AVCEnc_Status sub_mb_pred(AVCCommonObj *video, AVCMacroblock *currMB, AVCEncBitstream *stream)
{
AVCEnc_Status status = AVCENC_SUCCESS;
int mbPartIdx, subMbPartIdx;
AVCSliceHeader *sliceHdr = video->sliceHdr;
uint max_ref_idx;
uint slice_type = video->slice_type;
uint sub_mb_type[4];
/* this should move somewhere else where we don't have to make this check */
if (currMB->mbMode == AVC_P8ref0)
{
memset(currMB->ref_idx_L0, 0, sizeof(int16)*4);
}
/* we have to check the values to make sure they are valid */
/* assign values to currMB->sub_mb_type[] */
if (slice_type == AVC_P_SLICE)
{
InterpretSubMBTypeP(currMB, sub_mb_type);
}
/* no need to check for B-slice
else if(slice_type == AVC_B_SLICE)
{
InterpretSubMBTypeB(currMB,sub_mb_type);
}*/
for (mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
{
status = ue_v(stream, sub_mb_type[mbPartIdx]);
}
/* see subclause 7.4.5.1 for the range of ref_idx_lX */
max_ref_idx = sliceHdr->num_ref_idx_l0_active_minus1;
/* if(video->MbaffFrameFlag && currMB->mb_field_decoding_flag)
max_ref_idx = 2*sliceHdr->num_ref_idx_l0_active_minus1 + 1; */
for (mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
{
if ((sliceHdr->num_ref_idx_l0_active_minus1 > 0 /*|| currMB->mb_field_decoding_flag*/) &&
currMB->mbMode != AVC_P8ref0 && /*currMB->subMbMode[mbPartIdx]!=AVC_BDirect8 &&*/
currMB->MBPartPredMode[mbPartIdx][0] != AVC_Pred_L1)
{
status = te_v(stream, currMB->ref_idx_L0[mbPartIdx], max_ref_idx);
}
/* used in deblocking */
currMB->RefIdx[mbPartIdx] = video->RefPicList0[currMB->ref_idx_L0[mbPartIdx]]->RefIdx;
}
/* see subclause 7.4.5.1 for the range of ref_idx_lX */
max_ref_idx = sliceHdr->num_ref_idx_l1_active_minus1;
/* if(video->MbaffFrameFlag && currMB->mb_field_decoding_flag)
max_ref_idx = 2*sliceHdr->num_ref_idx_l1_active_minus1 + 1;*/
if (sliceHdr->num_ref_idx_l1_active_minus1 > 0)
{
for (mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
{
if (/*(sliceHdr->num_ref_idx_l1_active_minus1>0 || currMB->mb_field_decoding_flag) &&*/
/*currMB->subMbMode[mbPartIdx]!=AVC_BDirect8 &&*/
currMB->MBPartPredMode[mbPartIdx][0] != AVC_Pred_L0)
{
status = te_v(stream, currMB->ref_idx_L1[mbPartIdx], max_ref_idx);
}
}
}
for (mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
{
if (/*currMB->subMbMode[mbPartIdx]!=AVC_BDirect8 &&*/
currMB->MBPartPredMode[mbPartIdx][0] != AVC_Pred_L1)
{
for (subMbPartIdx = 0; subMbPartIdx < currMB->NumSubMbPart[mbPartIdx]; subMbPartIdx++)
{
status = se_v(stream, video->mvd_l0[mbPartIdx][subMbPartIdx][0]);
status = se_v(stream, video->mvd_l0[mbPartIdx][subMbPartIdx][1]);
}
}
}
for (mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
{
if (/*currMB->subMbMode[mbPartIdx]!=AVC_BDirect8 &&*/
currMB->MBPartPredMode[mbPartIdx][0] != AVC_Pred_L0)
{
for (subMbPartIdx = 0; subMbPartIdx < currMB->NumSubMbPart[mbPartIdx]; subMbPartIdx++)
{
status = se_v(stream, video->mvd_l1[mbPartIdx][subMbPartIdx][0]);
status = se_v(stream, video->mvd_l1[mbPartIdx][subMbPartIdx][1]);
}
}
}
return status;
}
/* input is mblock->sub_mb_type[] */
void InterpretSubMBTypeP(AVCMacroblock *mblock, uint *sub_mb_type)
{
int i;
