blob: 2c44b009e763e834b6ae4fe643a332c54e61999e [file] [log] [blame]
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// This file was modified by Oracle on 2013, 2014.
// Modifications copyright (c) 2013-2014 Oracle and/or its affiliates.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_RELATE_FOLLOW_HELPERS_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_RELATE_FOLLOW_HELPERS_HPP
#include <boost/geometry/util/condition.hpp>
#include <boost/geometry/util/range.hpp>
//#include <boost/geometry/algorithms/detail/sub_range.hpp>
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace relate {
// NOTE: This iterates through single geometries for which turns were not generated.
// It doesn't mean that the geometry is disjoint, only that no turns were detected.
template <std::size_t OpId,
typename Geometry,
typename Tag = typename geometry::tag<Geometry>::type,
bool IsMulti = boost::is_base_of<multi_tag, Tag>::value
>
struct for_each_disjoint_geometry_if
: public not_implemented<Tag>
{};
template <std::size_t OpId, typename Geometry, typename Tag>
struct for_each_disjoint_geometry_if<OpId, Geometry, Tag, false>
{
template <typename TurnIt, typename Pred>
static inline bool apply(TurnIt first, TurnIt last,
Geometry const& geometry,
Pred & pred)
{
if ( first != last )
return false;
pred(geometry);
return true;
}
};
template <std::size_t OpId, typename Geometry, typename Tag>
struct for_each_disjoint_geometry_if<OpId, Geometry, Tag, true>
{
template <typename TurnIt, typename Pred>
static inline bool apply(TurnIt first, TurnIt last,
Geometry const& geometry,
Pred & pred)
{
if ( first != last )
return for_turns(first, last, geometry, pred);
else
return for_empty(geometry, pred);
}
template <typename Pred>
static inline bool for_empty(Geometry const& geometry,
Pred & pred)
{
typedef typename boost::range_iterator<Geometry const>::type iterator;
// O(N)
// check predicate for each contained geometry without generated turn
for ( iterator it = boost::begin(geometry) ;
it != boost::end(geometry) ; ++it )
{
bool cont = pred(*it);
if ( !cont )
break;
}
return !boost::empty(geometry);
}
template <typename TurnIt, typename Pred>
static inline bool for_turns(TurnIt first, TurnIt last,
Geometry const& geometry,
Pred & pred)
{
BOOST_ASSERT(first != last);
const std::size_t count = boost::size(geometry);
boost::ignore_unused_variable_warning(count);
// O(I)
// gather info about turns generated for contained geometries
std::vector<bool> detected_intersections(count, false);
for ( TurnIt it = first ; it != last ; ++it )
{
signed_index_type multi_index = it->operations[OpId].seg_id.multi_index;
BOOST_ASSERT(multi_index >= 0);
std::size_t const index = static_cast<std::size_t>(multi_index);
BOOST_ASSERT(index < count);
detected_intersections[index] = true;
}
bool found = false;
// O(N)
// check predicate for each contained geometry without generated turn
for ( std::vector<bool>::iterator it = detected_intersections.begin() ;
it != detected_intersections.end() ; ++it )
{
// if there were no intersections for this multi_index
if ( *it == false )
{
found = true;
std::size_t const index = std::size_t(std::distance(detected_intersections.begin(), it));
bool cont = pred(range::at(geometry, index));
if ( !cont )
break;
}
}
return found;
}
};
// WARNING! This class stores pointers!
// Passing a reference to local variable will result in undefined behavior!
template <typename Point>
class point_info
{
public:
point_info() : sid_ptr(NULL), pt_ptr(NULL) {}
point_info(Point const& pt, segment_identifier const& sid)
: sid_ptr(boost::addressof(sid))
, pt_ptr(boost::addressof(pt))
{}
segment_identifier const& seg_id() const
{
BOOST_ASSERT(sid_ptr);
return *sid_ptr;
}
Point const& point() const
{
BOOST_ASSERT(pt_ptr);
return *pt_ptr;
}
//friend bool operator==(point_identifier const& l, point_identifier const& r)
//{
// return l.seg_id() == r.seg_id()
// && detail::equals::equals_point_point(l.point(), r.point());
//}
private:
const segment_identifier * sid_ptr;
const Point * pt_ptr;
};
// WARNING! This class stores pointers!
// Passing a reference to local variable will result in undefined behavior!
class same_single
{
public:
same_single(segment_identifier const& sid)
: sid_ptr(boost::addressof(sid))
{}
bool operator()(segment_identifier const& sid) const
{
return sid.multi_index == sid_ptr->multi_index;
}
template <typename Point>
bool operator()(point_info<Point> const& pid) const
{
return operator()(pid.seg_id());
}
private:
const segment_identifier * sid_ptr;
};
class same_ring
{
public:
same_ring(segment_identifier const& sid)
: sid_ptr(boost::addressof(sid))
{}
bool operator()(segment_identifier const& sid) const
{
return sid.multi_index == sid_ptr->multi_index
&& sid.ring_index == sid_ptr->ring_index;
}
private:
const segment_identifier * sid_ptr;
};
// WARNING! This class stores pointers!
// Passing a reference to local variable will result in undefined behavior!
template <typename SameRange = same_single>
class segment_watcher
{
public:
segment_watcher()
: m_seg_id_ptr(NULL)
{}
bool update(segment_identifier const& seg_id)
{
bool result = m_seg_id_ptr == 0 || !SameRange(*m_seg_id_ptr)(seg_id);
m_seg_id_ptr = boost::addressof(seg_id);
return result;
}
private:
const segment_identifier * m_seg_id_ptr;
};
// WARNING! This class stores pointers!
