blob: 25a34ba2ec6e348862053b56e0a78590e0a198ff [file] [log] [blame]
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2011-2014 Barend Gehrels, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_PARTITION_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_PARTITION_HPP
#include <vector>
#include <boost/range/algorithm/copy.hpp>
#include <boost/geometry/algorithms/assign.hpp>
#include <boost/geometry/core/coordinate_type.hpp>
namespace boost { namespace geometry
{
namespace detail { namespace partition
{
typedef std::vector<std::size_t> index_vector_type;
template <int Dimension, typename Box>
inline void divide_box(Box const& box, Box& lower_box, Box& upper_box)
{
typedef typename coordinate_type<Box>::type ctype;
// Divide input box into two parts, e.g. left/right
ctype two = 2;
ctype mid = (geometry::get<min_corner, Dimension>(box)
+ geometry::get<max_corner, Dimension>(box)) / two;
lower_box = box;
upper_box = box;
geometry::set<max_corner, Dimension>(lower_box, mid);
geometry::set<min_corner, Dimension>(upper_box, mid);
}
// Divide collection into three subsets: lower, upper and oversized
// (not-fitting)
// (lower == left or bottom, upper == right or top)
template <typename OverlapsPolicy, typename InputCollection, typename Box>
inline void divide_into_subsets(Box const& lower_box,
Box const& upper_box,
InputCollection const& collection,
index_vector_type const& input,
index_vector_type& lower,
index_vector_type& upper,
index_vector_type& exceeding)
{
typedef boost::range_iterator
<
index_vector_type const
>::type index_iterator_type;
for(index_iterator_type it = boost::begin(input);
it != boost::end(input);
++it)
{
bool const lower_overlapping = OverlapsPolicy::apply(lower_box,
collection[*it]);
bool const upper_overlapping = OverlapsPolicy::apply(upper_box,
collection[*it]);
if (lower_overlapping && upper_overlapping)
{
exceeding.push_back(*it);
}
else if (lower_overlapping)
{
lower.push_back(*it);
}
else if (upper_overlapping)
{
upper.push_back(*it);
}
else
{
// Is nowhere. That is (since 1.58) possible, it might be
// skipped by the OverlapsPolicy to enhance performance
}
}
}
template <typename ExpandPolicy, typename Box, typename InputCollection>
inline void expand_with_elements(Box& total,
InputCollection const& collection,
index_vector_type const& input)
{
typedef boost::range_iterator<index_vector_type const>::type it_type;
for(it_type it = boost::begin(input); it != boost::end(input); ++it)
{
ExpandPolicy::apply(total, collection[*it]);
}
}
// Match collection with itself
template <typename InputCollection, typename Policy>
inline void handle_one(InputCollection const& collection,
index_vector_type const& input,
Policy& policy)
{
if (boost::size(input) == 0)
{
return;
}
typedef boost::range_iterator<index_vector_type const>::type
index_iterator_type;
// Quadratic behaviour at lowest level (lowest quad, or all exceeding)
for(index_iterator_type it1 = boost::begin(input);
it1 != boost::end(input);
++it1)
{
index_iterator_type it2 = it1;
for(++it2; it2 != boost::end(input); ++it2)
{
policy.apply(collection[*it1], collection[*it2]);
}
}
}
// Match collection 1 with collection 2
template
<
typename InputCollection1,
typename InputCollection2,
typename Policy
>
inline void handle_two(
InputCollection1 const& collection1, index_vector_type const& input1,
InputCollection2 const& collection2, index_vector_type const& input2,
Policy& policy)
{
if (boost::size(input1) == 0 || boost::size(input2) == 0)
{
return;
}
typedef boost::range_iterator
<
index_vector_type const
>::type index_iterator_type;
for(index_iterator_type it1 = boost::begin(input1);
it1 != boost::end(input1);
++it1)
{
for(index_iterator_type it2 = boost::begin(input2);
it2 != boost::end(input2);
++it2)
{
policy.apply(collection1[*it1], collection2[*it2]);
}
}
}
inline bool recurse_ok(index_vector_type const& input,
std::size_t min_elements, std::size_t level)
{
