blob: 729a31b90673dcc4f4da1c81e2e990d98cb223f0 [file] [log] [blame]
//
// buffer.hpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2015 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BUFFER_HPP
#define BOOST_ASIO_BUFFER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/config.hpp>
#include <cstddef>
#include <cstring>
#include <string>
#include <vector>
#include <boost/asio/detail/array_fwd.hpp>
#if defined(BOOST_ASIO_MSVC)
# if defined(_HAS_ITERATOR_DEBUGGING) && (_HAS_ITERATOR_DEBUGGING != 0)
# if !defined(BOOST_ASIO_DISABLE_BUFFER_DEBUGGING)
# define BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
# endif // !defined(BOOST_ASIO_DISABLE_BUFFER_DEBUGGING)
# endif // defined(_HAS_ITERATOR_DEBUGGING)
#endif // defined(BOOST_ASIO_MSVC)
#if defined(__GNUC__)
# if defined(_GLIBCXX_DEBUG)
# if !defined(BOOST_ASIO_DISABLE_BUFFER_DEBUGGING)
# define BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
# endif // !defined(BOOST_ASIO_DISABLE_BUFFER_DEBUGGING)
# endif // defined(_GLIBCXX_DEBUG)
#endif // defined(__GNUC__)
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
# include <boost/asio/detail/function.hpp>
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
#if defined(BOOST_ASIO_HAS_BOOST_WORKAROUND)
# include <boost/detail/workaround.hpp>
# if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) \
|| BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x590))
# define BOOST_ASIO_ENABLE_ARRAY_BUFFER_WORKAROUND
# endif // BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
// || BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x590))
#endif // defined(BOOST_ASIO_HAS_BOOST_WORKAROUND)
#if defined(BOOST_ASIO_ENABLE_ARRAY_BUFFER_WORKAROUND)
# include <boost/asio/detail/type_traits.hpp>
#endif // defined(BOOST_ASIO_ENABLE_ARRAY_BUFFER_WORKAROUND)
#include <boost/asio/detail/push_options.hpp>
namespace boost {
namespace asio {
class mutable_buffer;
class const_buffer;
namespace detail {
void* buffer_cast_helper(const mutable_buffer&);
const void* buffer_cast_helper(const const_buffer&);
std::size_t buffer_size_helper(const mutable_buffer&);
std::size_t buffer_size_helper(const const_buffer&);
} // namespace detail
/// Holds a buffer that can be modified.
/**
* The mutable_buffer class provides a safe representation of a buffer that can
* be modified. It does not own the underlying data, and so is cheap to copy or
* assign.
*
* @par Accessing Buffer Contents
*
* The contents of a buffer may be accessed using the @ref buffer_size
* and @ref buffer_cast functions:
*
* @code boost::asio::mutable_buffer b1 = ...;
* std::size_t s1 = boost::asio::buffer_size(b1);
* unsigned char* p1 = boost::asio::buffer_cast<unsigned char*>(b1);
* @endcode
*
* The boost::asio::buffer_cast function permits violations of type safety, so
* uses of it in application code should be carefully considered.
*/
class mutable_buffer
{
public:
/// Construct an empty buffer.
mutable_buffer()
: data_(0),
size_(0)
{
}
/// Construct a buffer to represent a given memory range.
mutable_buffer(void* data, std::size_t size)
: data_(data),
size_(size)
{
}
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
mutable_buffer(void* data, std::size_t size,
boost::asio::detail::function<void()> debug_check)
: data_(data),
size_(size),
debug_check_(debug_check)
{
}
const boost::asio::detail::function<void()>& get_debug_check() const
{
return debug_check_;
}
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
private:
friend void* boost::asio::detail::buffer_cast_helper(
const mutable_buffer& b);
friend std::size_t boost::asio::detail::buffer_size_helper(
const mutable_buffer& b);
void* data_;
std::size_t size_;
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
boost::asio::detail::function<void()> debug_check_;
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
};
namespace detail {
inline void* buffer_cast_helper(const mutable_buffer& b)
{
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
if (b.size_ && b.debug_check_)
b.debug_check_();
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
return b.data_;
}
inline std::size_t buffer_size_helper(const mutable_buffer& b)
{
return b.size_;
}
} // namespace detail
/// Adapts a single modifiable buffer so that it meets the requirements of the
/// MutableBufferSequence concept.
class mutable_buffers_1
: public mutable_buffer
{
public:
/// The type for each element in the list of buffers.
typedef mutable_buffer value_type;
/// A random-access iterator type that may be used to read elements.
typedef const mutable_buffer* const_iterator;
/// Construct to represent a given memory range.
mutable_buffers_1(void* data, std::size_t size)
: mutable_buffer(data, size)
{
}
/// Construct to represent a single modifiable buffer.
explicit mutable_buffers_1(const mutable_buffer& b)
: mutable_buffer(b)
{
}
/// Get a random-access iterator to the first element.
const_iterator begin() const
{
return this;
}
/// Get a random-access iterator for one past the last element.
const_iterator end() const
{
return begin() + 1;
}
};
/// Holds a buffer that cannot be modified.
/**
* The const_buffer class provides a safe representation of a buffer that cannot
* be modified. It does not own the underlying data, and so is cheap to copy or
* assign.
*
* @par Accessing Buffer Contents
*
* The contents of a buffer may be accessed using the @ref buffer_size
* and @ref buffer_cast functions:
*
* @code boost::asio::const_buffer b1 = ...;
* std::size_t s1 = boost::asio::buffer_size(b1);
* const unsigned char* p1 = boost::asio::buffer_cast<const unsigned char*>(b1);
* @endcode
*
* The boost::asio::buffer_cast function permits violations of type safety, so
* uses of it in application code should be carefully considered.
*/
class const_buffer
{
public:
/// Construct an empty buffer.
const_buffer()
: data_(0),
size_(0)
{
}
/// Construct a buffer to represent a given memory range.
const_buffer(const void* data, std::size_t size)
: data_(data),
size_(size)
{
}
/// Construct a non-modifiable buffer from a modifiable one.
const_buffer(const mutable_buffer& b)
: data_(boost::asio::detail::buffer_cast_helper(b)),
size_(boost::asio::detail::buffer_size_helper(b))
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
, debug_check_(b.get_debug_check())
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
{
}
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
const_buffer(const void* data, std::size_t size,
boost::asio::detail::function<void()> debug_check)
: data_(data),
size_(size),
debug_check_(debug_check)
{
}
const boost::asio::detail::function<void()>& get_debug_check() const
{
return debug_check_;
}
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
private:
friend const void* boost::asio::detail::buffer_cast_helper(
const const_buffer& b);
friend std::size_t boost::asio::detail::buffer_size_helper(
const const_buffer& b);
const void* data_;
std::size_t size_;
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
boost::asio::detail::function<void()> debug_check_;
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
};
namespace detail {
inline const void* buffer_cast_helper(const const_buffer& b)
{
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
if (b.size_ && b.debug_check_)
b.debug_check_();
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
return b.data_;
}
inline std::size_t buffer_size_helper(const const_buffer& b)
{
return b.size_;
}
} // namespace detail
/// Adapts a single non-modifiable buffer so that it meets the requirements of
/// the ConstBufferSequence concept.