/* see enum AVCMBType declaration */
/*const static AVCSubMBMode map2subMbMode[4] = {AVC_8x8,AVC_8x4,AVC_4x8,AVC_4x4};
const static int map2subPartWidth[4] = {8,8,4,4};
const static int map2subPartHeight[4] = {8,4,8,4};
const static int map2numSubPart[4] = {1,2,2,4};*/
for (i = 0; i < 4 ; i++)
{
sub_mb_type[i] = mblock->subMbMode[i] - AVC_8x8;
}
return ;
}
void InterpretSubMBTypeB(AVCMacroblock *mblock, uint *sub_mb_type)
{
int i;
/* see enum AVCMBType declaration */
/* const static AVCSubMBMode map2subMbMode[13] = {AVC_BDirect8,AVC_8x8,AVC_8x8,
AVC_8x8,AVC_8x4,AVC_4x8,AVC_8x4,AVC_4x8,AVC_8x4,AVC_4x8,AVC_4x4,AVC_4x4,AVC_4x4};
const static int map2subPartWidth[13] = {4,8,8,8,8,4,8,4,8,4,4,4,4};
const static int map2subPartHeight[13] = {4,8,8,8,4,8,4,8,4,8,4,4,4};
const static int map2numSubPart[13] = {4,1,1,1,2,2,2,2,2,2,4,4,4};
const static int map2predMode[13] = {3,0,1,2,0,0,1,1,2,2,0,1,2};*/
for (i = 0; i < 4 ; i++)
{
if (mblock->subMbMode[i] == AVC_BDirect8)
{
sub_mb_type[i] = 0;
}
else if (mblock->subMbMode[i] == AVC_8x8)
{
sub_mb_type[i] = 1 + mblock->MBPartPredMode[i][0];
}
else if (mblock->subMbMode[i] == AVC_4x4)
{
sub_mb_type[i] = 10 + mblock->MBPartPredMode[i][0];
}
else
{
sub_mb_type[i] = 4 + (mblock->MBPartPredMode[i][0] << 1) + (mblock->subMbMode[i] - AVC_8x4);
}
}
return ;
}
/* see subclause 8.3.1 */
AVCEnc_Status EncodeIntra4x4Mode(AVCCommonObj *video, AVCMacroblock *currMB, AVCEncBitstream *stream)
{
int intra4x4PredModeA = 0;
int intra4x4PredModeB, predIntra4x4PredMode;
int component, SubBlock_indx, block_x, block_y;
int dcOnlyPredictionFlag;
uint flag;
int rem = 0;
int mode;
int bindx = 0;
for (component = 0; component < 4; component++) /* partition index */
{
block_x = ((component & 1) << 1);
block_y = ((component >> 1) << 1);
for (SubBlock_indx = 0; SubBlock_indx < 4; SubBlock_indx++) /* sub-partition index */
{
dcOnlyPredictionFlag = 0;
if (block_x > 0)
{
intra4x4PredModeA = currMB->i4Mode[(block_y << 2) + block_x - 1 ];
}
else
{
if (video->intraAvailA)
{
if (video->mblock[video->mbAddrA].mbMode == AVC_I4)
{
intra4x4PredModeA = video->mblock[video->mbAddrA].i4Mode[(block_y << 2) + 3];
}
else
{
intra4x4PredModeA = AVC_I4_DC;
}
}
else
{
dcOnlyPredictionFlag = 1;
}
}
if (block_y > 0)
{
intra4x4PredModeB = currMB->i4Mode[((block_y-1) << 2) + block_x];
}
else
{
if (video->intraAvailB)
{
if (video->mblock[video->mbAddrB].mbMode == AVC_I4)
{
intra4x4PredModeB = video->mblock[video->mbAddrB].i4Mode[(3 << 2) + block_x];
}
else
{
intra4x4PredModeB = AVC_I4_DC;
}
}
else
{
dcOnlyPredictionFlag = 1;
}
}
if (dcOnlyPredictionFlag)
{
intra4x4PredModeA = intra4x4PredModeB = AVC_I4_DC;
}
predIntra4x4PredMode = AVC_MIN(intra4x4PredModeA, intra4x4PredModeB);
flag = 0;
mode = currMB->i4Mode[(block_y<<2)+block_x];
if (mode == (AVCIntra4x4PredMode)predIntra4x4PredMode)
{
flag = 1;
}
else if (mode < predIntra4x4PredMode)
{
rem = mode;
}
else
{
rem = mode - 1;
}
BitstreamWrite1Bit(stream, flag);
if (!flag)
{
BitstreamWriteBits(stream, 3, rem);
}
bindx++;
block_y += (SubBlock_indx & 1) ;
block_x += (1 - 2 * (SubBlock_indx & 1)) ;
}
}
return AVCENC_SUCCESS;
}