return boost::size(input) >= min_elements
&& level < 100;
}
inline bool recurse_ok(index_vector_type const& input1,
index_vector_type const& input2,
std::size_t min_elements, std::size_t level)
{
return boost::size(input1) >= min_elements
&& recurse_ok(input2, min_elements, level);
}
inline bool recurse_ok(index_vector_type const& input1,
index_vector_type const& input2,
index_vector_type const& input3,
std::size_t min_elements, std::size_t level)
{
return boost::size(input1) >= min_elements
&& recurse_ok(input2, input3, min_elements, level);
}
template
<
int Dimension,
typename Box,
typename OverlapsPolicy1,
typename OverlapsPolicy2,
typename ExpandPolicy1,
typename ExpandPolicy2,
typename VisitBoxPolicy
>
class partition_two_collections;
template
<
int Dimension,
typename Box,
typename OverlapsPolicy,
typename ExpandPolicy,
typename VisitBoxPolicy
>
class partition_one_collection
{
typedef std::vector<std::size_t> index_vector_type;
template <typename InputCollection>
static inline Box get_new_box(InputCollection const& collection,
index_vector_type const& input)
{
Box box;
geometry::assign_inverse(box);
expand_with_elements<ExpandPolicy>(box, collection, input);
return box;
}
template <typename InputCollection, typename Policy>
static inline void next_level(Box const& box,
InputCollection const& collection,
index_vector_type const& input,
std::size_t level, std::size_t min_elements,
Policy& policy, VisitBoxPolicy& box_policy)
{
if (recurse_ok(input, min_elements, level))
{
partition_one_collection
<
1 - Dimension,
Box,
OverlapsPolicy,
ExpandPolicy,
VisitBoxPolicy
>::apply(box, collection, input,
level + 1, min_elements, policy, box_policy);
}
else
{
handle_one(collection, input, policy);
}
}
// Function to switch to two collections if there are geometries exceeding
// the separation line
template <typename InputCollection, typename Policy>
static inline void next_level2(Box const& box,
InputCollection const& collection,
index_vector_type const& input1,
index_vector_type const& input2,
std::size_t level, std::size_t min_elements,
Policy& policy, VisitBoxPolicy& box_policy)
{
if (recurse_ok(input1, input2, min_elements, level))
{
partition_two_collections
<
1 - Dimension,
Box,
OverlapsPolicy, OverlapsPolicy,
ExpandPolicy, ExpandPolicy,
VisitBoxPolicy
>::apply(box, collection, input1, collection, input2,
level + 1, min_elements, policy, box_policy);
}
else
{
handle_two(collection, input1, collection, input2, policy);
}
}
public :
template <typename InputCollection, typename Policy>
static inline void apply(Box const& box,
InputCollection const& collection,
index_vector_type const& input,
std::size_t level,
std::size_t min_elements,
Policy& policy, VisitBoxPolicy& box_policy)
{
box_policy.apply(box, level);
Box lower_box, upper_box;
divide_box<Dimension>(box, lower_box, upper_box);
index_vector_type lower, upper, exceeding;
divide_into_subsets<OverlapsPolicy>(lower_box, upper_box, collection,
input, lower, upper, exceeding);
if (boost::size(exceeding) > 0)
{
// Get the box of exceeding-only
Box exceeding_box = get_new_box(collection, exceeding);
// Recursively do exceeding elements only, in next dimension they
// will probably be less exceeding within the new box
next_level(exceeding_box, collection, exceeding, level,
min_elements, policy, box_policy);
// Switch to two collections, combine exceeding with lower resp upper
// but not lower/lower, upper/upper
next_level2(exceeding_box, collection, exceeding, lower, level,
min_elements, policy, box_policy);
next_level2(exceeding_box, collection, exceeding, upper, level,
min_elements, policy, box_policy);
}
// Recursively call operation both parts
next_level(lower_box, collection, lower, level, min_elements,
policy, box_policy);
next_level(upper_box, collection, upper, level, min_elements,
policy, box_policy);
}
};
template
<
int Dimension,
typename Box,
typename OverlapsPolicy1,
typename OverlapsPolicy2,