class const_buffers_1
: public const_buffer
{
public:
/// The type for each element in the list of buffers.
typedef const_buffer value_type;
/// A random-access iterator type that may be used to read elements.
typedef const const_buffer* const_iterator;
/// Construct to represent a given memory range.
const_buffers_1(const void* data, std::size_t size)
: const_buffer(data, size)
{
}
/// Construct to represent a single non-modifiable buffer.
explicit const_buffers_1(const const_buffer& b)
: const_buffer(b)
{
}
/// Get a random-access iterator to the first element.
const_iterator begin() const
{
return this;
}
/// Get a random-access iterator for one past the last element.
const_iterator end() const
{
return begin() + 1;
}
};
/// An implementation of both the ConstBufferSequence and MutableBufferSequence
/// concepts to represent a null buffer sequence.
class null_buffers
{
public:
/// The type for each element in the list of buffers.
typedef mutable_buffer value_type;
/// A random-access iterator type that may be used to read elements.
typedef const mutable_buffer* const_iterator;
/// Get a random-access iterator to the first element.
const_iterator begin() const
{
return &buf_;
}
/// Get a random-access iterator for one past the last element.
const_iterator end() const
{
return &buf_;
}
private:
mutable_buffer buf_;
};
/** @defgroup buffer_size boost::asio::buffer_size
*
* @brief The boost::asio::buffer_size function determines the total number of
* bytes in a buffer or buffer sequence.
*/
/*@{*/
/// Get the number of bytes in a modifiable buffer.
inline std::size_t buffer_size(const mutable_buffer& b)
{
return detail::buffer_size_helper(b);
}
/// Get the number of bytes in a modifiable buffer.
inline std::size_t buffer_size(const mutable_buffers_1& b)
{
return detail::buffer_size_helper(b);
}
/// Get the number of bytes in a non-modifiable buffer.
inline std::size_t buffer_size(const const_buffer& b)
{
return detail::buffer_size_helper(b);
}
/// Get the number of bytes in a non-modifiable buffer.
inline std::size_t buffer_size(const const_buffers_1& b)
{
return detail::buffer_size_helper(b);
}
/// Get the total number of bytes in a buffer sequence.
/**
* The @c BufferSequence template parameter may meet either of the @c
* ConstBufferSequence or @c MutableBufferSequence type requirements.
*/
template <typename BufferSequence>
inline std::size_t buffer_size(const BufferSequence& b)
{
std::size_t total_buffer_size = 0;
typename BufferSequence::const_iterator iter = b.begin();
typename BufferSequence::const_iterator end = b.end();
for (; iter != end; ++iter)
total_buffer_size += detail::buffer_size_helper(*iter);
return total_buffer_size;
}
/*@}*/
/** @defgroup buffer_cast boost::asio::buffer_cast
*
* @brief The boost::asio::buffer_cast function is used to obtain a pointer to
* the underlying memory region associated with a buffer.
*
* @par Examples:
*
* To access the memory of a non-modifiable buffer, use:
* @code boost::asio::const_buffer b1 = ...;
* const unsigned char* p1 = boost::asio::buffer_cast<const unsigned char*>(b1);
* @endcode
*
* To access the memory of a modifiable buffer, use:
* @code boost::asio::mutable_buffer b2 = ...;
* unsigned char* p2 = boost::asio::buffer_cast<unsigned char*>(b2);
* @endcode
*
* The boost::asio::buffer_cast function permits violations of type safety, so
* uses of it in application code should be carefully considered.
*/
/*@{*/
/// Cast a non-modifiable buffer to a specified pointer to POD type.
template <typename PointerToPodType>
inline PointerToPodType buffer_cast(const mutable_buffer& b)
{
return static_cast<PointerToPodType>(detail::buffer_cast_helper(b));
}
/// Cast a non-modifiable buffer to a specified pointer to POD type.
template <typename PointerToPodType>
inline PointerToPodType buffer_cast(const const_buffer& b)
{
return static_cast<PointerToPodType>(detail::buffer_cast_helper(b));
}
/*@}*/
/// Create a new modifiable buffer that is offset from the start of another.
/**
* @relates mutable_buffer
*/
inline mutable_buffer operator+(const mutable_buffer& b, std::size_t start)
{
if (start > buffer_size(b))
return mutable_buffer();
char* new_data = buffer_cast<char*>(b) + start;
std::size_t new_size = buffer_size(b) - start;
return mutable_buffer(new_data, new_size
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
, b.get_debug_check()
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
);
}
/// Create a new modifiable buffer that is offset from the start of another.
/**
* @relates mutable_buffer
*/
inline mutable_buffer operator+(std::size_t start, const mutable_buffer& b)
{
if (start > buffer_size(b))
return mutable_buffer();
char* new_data = buffer_cast<char*>(b) + start;
std::size_t new_size = buffer_size(b) - start;
return mutable_buffer(new_data, new_size
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
, b.get_debug_check()
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
);
}
/// Create a new non-modifiable buffer that is offset from the start of another.
/**
* @relates const_buffer
*/
inline const_buffer operator+(const const_buffer& b, std::size_t start)
{
if (start > buffer_size(b))
return const_buffer();
const char* new_data = buffer_cast<const char*>(b) + start;
std::size_t new_size = buffer_size(b) - start;
return const_buffer(new_data, new_size
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
, b.get_debug_check()
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
);
}
/// Create a new non-modifiable buffer that is offset from the start of another.
/**
* @relates const_buffer
*/
inline const_buffer operator+(std::size_t start, const const_buffer& b)
{
if (start > buffer_size(b))
return const_buffer();
const char* new_data = buffer_cast<const char*>(b) + start;
std::size_t new_size = buffer_size(b) - start;
return const_buffer(new_data, new_size
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
, b.get_debug_check()
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
);
}
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
namespace detail {
template <typename Iterator>
class buffer_debug_check
{
public:
buffer_debug_check(Iterator iter)
: iter_(iter)
{
}
~buffer_debug_check()
{
#if defined(BOOST_ASIO_MSVC) && (BOOST_ASIO_MSVC == 1400)
// MSVC 8's string iterator checking may crash in a std::string::iterator
// object's destructor when the iterator points to an already-destroyed
// std::string object, unless the iterator is cleared first.
iter_ = Iterator();
#endif // defined(BOOST_ASIO_MSVC) && (BOOST_ASIO_MSVC == 1400)
}
void operator()()
{
*iter_;
}
private:
Iterator iter_;
};
} // namespace detail
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
/** @defgroup buffer boost::asio::buffer
*
* @brief The boost::asio::buffer function is used to create a buffer object to
* represent raw memory, an array of POD elements, a vector of POD elements,
* or a std::string.
