blob: e26bda67f2366ba99ad12af54013664fd26f196a [file] [log] [blame]
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// This file was modified by Oracle on 2013, 2014, 2015.
// Modifications copyright (c) 2013-2015 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_RELATE_RESULT_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_RELATE_RESULT_HPP
#include <boost/tuple/tuple.hpp>
#include <boost/mpl/is_sequence.hpp>
#include <boost/mpl/begin.hpp>
#include <boost/mpl/end.hpp>
#include <boost/mpl/next.hpp>
#include <boost/mpl/at.hpp>
#include <boost/mpl/vector_c.hpp>
#include <boost/geometry/core/topological_dimension.hpp>
#include <boost/geometry/util/condition.hpp>
// TEMP - move this header to geometry/detail
#include <boost/geometry/index/detail/tuples.hpp>
namespace boost { namespace geometry {
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace relate {
enum field { interior = 0, boundary = 1, exterior = 2 };
// TODO: IF THE RESULT IS UPDATED WITH THE MAX POSSIBLE VALUE FOR SOME PAIR OF GEOEMTRIES
// THE VALUE ALREADY STORED MUSN'T BE CHECKED
// update() calls chould be replaced with set() in those cases
// but for safety reasons (STATIC_ASSERT) we should check if parameter D is valid and set() doesn't do that
// so some additional function could be added, e.g. set_dim()
// matrix
// TODO add height?
template <std::size_t Width>
class matrix
{
BOOST_STATIC_ASSERT(Width == 2 || Width == 3);
public:
static const std::size_t size = Width * Width;
inline matrix()
{
::memset(m_array, 'F', size);
}
template <field F1, field F2>
inline char get() const
{
static const bool in_bounds = F1 * Width + F2 < size;
return get_dispatch<F1, F2>(integral_constant<bool, in_bounds>());
}
template <field F1, field F2, char V>
inline void set()
{
static const bool in_bounds = F1 * Width + F2 < size;
set_dispatch<F1, F2, V>(integral_constant<bool, in_bounds>());
}
template <field F1, field F2, char D>
inline void update()
{
static const bool in_bounds = F1 * Width + F2 < size;
update_dispatch<F1, F2, D>(integral_constant<bool, in_bounds>());
}
inline const char * data() const
{
return m_array;
}
private:
template <field F1, field F2>
inline char get_dispatch(integral_constant<bool, true>) const
{
return m_array[F1 * Width + F2];
}
template <field F1, field F2>
inline char get_dispatch(integral_constant<bool, false>) const
{
return 'F';
}
template <field F1, field F2, char V>
inline void set_dispatch(integral_constant<bool, true>)
{
BOOST_STATIC_ASSERT(('0' <= V && V <= '9') || V == 'T' || V == 'F');
m_array[F1 * Width + F2] = V;
}
template <field F1, field F2, char V>
inline void set_dispatch(integral_constant<bool, false>)
{}
template <field F1, field F2, char D>
inline void update_dispatch(integral_constant<bool, true>)
{
BOOST_STATIC_ASSERT('0' <= D && D <= '9');
char c = m_array[F1 * Width + F2];
if ( D > c || c > '9')
m_array[F1 * Width + F2] = D;
}
template <field F1, field F2, char D>
inline void update_dispatch(integral_constant<bool, false>)
{}
char m_array[size];
};
// TODO add EnableDimensions parameter?