typename ExpandPolicy1,
typename ExpandPolicy2,
typename VisitBoxPolicy
>
class partition_two_collections
{
typedef std::vector<std::size_t> index_vector_type;
template
<
typename InputCollection1,
typename InputCollection2,
typename Policy
>
static inline void next_level(Box const& box,
InputCollection1 const& collection1,
index_vector_type const& input1,
InputCollection2 const& collection2,
index_vector_type const& input2,
std::size_t level, std::size_t min_elements,
Policy& policy, VisitBoxPolicy& box_policy)
{
partition_two_collections
<
1 - Dimension,
Box,
OverlapsPolicy1,
OverlapsPolicy2,
ExpandPolicy1,
ExpandPolicy2,
VisitBoxPolicy
>::apply(box, collection1, input1, collection2, input2,
level + 1, min_elements,
policy, box_policy);
}
template
<
typename ExpandPolicy,
typename InputCollection
>
static inline Box get_new_box(InputCollection const& collection,
index_vector_type const& input)
{
Box box;
geometry::assign_inverse(box);
expand_with_elements<ExpandPolicy>(box, collection, input);
return box;
}
template
<
typename InputCollection1,
typename InputCollection2
>
static inline Box get_new_box(InputCollection1 const& collection1,
index_vector_type const& input1,
InputCollection2 const& collection2,
index_vector_type const& input2)
{
Box box = get_new_box<ExpandPolicy1>(collection1, input1);
expand_with_elements<ExpandPolicy2>(box, collection2, input2);
return box;
}
public :
template
<
typename InputCollection1,
typename InputCollection2,
typename Policy
>
static inline void apply(Box const& box,
InputCollection1 const& collection1, index_vector_type const& input1,
InputCollection2 const& collection2, index_vector_type const& input2,
std::size_t level,
std::size_t min_elements,
Policy& policy, VisitBoxPolicy& box_policy)
{
box_policy.apply(box, level);
Box lower_box, upper_box;
divide_box<Dimension>(box, lower_box, upper_box);
index_vector_type lower1, upper1, exceeding1;
index_vector_type lower2, upper2, exceeding2;
divide_into_subsets<OverlapsPolicy1>(lower_box, upper_box, collection1,
input1, lower1, upper1, exceeding1);
divide_into_subsets<OverlapsPolicy2>(lower_box, upper_box, collection2,
input2, lower2, upper2, exceeding2);
if (boost::size(exceeding1) > 0)
{
// All exceeding from 1 with 2:
if (recurse_ok(exceeding1, exceeding2, min_elements, level))
{
Box exceeding_box = get_new_box(collection1, exceeding1,
collection2, exceeding2);
next_level(exceeding_box, collection1, exceeding1,
collection2, exceeding2, level,
min_elements, policy, box_policy);
}
else
{
handle_two(collection1, exceeding1, collection2, exceeding2,
policy);
}
// All exceeding from 1 with lower and upper of 2:
// (Check sizes of all three collections to avoid recurse into
// the same combinations again and again)
if (recurse_ok(lower2, upper2, exceeding1, min_elements, level))
{
Box exceeding_box
= get_new_box<ExpandPolicy1>(collection1, exceeding1);
next_level(exceeding_box, collection1, exceeding1,
collection2, lower2, level, min_elements, policy, box_policy);
next_level(exceeding_box, collection1, exceeding1,
collection2, upper2, level, min_elements, policy, box_policy);
}
else
{
handle_two(collection1, exceeding1, collection2, lower2, policy);
handle_two(collection1, exceeding1, collection2, upper2, policy);
}
}
if (boost::size(exceeding2) > 0)
{
// All exceeding from 2 with lower and upper of 1:
if (recurse_ok(lower1, upper1, exceeding2, min_elements, level))
{
Box exceeding_box
= get_new_box<ExpandPolicy2>(collection2, exceeding2);
next_level(exceeding_box, collection1, lower1,
collection2, exceeding2, level, min_elements, policy, box_policy);
next_level(exceeding_box, collection1, upper1,
collection2, exceeding2, level, min_elements, policy, box_policy);
}
else
{
handle_two(collection1, lower1, collection2, exceeding2, policy);
handle_two(collection1, upper1, collection2, exceeding2, policy);
}
}
if (recurse_ok(lower1, lower2, min_elements, level))