*
* A buffer object represents a contiguous region of memory as a 2-tuple
* consisting of a pointer and size in bytes. A tuple of the form <tt>{void*,
* size_t}</tt> specifies a mutable (modifiable) region of memory. Similarly, a
* tuple of the form <tt>{const void*, size_t}</tt> specifies a const
* (non-modifiable) region of memory. These two forms correspond to the classes
* mutable_buffer and const_buffer, respectively. To mirror C++'s conversion
* rules, a mutable_buffer is implicitly convertible to a const_buffer, and the
* opposite conversion is not permitted.
*
* The simplest use case involves reading or writing a single buffer of a
* specified size:
*
* @code sock.send(boost::asio::buffer(data, size)); @endcode
*
* In the above example, the return value of boost::asio::buffer meets the
* requirements of the ConstBufferSequence concept so that it may be directly
* passed to the socket's write function. A buffer created for modifiable
* memory also meets the requirements of the MutableBufferSequence concept.
*
* An individual buffer may be created from a builtin array, std::vector,
* std::array or boost::array of POD elements. This helps prevent buffer
* overruns by automatically determining the size of the buffer:
*
* @code char d1[128];
* size_t bytes_transferred = sock.receive(boost::asio::buffer(d1));
*
* std::vector<char> d2(128);
* bytes_transferred = sock.receive(boost::asio::buffer(d2));
*
* std::array<char, 128> d3;
* bytes_transferred = sock.receive(boost::asio::buffer(d3));
*
* boost::array<char, 128> d4;
* bytes_transferred = sock.receive(boost::asio::buffer(d4)); @endcode
*
* In all three cases above, the buffers created are exactly 128 bytes long.
* Note that a vector is @e never automatically resized when creating or using
* a buffer. The buffer size is determined using the vector's <tt>size()</tt>
* member function, and not its capacity.
*
* @par Accessing Buffer Contents
*
* The contents of a buffer may be accessed using the @ref buffer_size and
* @ref buffer_cast functions:
*
* @code boost::asio::mutable_buffer b1 = ...;
* std::size_t s1 = boost::asio::buffer_size(b1);
* unsigned char* p1 = boost::asio::buffer_cast<unsigned char*>(b1);
*
* boost::asio::const_buffer b2 = ...;
* std::size_t s2 = boost::asio::buffer_size(b2);
* const void* p2 = boost::asio::buffer_cast<const void*>(b2); @endcode
*
* The boost::asio::buffer_cast function permits violations of type safety, so
* uses of it in application code should be carefully considered.
*
* For convenience, the @ref buffer_size function also works on buffer
* sequences (that is, types meeting the ConstBufferSequence or
* MutableBufferSequence type requirements). In this case, the function returns
* the total size of all buffers in the sequence.
*
* @par Buffer Copying
*
* The @ref buffer_copy function may be used to copy raw bytes between
* individual buffers and buffer sequences.
*
* In particular, when used with the @ref buffer_size, the @ref buffer_copy
* function can be used to linearise a sequence of buffers. For example:
*
* @code vector<const_buffer> buffers = ...;
*
* vector<unsigned char> data(boost::asio::buffer_size(buffers));
* boost::asio::buffer_copy(boost::asio::buffer(data), buffers); @endcode
*
* Note that @ref buffer_copy is implemented in terms of @c memcpy, and
* consequently it cannot be used to copy between overlapping memory regions.
*
* @par Buffer Invalidation
*
* A buffer object does not have any ownership of the memory it refers to. It
* is the responsibility of the application to ensure the memory region remains
* valid until it is no longer required for an I/O operation. When the memory
* is no longer available, the buffer is said to have been invalidated.
*
* For the boost::asio::buffer overloads that accept an argument of type
* std::vector, the buffer objects returned are invalidated by any vector
* operation that also invalidates all references, pointers and iterators
* referring to the elements in the sequence (C++ Std, 23.2.4)
*
* For the boost::asio::buffer overloads that accept an argument of type
* std::basic_string, the buffer objects returned are invalidated according to
* the rules defined for invalidation of references, pointers and iterators
* referring to elements of the sequence (C++ Std, 21.3).
*
* @par Buffer Arithmetic
*
* Buffer objects may be manipulated using simple arithmetic in a safe way
* which helps prevent buffer overruns. Consider an array initialised as
* follows:
*
* @code boost::array<char, 6> a = { 'a', 'b', 'c', 'd', 'e' }; @endcode
*
* A buffer object @c b1 created using:
*
* @code b1 = boost::asio::buffer(a); @endcode
*
* represents the entire array, <tt>{ 'a', 'b', 'c', 'd', 'e' }</tt>. An
* optional second argument to the boost::asio::buffer function may be used to
* limit the size, in bytes, of the buffer:
*
* @code b2 = boost::asio::buffer(a, 3); @endcode
*
* such that @c b2 represents the data <tt>{ 'a', 'b', 'c' }</tt>. Even if the
* size argument exceeds the actual size of the array, the size of the buffer
* object created will be limited to the array size.
*
* An offset may be applied to an existing buffer to create a new one:
*
* @code b3 = b1 + 2; @endcode
*
* where @c b3 will set to represent <tt>{ 'c', 'd', 'e' }</tt>. If the offset
* exceeds the size of the existing buffer, the newly created buffer will be
* empty.
*
* Both an offset and size may be specified to create a buffer that corresponds
* to a specific range of bytes within an existing buffer:
*
* @code b4 = boost::asio::buffer(b1 + 1, 3); @endcode
*
* so that @c b4 will refer to the bytes <tt>{ 'b', 'c', 'd' }</tt>.
*
* @par Buffers and Scatter-Gather I/O
*
* To read or write using multiple buffers (i.e. scatter-gather I/O), multiple
* buffer objects may be assigned into a container that supports the
* MutableBufferSequence (for read) or ConstBufferSequence (for write) concepts:
*
* @code
* char d1[128];
* std::vector<char> d2(128);
* boost::array<char, 128> d3;
*
* boost::array<mutable_buffer, 3> bufs1 = {
* boost::asio::buffer(d1),
* boost::asio::buffer(d2),
* boost::asio::buffer(d3) };
* bytes_transferred = sock.receive(bufs1);
*
* std::vector<const_buffer> bufs2;
* bufs2.push_back(boost::asio::buffer(d1));
* bufs2.push_back(boost::asio::buffer(d2));
* bufs2.push_back(boost::asio::buffer(d3));
* bytes_transferred = sock.send(bufs2); @endcode
*/
/*@{*/
/// Create a new modifiable buffer from an existing buffer.