struct matrix9 {};
//struct matrix4 {};
// matrix_width
template <typename MatrixOrMask>
struct matrix_width
: not_implemented<MatrixOrMask>
{};
template <>
struct matrix_width<matrix9>
{
static const std::size_t value = 3;
};
// matrix_handler
template <typename Matrix>
class matrix_handler
: private matrix<matrix_width<Matrix>::value>
{
typedef matrix<matrix_width<Matrix>::value> base_t;
public:
typedef std::string result_type;
static const bool interrupt = false;
matrix_handler(Matrix const&)
{}
result_type result() const
{
return std::string(this->data(),
this->data() + base_t::size);
}
template <field F1, field F2, char D>
inline bool may_update() const
{
BOOST_STATIC_ASSERT('0' <= D && D <= '9');
char const c = static_cast<base_t const&>(*this).template get<F1, F2>();
return D > c || c > '9';
}
//template <field F1, field F2>
//inline char get() const
//{
// return static_cast<base_t const&>(*this).template get<F1, F2>();
//}
template <field F1, field F2, char V>
inline void set()
{
static_cast<base_t&>(*this).template set<F1, F2, V>();
}
template <field F1, field F2, char D>
inline void update()
{
static_cast<base_t&>(*this).template update<F1, F2, D>();
}
};
// RUN-TIME MASKS
// mask9
class mask9
{
public:
static const std::size_t width = 3; // TEMP
inline mask9(std::string const& de9im_mask)
{
// TODO: throw an exception here?
BOOST_ASSERT(de9im_mask.size() == 9);
::memcpy(m_mask, de9im_mask.c_str(), 9);
}
template <field F1, field F2>
inline char get() const
{
return m_mask[F1 * 3 + F2];
}
private:
char m_mask[9];
};
// interrupt()
template <typename Mask, bool InterruptEnabled>
struct interrupt_dispatch
{
template <field F1, field F2, char V>
static inline bool apply(Mask const&)
{
return false;
}
};
template <typename Mask>
struct interrupt_dispatch<Mask, true>
{
template <field F1, field F2, char V>
static inline bool apply(Mask const& mask)
{
char m = mask.template get<F1, F2>();
return check_element<V>(m);
}
template <char V>
static inline bool check_element(char m)
{
if ( BOOST_GEOMETRY_CONDITION(V >= '0' && V <= '9') )
{
return m == 'F' || ( m < V && m >= '0' && m <= '9' );
}
else if ( BOOST_GEOMETRY_CONDITION(V == 'T') )
{
return m == 'F';
}
return false;
}
};
template <typename Masks, int I = 0, int N = boost::tuples::length<Masks>::value>
struct interrupt_dispatch_tuple
{
template <field F1, field F2, char V>
static inline bool apply(Masks const& masks)
{
typedef typename boost::tuples::element<I, Masks>::type mask_type;
mask_type const& mask = boost::get<I>(masks);
return interrupt_dispatch<mask_type, true>::template apply<F1, F2, V>(mask)
&& interrupt_dispatch_tuple<Masks, I+1>::template apply<F1, F2, V>(masks);
}
};
template <typename Masks, int N>
struct interrupt_dispatch_tuple<Masks, N, N>
{
template <field F1, field F2, char V>
static inline bool apply(Masks const& )
{
return true;
}
};
template <typename T0, typename T1, typename T2, typename T3, typename T4,
typename T5, typename T6, typename T7, typename T8, typename T9>
struct interrupt_dispatch<boost::tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>, true>
{
typedef boost::tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> mask_type;
template <field F1, field F2, char V>
static inline bool apply(mask_type const& mask)
{
return interrupt_dispatch_tuple<mask_type>::template apply<F1, F2, V>(mask);
}
};
template <typename Head, typename Tail>
struct interrupt_dispatch<boost::tuples::cons<Head, Tail>, true>
{
typedef boost::tuples::cons<Head, Tail> mask_type;
template <field F1, field F2, char V>
static inline bool apply(mask_type const& mask)
{
return interrupt_dispatch_tuple<mask_type>::template apply<F1, F2, V>(mask);
}
};
template <field F1, field F2, char V, bool InterruptEnabled, typename Mask>