// Passing a reference to local variable will result in undefined behavior!
template <typename TurnInfo, std::size_t OpId>
class exit_watcher
{
static const std::size_t op_id = OpId;
static const std::size_t other_op_id = (OpId + 1) % 2;
typedef typename TurnInfo::point_type point_type;
typedef detail::relate::point_info<point_type> point_info;
public:
exit_watcher()
: m_exit_operation(overlay::operation_none)
, m_exit_turn_ptr(NULL)
{}
void enter(TurnInfo const& turn)
{
m_other_entry_points.push_back(
point_info(turn.point, turn.operations[other_op_id].seg_id) );
}
// TODO: exit_per_geometry parameter looks not very safe
// wrong value may be easily passed
void exit(TurnInfo const& turn, bool exit_per_geometry = true)
{
//segment_identifier const& seg_id = turn.operations[op_id].seg_id;
segment_identifier const& other_id = turn.operations[other_op_id].seg_id;
overlay::operation_type exit_op = turn.operations[op_id].operation;
typedef typename std::vector<point_info>::iterator point_iterator;
// search for the entry point in the same range of other geometry
point_iterator entry_it = std::find_if(m_other_entry_points.begin(),
m_other_entry_points.end(),
same_single(other_id));
// this end point has corresponding entry point
if ( entry_it != m_other_entry_points.end() )
{
// erase the corresponding entry point
m_other_entry_points.erase(entry_it);
if ( exit_per_geometry || m_other_entry_points.empty() )
{
// here we know that we possibly left LS
// we must still check if we didn't get back on the same point
m_exit_operation = exit_op;
m_exit_turn_ptr = boost::addressof(turn);
}
}
}
bool is_outside() const
{
// if we didn't entered anything in the past, we're outside
return m_other_entry_points.empty();
}
bool is_outside(TurnInfo const& turn) const
{
return m_other_entry_points.empty()
|| std::find_if(m_other_entry_points.begin(),
m_other_entry_points.end(),
same_single(
turn.operations[other_op_id].seg_id))
== m_other_entry_points.end();
}
overlay::operation_type get_exit_operation() const
{
return m_exit_operation;
}
point_type const& get_exit_point() const
{
BOOST_ASSERT(m_exit_operation != overlay::operation_none);
BOOST_ASSERT(m_exit_turn_ptr);
return m_exit_turn_ptr->point;
}
TurnInfo const& get_exit_turn() const
{
BOOST_ASSERT(m_exit_operation != overlay::operation_none);
BOOST_ASSERT(m_exit_turn_ptr);
return *m_exit_turn_ptr;
}
void reset_detected_exit()
{
m_exit_operation = overlay::operation_none;
}
void reset()
{
m_exit_operation = overlay::operation_none;
m_other_entry_points.clear();
}
private:
overlay::operation_type m_exit_operation;
const TurnInfo * m_exit_turn_ptr;
std::vector<point_info> m_other_entry_points; // TODO: use map here or sorted vector?
};
template <std::size_t OpId, typename Turn>
inline bool turn_on_the_same_ip(Turn const& prev_turn, Turn const& curr_turn)
{
segment_identifier const& prev_seg_id = prev_turn.operations[OpId].seg_id;
segment_identifier const& curr_seg_id = curr_turn.operations[OpId].seg_id;
if ( prev_seg_id.multi_index != curr_seg_id.multi_index
|| prev_seg_id.ring_index != curr_seg_id.ring_index )
{
return false;
}
// TODO: will this work if between segments there will be some number of degenerated ones?
if ( prev_seg_id.segment_index != curr_seg_id.segment_index
&& ( ! curr_turn.operations[OpId].fraction.is_zero()
|| prev_seg_id.segment_index + 1 != curr_seg_id.segment_index ) )
{
return false;
}
return detail::equals::equals_point_point(prev_turn.point, curr_turn.point);
}
template <boundary_query BoundaryQuery,
typename Point,
typename BoundaryChecker>
static inline bool is_endpoint_on_boundary(Point const& pt,
BoundaryChecker & boundary_checker)
{
return boundary_checker.template is_endpoint_boundary<BoundaryQuery>(pt);
}
template <boundary_query BoundaryQuery,
typename IntersectionPoint,
typename OperationInfo,
typename BoundaryChecker>
static inline bool is_ip_on_boundary(IntersectionPoint const& ip,
OperationInfo const& operation_info,
BoundaryChecker & boundary_checker,
segment_identifier const& seg_id)
{
boost::ignore_unused_variable_warning(seg_id);
bool res = false;
// IP on the last point of the linestring
if ( BOOST_GEOMETRY_CONDITION(BoundaryQuery == boundary_back || BoundaryQuery == boundary_any)
&& operation_info.position == overlay::position_back )
{
// check if this point is a boundary
res = boundary_checker.template is_endpoint_boundary<boundary_back>(ip);
}
// IP on the last point of the linestring
else if ( BOOST_GEOMETRY_CONDITION(BoundaryQuery == boundary_front || BoundaryQuery == boundary_any)
&& operation_info.position == overlay::position_front )
{
// check if this point is a boundary
res = boundary_checker.template is_endpoint_boundary<boundary_front>(ip);
}
return res;
}
}} // namespace detail::relate
#endif // DOXYGEN_NO_DETAIL
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_RELATE_FOLLOW_HELPERS_HPP