/**
* @returns <tt>mutable_buffers_1(b)</tt>.
*/
inline mutable_buffers_1 buffer(const mutable_buffer& b)
{
return mutable_buffers_1(b);
}
/// Create a new modifiable buffer from an existing buffer.
/**
* @returns A mutable_buffers_1 value equivalent to:
* @code mutable_buffers_1(
* buffer_cast<void*>(b),
* min(buffer_size(b), max_size_in_bytes)); @endcode
*/
inline mutable_buffers_1 buffer(const mutable_buffer& b,
std::size_t max_size_in_bytes)
{
return mutable_buffers_1(
mutable_buffer(buffer_cast<void*>(b),
buffer_size(b) < max_size_in_bytes
? buffer_size(b) : max_size_in_bytes
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
, b.get_debug_check()
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
));
}
/// Create a new non-modifiable buffer from an existing buffer.
/**
* @returns <tt>const_buffers_1(b)</tt>.
*/
inline const_buffers_1 buffer(const const_buffer& b)
{
return const_buffers_1(b);
}
/// Create a new non-modifiable buffer from an existing buffer.
/**
* @returns A const_buffers_1 value equivalent to:
* @code const_buffers_1(
* buffer_cast<const void*>(b),
* min(buffer_size(b), max_size_in_bytes)); @endcode
*/
inline const_buffers_1 buffer(const const_buffer& b,
std::size_t max_size_in_bytes)
{
return const_buffers_1(
const_buffer(buffer_cast<const void*>(b),
buffer_size(b) < max_size_in_bytes
? buffer_size(b) : max_size_in_bytes
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
, b.get_debug_check()
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
));
}
/// Create a new modifiable buffer that represents the given memory range.
/**
* @returns <tt>mutable_buffers_1(data, size_in_bytes)</tt>.
*/
inline mutable_buffers_1 buffer(void* data, std::size_t size_in_bytes)
{
return mutable_buffers_1(mutable_buffer(data, size_in_bytes));
}
/// Create a new non-modifiable buffer that represents the given memory range.
/**
* @returns <tt>const_buffers_1(data, size_in_bytes)</tt>.
*/
inline const_buffers_1 buffer(const void* data,
std::size_t size_in_bytes)
{
return const_buffers_1(const_buffer(data, size_in_bytes));
}
/// Create a new modifiable buffer that represents the given POD array.
/**
* @returns A mutable_buffers_1 value equivalent to:
* @code mutable_buffers_1(
* static_cast<void*>(data),
* N * sizeof(PodType)); @endcode
*/
template <typename PodType, std::size_t N>
inline mutable_buffers_1 buffer(PodType (&data)[N])
{
return mutable_buffers_1(mutable_buffer(data, N * sizeof(PodType)));
}
/// Create a new modifiable buffer that represents the given POD array.
/**
* @returns A mutable_buffers_1 value equivalent to:
* @code mutable_buffers_1(
* static_cast<void*>(data),
* min(N * sizeof(PodType), max_size_in_bytes)); @endcode
*/
template <typename PodType, std::size_t N>
inline mutable_buffers_1 buffer(PodType (&data)[N],
std::size_t max_size_in_bytes)
{
return mutable_buffers_1(
mutable_buffer(data,
N * sizeof(PodType) < max_size_in_bytes
? N * sizeof(PodType) : max_size_in_bytes));
}
/// Create a new non-modifiable buffer that represents the given POD array.
/**
* @returns A const_buffers_1 value equivalent to:
* @code const_buffers_1(
* static_cast<const void*>(data),
* N * sizeof(PodType)); @endcode
*/
template <typename PodType, std::size_t N>
inline const_buffers_1 buffer(const PodType (&data)[N])
{
return const_buffers_1(const_buffer(data, N * sizeof(PodType)));
}
/// Create a new non-modifiable buffer that represents the given POD array.
/**
* @returns A const_buffers_1 value equivalent to:
* @code const_buffers_1(
* static_cast<const void*>(data),
* min(N * sizeof(PodType), max_size_in_bytes)); @endcode
*/
template <typename PodType, std::size_t N>
inline const_buffers_1 buffer(const PodType (&data)[N],
std::size_t max_size_in_bytes)
{
return const_buffers_1(
const_buffer(data,
N * sizeof(PodType) < max_size_in_bytes
? N * sizeof(PodType) : max_size_in_bytes));
}
#if defined(BOOST_ASIO_ENABLE_ARRAY_BUFFER_WORKAROUND)
// Borland C++ and Sun Studio think the overloads:
//
// unspecified buffer(boost::array<PodType, N>& array ...);
//
// and
//
// unspecified buffer(boost::array<const PodType, N>& array ...);
//
// are ambiguous. This will be worked around by using a buffer_types traits
// class that contains typedefs for the appropriate buffer and container
// classes, based on whether PodType is const or non-const.
namespace detail {
template <bool IsConst>
struct buffer_types_base;
template <>
struct buffer_types_base<false>
{
typedef mutable_buffer buffer_type;
typedef mutable_buffers_1 container_type;
};
template <>
struct buffer_types_base<true>
{
typedef const_buffer buffer_type;
typedef const_buffers_1 container_type;
};
template <typename PodType>
struct buffer_types
: public buffer_types_base<is_const<PodType>::value>
{
};
} // namespace detail
template <typename PodType, std::size_t N>
inline typename detail::buffer_types<PodType>::container_type
buffer(boost::array<PodType, N>& data)
{
typedef typename boost::asio::detail::buffer_types<PodType>::buffer_type
buffer_type;
typedef typename boost::asio::detail::buffer_types<PodType>::container_type
container_type;
return container_type(
buffer_type(data.c_array(), data.size() * sizeof(PodType)));
}
template <typename PodType, std::size_t N>
inline typename detail::buffer_types<PodType>::container_type
buffer(boost::array<PodType, N>& data, std::size_t max_size_in_bytes)
{
typedef typename boost::asio::detail::buffer_types<PodType>::buffer_type
buffer_type;
typedef typename boost::asio::detail::buffer_types<PodType>::container_type
container_type;
return container_type(
buffer_type(data.c_array(),
data.size() * sizeof(PodType) < max_size_in_bytes
? data.size() * sizeof(PodType) : max_size_in_bytes));
}
#else // defined(BOOST_ASIO_ENABLE_ARRAY_BUFFER_WORKAROUND)
/// Create a new modifiable buffer that represents the given POD array.