{
next_level(lower_box, collection1, lower1, collection2, lower2, level,
min_elements, policy, box_policy);
}
else
{
handle_two(collection1, lower1, collection2, lower2, policy);
}
if (recurse_ok(upper1, upper2, min_elements, level))
{
next_level(upper_box, collection1, upper1, collection2, upper2, level,
min_elements, policy, box_policy);
}
else
{
handle_two(collection1, upper1, collection2, upper2, policy);
}
}
};
struct visit_no_policy
{
template <typename Box>
static inline void apply(Box const&, std::size_t )
{}
};
struct include_all_policy
{
template <typename Item>
static inline bool apply(Item const&)
{
return true;
}
};
}} // namespace detail::partition
template
<
typename Box,
typename ExpandPolicy1,
typename OverlapsPolicy1,
typename ExpandPolicy2 = ExpandPolicy1,
typename OverlapsPolicy2 = OverlapsPolicy1,
typename IncludePolicy1 = detail::partition::include_all_policy,
typename IncludePolicy2 = detail::partition::include_all_policy,
typename VisitBoxPolicy = detail::partition::visit_no_policy
>
class partition
{
typedef std::vector<std::size_t> index_vector_type;
template <typename ExpandPolicy, typename IncludePolicy, typename InputCollection>
static inline void expand_to_collection(InputCollection const& collection,
Box& total, index_vector_type& index_vector)
{
std::size_t index = 0;
for(typename boost::range_iterator<InputCollection const>::type it
= boost::begin(collection);
it != boost::end(collection);
++it, ++index)
{
if (IncludePolicy::apply(*it))
{
ExpandPolicy::apply(total, *it);
index_vector.push_back(index);
}
}
}
public :
template <typename InputCollection, typename VisitPolicy>
static inline void apply(InputCollection const& collection,
VisitPolicy& visitor,
std::size_t min_elements = 16,
VisitBoxPolicy box_visitor = detail::partition::visit_no_policy()
)
{
if (std::size_t(boost::size(collection)) > min_elements)
{
index_vector_type index_vector;
Box total;
assign_inverse(total);
expand_to_collection<ExpandPolicy1, IncludePolicy1>(collection,
total, index_vector);
detail::partition::partition_one_collection
<
0, Box,
OverlapsPolicy1,
ExpandPolicy1,
VisitBoxPolicy
>::apply(total, collection, index_vector, 0, min_elements,
visitor, box_visitor);
}
else
{
typedef typename boost::range_iterator
<
InputCollection const
>::type iterator_type;
for(iterator_type it1 = boost::begin(collection);
it1 != boost::end(collection);
++it1)
{
iterator_type it2 = it1;
for(++it2; it2 != boost::end(collection); ++it2)
{
visitor.apply(*it1, *it2);
}
}
}
}
template
<
typename InputCollection1,
typename InputCollection2,
typename VisitPolicy
>
static inline void apply(InputCollection1 const& collection1,
InputCollection2 const& collection2,
VisitPolicy& visitor,
std::size_t min_elements = 16,
VisitBoxPolicy box_visitor = detail::partition::visit_no_policy()
)
{
if (std::size_t(boost::size(collection1)) > min_elements
&& std::size_t(boost::size(collection2)) > min_elements)
{
index_vector_type index_vector1, index_vector2;
Box total;
assign_inverse(total);
expand_to_collection<ExpandPolicy1, IncludePolicy1>(collection1,
total, index_vector1);
expand_to_collection<ExpandPolicy2, IncludePolicy2>(collection2,
total, index_vector2);
detail::partition::partition_two_collections
<
0, Box, OverlapsPolicy1, OverlapsPolicy2,
ExpandPolicy1, ExpandPolicy2, VisitBoxPolicy
>::apply(total,
collection1, index_vector1,
collection2, index_vector2,
0, min_elements, visitor, box_visitor);
}
else
{
typedef typename boost::range_iterator
<
InputCollection1 const
>::type iterator_type1;
typedef typename boost::range_iterator
<
InputCollection2 const
>::type iterator_type2;
for(iterator_type1 it1 = boost::begin(collection1);
it1 != boost::end(collection1);
++it1)
{
for(iterator_type2 it2 = boost::begin(collection2);
it2 != boost::end(collection2);
++it2)
{
visitor.apply(*it1, *it2);
}
}
}
}
};
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_PARTITION_HPP