/**
* @returns A mutable_buffers_1 value equivalent to:
* @code mutable_buffers_1(
* data.data(),
* data.size() * sizeof(PodType)); @endcode
*/
template <typename PodType, std::size_t N>
inline mutable_buffers_1 buffer(boost::array<PodType, N>& data)
{
return mutable_buffers_1(
mutable_buffer(data.c_array(), data.size() * sizeof(PodType)));
}
/// Create a new modifiable buffer that represents the given POD array.
/**
* @returns A mutable_buffers_1 value equivalent to:
* @code mutable_buffers_1(
* data.data(),
* min(data.size() * sizeof(PodType), max_size_in_bytes)); @endcode
*/
template <typename PodType, std::size_t N>
inline mutable_buffers_1 buffer(boost::array<PodType, N>& data,
std::size_t max_size_in_bytes)
{
return mutable_buffers_1(
mutable_buffer(data.c_array(),
data.size() * sizeof(PodType) < max_size_in_bytes
? data.size() * sizeof(PodType) : max_size_in_bytes));
}
/// Create a new non-modifiable buffer that represents the given POD array.
/**
* @returns A const_buffers_1 value equivalent to:
* @code const_buffers_1(
* data.data(),
* data.size() * sizeof(PodType)); @endcode
*/
template <typename PodType, std::size_t N>
inline const_buffers_1 buffer(boost::array<const PodType, N>& data)
{
return const_buffers_1(
const_buffer(data.data(), data.size() * sizeof(PodType)));
}
/// Create a new non-modifiable buffer that represents the given POD array.
/**
* @returns A const_buffers_1 value equivalent to:
* @code const_buffers_1(
* data.data(),
* min(data.size() * sizeof(PodType), max_size_in_bytes)); @endcode
*/
template <typename PodType, std::size_t N>
inline const_buffers_1 buffer(boost::array<const PodType, N>& data,
std::size_t max_size_in_bytes)
{
return const_buffers_1(
const_buffer(data.data(),
data.size() * sizeof(PodType) < max_size_in_bytes
? data.size() * sizeof(PodType) : max_size_in_bytes));
}
#endif // defined(BOOST_ASIO_ENABLE_ARRAY_BUFFER_WORKAROUND)
/// Create a new non-modifiable buffer that represents the given POD array.
/**
* @returns A const_buffers_1 value equivalent to:
* @code const_buffers_1(
* data.data(),
* data.size() * sizeof(PodType)); @endcode
*/
template <typename PodType, std::size_t N>
inline const_buffers_1 buffer(const boost::array<PodType, N>& data)
{
return const_buffers_1(
const_buffer(data.data(), data.size() * sizeof(PodType)));
}
/// Create a new non-modifiable buffer that represents the given POD array.
/**
* @returns A const_buffers_1 value equivalent to:
* @code const_buffers_1(
* data.data(),
* min(data.size() * sizeof(PodType), max_size_in_bytes)); @endcode
*/
template <typename PodType, std::size_t N>
inline const_buffers_1 buffer(const boost::array<PodType, N>& data,
std::size_t max_size_in_bytes)
{
return const_buffers_1(
const_buffer(data.data(),
data.size() * sizeof(PodType) < max_size_in_bytes
? data.size() * sizeof(PodType) : max_size_in_bytes));
}
#if defined(BOOST_ASIO_HAS_STD_ARRAY) || defined(GENERATING_DOCUMENTATION)
/// Create a new modifiable buffer that represents the given POD array.
/**
* @returns A mutable_buffers_1 value equivalent to:
* @code mutable_buffers_1(
* data.data(),
* data.size() * sizeof(PodType)); @endcode
*/
template <typename PodType, std::size_t N>
inline mutable_buffers_1 buffer(std::array<PodType, N>& data)
{
return mutable_buffers_1(
mutable_buffer(data.data(), data.size() * sizeof(PodType)));
}
/// Create a new modifiable buffer that represents the given POD array.
/**
* @returns A mutable_buffers_1 value equivalent to:
* @code mutable_buffers_1(
* data.data(),
* min(data.size() * sizeof(PodType), max_size_in_bytes)); @endcode
*/
template <typename PodType, std::size_t N>
inline mutable_buffers_1 buffer(std::array<PodType, N>& data,
std::size_t max_size_in_bytes)
{
return mutable_buffers_1(
mutable_buffer(data.data(),
data.size() * sizeof(PodType) < max_size_in_bytes
? data.size() * sizeof(PodType) : max_size_in_bytes));
}
/// Create a new non-modifiable buffer that represents the given POD array.
/**
* @returns A const_buffers_1 value equivalent to:
* @code const_buffers_1(
* data.data(),
* data.size() * sizeof(PodType)); @endcode
*/
template <typename PodType, std::size_t N>
inline const_buffers_1 buffer(std::array<const PodType, N>& data)
{
return const_buffers_1(
const_buffer(data.data(), data.size() * sizeof(PodType)));
}
/// Create a new non-modifiable buffer that represents the given POD array.
/**
* @returns A const_buffers_1 value equivalent to:
* @code const_buffers_1(
* data.data(),
* min(data.size() * sizeof(PodType), max_size_in_bytes)); @endcode
*/
template <typename PodType, std::size_t N>
inline const_buffers_1 buffer(std::array<const PodType, N>& data,
std::size_t max_size_in_bytes)
{
return const_buffers_1(
const_buffer(data.data(),
data.size() * sizeof(PodType) < max_size_in_bytes
? data.size() * sizeof(PodType) : max_size_in_bytes));
}
/// Create a new non-modifiable buffer that represents the given POD array.
/**
* @returns A const_buffers_1 value equivalent to:
* @code const_buffers_1(
* data.data(),
* data.size() * sizeof(PodType)); @endcode
*/
template <typename PodType, std::size_t N>
inline const_buffers_1 buffer(const std::array<PodType, N>& data)
{
return const_buffers_1(
const_buffer(data.data(), data.size() * sizeof(PodType)));
}
/// Create a new non-modifiable buffer that represents the given POD array.
/**
* @returns A const_buffers_1 value equivalent to:
* @code const_buffers_1(
* data.data(),
* min(data.size() * sizeof(PodType), max_size_in_bytes)); @endcode
*/
template <typename PodType, std::size_t N>
inline const_buffers_1 buffer(const std::array<PodType, N>& data,
std::size_t max_size_in_bytes)
{
return const_buffers_1(
const_buffer(data.data(),
data.size() * sizeof(PodType) < max_size_in_bytes
? data.size() * sizeof(PodType) : max_size_in_bytes));
}
#endif // defined(BOOST_ASIO_HAS_STD_ARRAY) || defined(GENERATING_DOCUMENTATION)
/// Create a new modifiable buffer that represents the given POD vector.
/**
* @returns A mutable_buffers_1 value equivalent to:
* @code mutable_buffers_1(
* data.size() ? &data[0] : 0,
* data.size() * sizeof(PodType)); @endcode
*
* @note The buffer is invalidated by any vector operation that would also
* invalidate iterators.
*/
template <typename PodType, typename Allocator>
inline mutable_buffers_1 buffer(std::vector<PodType, Allocator>& data)
{
return mutable_buffers_1(
mutable_buffer(data.size() ? &data[0] : 0, data.size() * sizeof(PodType)
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
, detail::buffer_debug_check<
typename std::vector<PodType, Allocator>::iterator
>(data.begin())
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
));
}
/// Create a new modifiable buffer that represents the given POD vector.
/**
* @returns A mutable_buffers_1 value equivalent to:
* @code mutable_buffers_1(
* data.size() ? &data[0] : 0,
* min(data.size() * sizeof(PodType), max_size_in_bytes)); @endcode
*
* @note The buffer is invalidated by any vector operation that would also
* invalidate iterators.
*/
template <typename PodType, typename Allocator>
inline mutable_buffers_1 buffer(std::vector<PodType, Allocator>& data,
std::size_t max_size_in_bytes)
{
return mutable_buffers_1(
mutable_buffer(data.size() ? &data[0] : 0,
data.size() * sizeof(PodType) < max_size_in_bytes
? data.size() * sizeof(PodType) : max_size_in_bytes
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
, detail::buffer_debug_check<
typename std::vector<PodType, Allocator>::iterator
>(data.begin())
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
));
}
/// Create a new non-modifiable buffer that represents the given POD vector.
/**
* @returns A const_buffers_1 value equivalent to:
* @code const_buffers_1(
* data.size() ? &data[0] : 0,
* data.size() * sizeof(PodType)); @endcode
*
* @note The buffer is invalidated by any vector operation that would also
* invalidate iterators.
*/
template <typename PodType, typename Allocator>
inline const_buffers_1 buffer(
const std::vector<PodType, Allocator>& data)
{
return const_buffers_1(
const_buffer(data.size() ? &data[0] : 0, data.size() * sizeof(PodType)
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
, detail::buffer_debug_check<
typename std::vector<PodType, Allocator>::const_iterator
>(data.begin())
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
));
}
/// Create a new non-modifiable buffer that represents the given POD vector.
/**
* @returns A const_buffers_1 value equivalent to:
* @code const_buffers_1(
* data.size() ? &data[0] : 0,
* min(data.size() * sizeof(PodType), max_size_in_bytes)); @endcode
*
* @note The buffer is invalidated by any vector operation that would also
* invalidate iterators.
*/
template <typename PodType, typename Allocator>
inline const_buffers_1 buffer(
const std::vector<PodType, Allocator>& data, std::size_t max_size_in_bytes)
{
return const_buffers_1(
const_buffer(data.size() ? &data[0] : 0,
data.size() * sizeof(PodType) < max_size_in_bytes
? data.size() * sizeof(PodType) : max_size_in_bytes
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
, detail::buffer_debug_check<
typename std::vector<PodType, Allocator>::const_iterator
>(data.begin())
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
));
}
/// Create a new non-modifiable buffer that represents the given string.
/**
* @returns <tt>const_buffers_1(data.data(), data.size() * sizeof(Elem))</tt>.
*
* @note The buffer is invalidated by any non-const operation called on the
* given string object.
*/
template <typename Elem, typename Traits, typename Allocator>
inline const_buffers_1 buffer(
const std::basic_string<Elem, Traits, Allocator>& data)
{
return const_buffers_1(const_buffer(data.data(), data.size() * sizeof(Elem)
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
, detail::buffer_debug_check<
typename std::basic_string<Elem, Traits, Allocator>::const_iterator
>(data.begin())
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
));
}
/// Create a new non-modifiable buffer that represents the given string.
/**
* @returns A const_buffers_1 value equivalent to:
* @code const_buffers_1(
* data.data(),
* min(data.size() * sizeof(Elem), max_size_in_bytes)); @endcode
*
* @note The buffer is invalidated by any non-const operation called on the
* given string object.
*/
template <typename Elem, typename Traits, typename Allocator>
inline const_buffers_1 buffer(
const std::basic_string<Elem, Traits, Allocator>& data,
std::size_t max_size_in_bytes)
{
return const_buffers_1(
const_buffer(data.data(),
data.size() * sizeof(Elem) < max_size_in_bytes
? data.size() * sizeof(Elem) : max_size_in_bytes
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
, detail::buffer_debug_check<
typename std::basic_string<Elem, Traits, Allocator>::const_iterator
>(data.begin())
#endif // BOOST_ASIO_ENABLE_BUFFER_DEBUGGING
));
}
/*@}*/
/** @defgroup buffer_copy boost::asio::buffer_copy
*
* @brief The boost::asio::buffer_copy function is used to copy bytes from a
* source buffer (or buffer sequence) to a target buffer (or buffer sequence).
*
* The @c buffer_copy function is available in two forms:
*
* @li A 2-argument form: @c buffer_copy(target, source)
*
* @li A 3-argument form: @c buffer_copy(target, source, max_bytes_to_copy)
* Both forms return the number of bytes actually copied. The number of bytes
* copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c If specified, @c max_bytes_to_copy.
*
* This prevents buffer overflow, regardless of the buffer sizes used in the
* copy operation.
*
* Note that @ref buffer_copy is implemented in terms of @c memcpy, and
* consequently it cannot be used to copy between overlapping memory regions.
*/
/*@{*/
/// Copies bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A non-modifiable buffer representing the memory region from
* which the bytes will be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffer& target,
const const_buffer& source)
{
using namespace std; // For memcpy.
std::size_t target_size = buffer_size(target);
std::size_t source_size = buffer_size(source);
std::size_t n = target_size < source_size ? target_size : source_size;
memcpy(buffer_cast<void*>(target), buffer_cast<const void*>(source), n);
return n;
}
/// Copies bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A non-modifiable buffer representing the memory region from
* which the bytes will be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffer& target,
const const_buffers_1& source)
{
return buffer_copy(target, static_cast<const const_buffer&>(source));
}
/// Copies bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A modifiable buffer representing the memory region from which
* the bytes will be copied. The contents of the source buffer will not be
* modified.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffer& target,
const mutable_buffer& source)
{
return buffer_copy(target, const_buffer(source));
}
/// Copies bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A modifiable buffer representing the memory region from which
* the bytes will be copied. The contents of the source buffer will not be
* modified.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffer& target,
const mutable_buffers_1& source)
{
return buffer_copy(target, const_buffer(source));
}
/// Copies bytes from a source buffer sequence to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A non-modifiable buffer sequence representing the memory
* regions from which the bytes will be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
template <typename ConstBufferSequence>
std::size_t buffer_copy(const mutable_buffer& target,
const ConstBufferSequence& source)
{
std::size_t total_bytes_copied = 0;
typename ConstBufferSequence::const_iterator source_iter = source.begin();
typename ConstBufferSequence::const_iterator source_end = source.end();
for (mutable_buffer target_buffer(target);
buffer_size(target_buffer) && source_iter != source_end; ++source_iter)
{
const_buffer source_buffer(*source_iter);
std::size_t bytes_copied = buffer_copy(target_buffer, source_buffer);
total_bytes_copied += bytes_copied;
target_buffer = target_buffer + bytes_copied;
}
return total_bytes_copied;
}
/// Copies bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A non-modifiable buffer representing the memory region from
* which the bytes will be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffers_1& target,
const const_buffer& source)
{
return buffer_copy(static_cast<const mutable_buffer&>(target), source);
}
/// Copies bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A non-modifiable buffer representing the memory region from
* which the bytes will be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffers_1& target,
const const_buffers_1& source)
{
return buffer_copy(static_cast<const mutable_buffer&>(target),
static_cast<const const_buffer&>(source));
}
/// Copies bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A modifiable buffer representing the memory region from which
* the bytes will be copied. The contents of the source buffer will not be
* modified.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffers_1& target,
const mutable_buffer& source)
{
return buffer_copy(static_cast<const mutable_buffer&>(target),
const_buffer(source));
}
/// Copies bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A modifiable buffer representing the memory region from which
* the bytes will be copied. The contents of the source buffer will not be
* modified.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffers_1& target,
const mutable_buffers_1& source)
{
return buffer_copy(static_cast<const mutable_buffer&>(target),
const_buffer(source));
}
/// Copies bytes from a source buffer sequence to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A non-modifiable buffer sequence representing the memory
* regions from which the bytes will be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
template <typename ConstBufferSequence>
inline std::size_t buffer_copy(const mutable_buffers_1& target,
const ConstBufferSequence& source)
{
return buffer_copy(static_cast<const mutable_buffer&>(target), source);
}
/// Copies bytes from a source buffer to a target buffer sequence.
/**
* @param target A modifiable buffer sequence representing the memory regions to
* which the bytes will be copied.
*
* @param source A non-modifiable buffer representing the memory region from
* which the bytes will be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
template <typename MutableBufferSequence>
std::size_t buffer_copy(const MutableBufferSequence& target,
const const_buffer& source)
{
std::size_t total_bytes_copied = 0;
typename MutableBufferSequence::const_iterator target_iter = target.begin();
typename MutableBufferSequence::const_iterator target_end = target.end();
for (const_buffer source_buffer(source);
buffer_size(source_buffer) && target_iter != target_end; ++target_iter)
{
mutable_buffer target_buffer(*target_iter);
std::size_t bytes_copied = buffer_copy(target_buffer, source_buffer);
total_bytes_copied += bytes_copied;
source_buffer = source_buffer + bytes_copied;
}
return total_bytes_copied;
}
/// Copies bytes from a source buffer to a target buffer sequence.
/**
* @param target A modifiable buffer sequence representing the memory regions to
* which the bytes will be copied.
*
* @param source A non-modifiable buffer representing the memory region from
* which the bytes will be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
template <typename MutableBufferSequence>
inline std::size_t buffer_copy(const MutableBufferSequence& target,
const const_buffers_1& source)
{
return buffer_copy(target, static_cast<const const_buffer&>(source));
}
/// Copies bytes from a source buffer to a target buffer sequence.
/**
* @param target A modifiable buffer sequence representing the memory regions to
* which the bytes will be copied.
*
* @param source A modifiable buffer representing the memory region from which
* the bytes will be copied. The contents of the source buffer will not be
* modified.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
template <typename MutableBufferSequence>
inline std::size_t buffer_copy(const MutableBufferSequence& target,
const mutable_buffer& source)
{
return buffer_copy(target, const_buffer(source));
}
/// Copies bytes from a source buffer to a target buffer sequence.
/**
* @param target A modifiable buffer sequence representing the memory regions to
* which the bytes will be copied.
*
* @param source A modifiable buffer representing the memory region from which
* the bytes will be copied. The contents of the source buffer will not be
* modified.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
template <typename MutableBufferSequence>
inline std::size_t buffer_copy(const MutableBufferSequence& target,
const mutable_buffers_1& source)
{
return buffer_copy(target, const_buffer(source));
}
/// Copies bytes from a source buffer sequence to a target buffer sequence.
/**
* @param target A modifiable buffer sequence representing the memory regions to
* which the bytes will be copied.
*
* @param source A non-modifiable buffer sequence representing the memory
* regions from which the bytes will be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
template <typename MutableBufferSequence, typename ConstBufferSequence>
std::size_t buffer_copy(const MutableBufferSequence& target,
const ConstBufferSequence& source)
{
std::size_t total_bytes_copied = 0;
typename MutableBufferSequence::const_iterator target_iter = target.begin();
typename MutableBufferSequence::const_iterator target_end = target.end();
std::size_t target_buffer_offset = 0;
typename ConstBufferSequence::const_iterator source_iter = source.begin();
typename ConstBufferSequence::const_iterator source_end = source.end();
std::size_t source_buffer_offset = 0;
while (target_iter != target_end && source_iter != source_end)
{
mutable_buffer target_buffer =
mutable_buffer(*target_iter) + target_buffer_offset;
const_buffer source_buffer =
const_buffer(*source_iter) + source_buffer_offset;
std::size_t bytes_copied = buffer_copy(target_buffer, source_buffer);
total_bytes_copied += bytes_copied;
if (bytes_copied == buffer_size(target_buffer))
{
++target_iter;
target_buffer_offset = 0;
}
else
target_buffer_offset += bytes_copied;
if (bytes_copied == buffer_size(source_buffer))
{
++source_iter;
source_buffer_offset = 0;
}
else
source_buffer_offset += bytes_copied;
}
return total_bytes_copied;
}
/// Copies a limited number of bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A non-modifiable buffer representing the memory region from
* which the bytes will be copied.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffer& target,
const const_buffer& source, std::size_t max_bytes_to_copy)
{
return buffer_copy(buffer(target, max_bytes_to_copy), source);
}
/// Copies a limited number of bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A non-modifiable buffer representing the memory region from
* which the bytes will be copied.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffer& target,
const const_buffers_1& source, std::size_t max_bytes_to_copy)
{
return buffer_copy(buffer(target, max_bytes_to_copy), source);
}
/// Copies a limited number of bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A modifiable buffer representing the memory region from which
* the bytes will be copied. The contents of the source buffer will not be
* modified.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffer& target,
const mutable_buffer& source, std::size_t max_bytes_to_copy)
{
return buffer_copy(buffer(target, max_bytes_to_copy), source);
}
/// Copies a limited number of bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A modifiable buffer representing the memory region from which
* the bytes will be copied. The contents of the source buffer will not be
* modified.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffer& target,
const mutable_buffers_1& source, std::size_t max_bytes_to_copy)
{
return buffer_copy(buffer(target, max_bytes_to_copy), source);
}
/// Copies a limited number of bytes from a source buffer sequence to a target
/// buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A non-modifiable buffer sequence representing the memory
* regions from which the bytes will be copied.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
template <typename ConstBufferSequence>
inline std::size_t buffer_copy(const mutable_buffer& target,
const ConstBufferSequence& source, std::size_t max_bytes_to_copy)
{
return buffer_copy(buffer(target, max_bytes_to_copy), source);
}
/// Copies a limited number of bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A non-modifiable buffer representing the memory region from
* which the bytes will be copied.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffers_1& target,
const const_buffer& source, std::size_t max_bytes_to_copy)
{
return buffer_copy(buffer(target, max_bytes_to_copy), source);
}
/// Copies a limited number of bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A non-modifiable buffer representing the memory region from
* which the bytes will be copied.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffers_1& target,
const const_buffers_1& source, std::size_t max_bytes_to_copy)
{
return buffer_copy(buffer(target, max_bytes_to_copy), source);
}
/// Copies a limited number of bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A modifiable buffer representing the memory region from which
* the bytes will be copied. The contents of the source buffer will not be
* modified.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffers_1& target,
const mutable_buffer& source, std::size_t max_bytes_to_copy)
{
return buffer_copy(buffer(target, max_bytes_to_copy), source);
}
/// Copies a limited number of bytes from a source buffer to a target buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A modifiable buffer representing the memory region from which
* the bytes will be copied. The contents of the source buffer will not be
* modified.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
inline std::size_t buffer_copy(const mutable_buffers_1& target,
const mutable_buffers_1& source, std::size_t max_bytes_to_copy)
{
return buffer_copy(buffer(target, max_bytes_to_copy), source);
}
/// Copies a limited number of bytes from a source buffer sequence to a target
/// buffer.
/**
* @param target A modifiable buffer representing the memory region to which
* the bytes will be copied.
*
* @param source A non-modifiable buffer sequence representing the memory
* regions from which the bytes will be copied.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
template <typename ConstBufferSequence>
inline std::size_t buffer_copy(const mutable_buffers_1& target,
const ConstBufferSequence& source, std::size_t max_bytes_to_copy)
{
return buffer_copy(buffer(target, max_bytes_to_copy), source);
}
/// Copies a limited number of bytes from a source buffer to a target buffer
/// sequence.
/**
* @param target A modifiable buffer sequence representing the memory regions to
* which the bytes will be copied.
*
* @param source A non-modifiable buffer representing the memory region from
* which the bytes will be copied.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
template <typename MutableBufferSequence>
inline std::size_t buffer_copy(const MutableBufferSequence& target,
const const_buffer& source, std::size_t max_bytes_to_copy)
{
return buffer_copy(target, buffer(source, max_bytes_to_copy));
}
/// Copies a limited number of bytes from a source buffer to a target buffer
/// sequence.
/**
* @param target A modifiable buffer sequence representing the memory regions to
* which the bytes will be copied.
*
* @param source A non-modifiable buffer representing the memory region from
* which the bytes will be copied.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
template <typename MutableBufferSequence>
inline std::size_t buffer_copy(const MutableBufferSequence& target,
const const_buffers_1& source, std::size_t max_bytes_to_copy)
{
return buffer_copy(target, buffer(source, max_bytes_to_copy));
}
/// Copies a limited number of bytes from a source buffer to a target buffer
/// sequence.
/**
* @param target A modifiable buffer sequence representing the memory regions to
* which the bytes will be copied.
*
* @param source A modifiable buffer representing the memory region from which
* the bytes will be copied. The contents of the source buffer will not be
* modified.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
template <typename MutableBufferSequence>
inline std::size_t buffer_copy(const MutableBufferSequence& target,
const mutable_buffer& source, std::size_t max_bytes_to_copy)
{
return buffer_copy(target, buffer(source, max_bytes_to_copy));
}
/// Copies a limited number of bytes from a source buffer to a target buffer
/// sequence.
/**
* @param target A modifiable buffer sequence representing the memory regions to
* which the bytes will be copied.
*
* @param source A modifiable buffer representing the memory region from which
* the bytes will be copied. The contents of the source buffer will not be
* modified.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
template <typename MutableBufferSequence>
inline std::size_t buffer_copy(const MutableBufferSequence& target,
const mutable_buffers_1& source, std::size_t max_bytes_to_copy)
{
return buffer_copy(target, buffer(source, max_bytes_to_copy));
}
/// Copies a limited number of bytes from a source buffer sequence to a target
/// buffer sequence.
/**
* @param target A modifiable buffer sequence representing the memory regions to
* which the bytes will be copied.
*
* @param source A non-modifiable buffer sequence representing the memory
* regions from which the bytes will be copied.
*
* @param max_bytes_to_copy The maximum number of bytes to be copied.
*
* @returns The number of bytes copied.
*
* @note The number of bytes copied is the lesser of:
*
* @li @c buffer_size(target)
*
* @li @c buffer_size(source)
*
* @li @c max_bytes_to_copy
*
* This function is implemented in terms of @c memcpy, and consequently it
* cannot be used to copy between overlapping memory regions.
*/
template <typename MutableBufferSequence, typename ConstBufferSequence>
std::size_t buffer_copy(const MutableBufferSequence& target,
const ConstBufferSequence& source, std::size_t max_bytes_to_copy)
{
std::size_t total_bytes_copied = 0;
typename MutableBufferSequence::const_iterator target_iter = target.begin();
typename MutableBufferSequence::const_iterator target_end = target.end();
std::size_t target_buffer_offset = 0;
typename ConstBufferSequence::const_iterator source_iter = source.begin();
typename ConstBufferSequence::const_iterator source_end = source.end();
std::size_t source_buffer_offset = 0;
while (total_bytes_copied != max_bytes_to_copy
&& target_iter != target_end && source_iter != source_end)
{
mutable_buffer target_buffer =
mutable_buffer(*target_iter) + target_buffer_offset;
const_buffer source_buffer =
const_buffer(*source_iter) + source_buffer_offset;
std::size_t bytes_copied = buffer_copy(target_buffer,
source_buffer, max_bytes_to_copy - total_bytes_copied);
total_bytes_copied += bytes_copied;
if (bytes_copied == buffer_size(target_buffer))
{
++target_iter;
target_buffer_offset = 0;
}
else
target_buffer_offset += bytes_copied;
if (bytes_copied == buffer_size(source_buffer))
{
++source_iter;
source_buffer_offset = 0;
}
else
source_buffer_offset += bytes_copied;
}
return total_bytes_copied;
}
/*@}*/
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BUFFER_HPP