inline bool interrupt(Mask const& mask)
{
return interrupt_dispatch<Mask, InterruptEnabled>
::template apply<F1, F2, V>(mask);
}
// may_update()
template <typename Mask>
struct may_update_dispatch
{
template <field F1, field F2, char D, typename Matrix>
static inline bool apply(Mask const& mask, Matrix const& matrix)
{
BOOST_STATIC_ASSERT('0' <= D && D <= '9');
char const m = mask.template get<F1, F2>();
if ( m == 'F' )
{
return true;
}
else if ( m == 'T' )
{
char const c = matrix.template get<F1, F2>();
return c == 'F'; // if it's T or between 0 and 9, the result will be the same
}
else if ( m >= '0' && m <= '9' )
{
char const c = matrix.template get<F1, F2>();
return D > c || c > '9';
}
return false;
}
};
template <typename Masks, int I = 0, int N = boost::tuples::length<Masks>::value>
struct may_update_dispatch_tuple
{
template <field F1, field F2, char D, typename Matrix>
static inline bool apply(Masks const& masks, Matrix const& matrix)
{
typedef typename boost::tuples::element<I, Masks>::type mask_type;
mask_type const& mask = boost::get<I>(masks);
return may_update_dispatch<mask_type>::template apply<F1, F2, D>(mask, matrix)
|| may_update_dispatch_tuple<Masks, I+1>::template apply<F1, F2, D>(masks, matrix);
}
};
template <typename Masks, int N>
struct may_update_dispatch_tuple<Masks, N, N>
{
template <field F1, field F2, char D, typename Matrix>
static inline bool apply(Masks const& , Matrix const& )
{
return false;
}
};
template <typename T0, typename T1, typename T2, typename T3, typename T4,
typename T5, typename T6, typename T7, typename T8, typename T9>
struct may_update_dispatch< boost::tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> >
{
typedef boost::tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> mask_type;
template <field F1, field F2, char D, typename Matrix>
static inline bool apply(mask_type const& mask, Matrix const& matrix)
{
return may_update_dispatch_tuple<mask_type>::template apply<F1, F2, D>(mask, matrix);
}
};
template <typename Head, typename Tail>
struct may_update_dispatch< boost::tuples::cons<Head, Tail> >
{
typedef boost::tuples::cons<Head, Tail> mask_type;
template <field F1, field F2, char D, typename Matrix>
static inline bool apply(mask_type const& mask, Matrix const& matrix)
{
return may_update_dispatch_tuple<mask_type>::template apply<F1, F2, D>(mask, matrix);
}
};
template <field F1, field F2, char D, typename Mask, typename Matrix>
inline bool may_update(Mask const& mask, Matrix const& matrix)
{
return may_update_dispatch<Mask>
::template apply<F1, F2, D>(mask, matrix);
}
// check_matrix()
template <typename Mask>
struct check_dispatch
{
template <typename Matrix>
static inline bool apply(Mask const& mask, Matrix const& matrix)
{
return per_one<interior, interior>(mask, matrix)
&& per_one<interior, boundary>(mask, matrix)
&& per_one<interior, exterior>(mask, matrix)
&& per_one<boundary, interior>(mask, matrix)
&& per_one<boundary, boundary>(mask, matrix)
&& per_one<boundary, exterior>(mask, matrix)
&& per_one<exterior, interior>(mask, matrix)
&& per_one<exterior, boundary>(mask, matrix)
&& per_one<exterior, exterior>(mask, matrix);
}
template <field F1, field F2, typename Matrix>
static inline bool per_one(Mask const& mask, Matrix const& matrix)
{
const char mask_el = mask.template get<F1, F2>();
const char el = matrix.template get<F1, F2>();
if ( mask_el == 'F' )
{
return el == 'F';
}
else if ( mask_el == 'T' )
{
return el == 'T' || ( el >= '0' && el <= '9' );
}
else if ( mask_el >= '0' && mask_el <= '9' )
{
return el == mask_el;
}
return true;
}
};
template <typename Masks, int I = 0, int N = boost::tuples::length<Masks>::value>
struct check_dispatch_tuple
{
template <typename Matrix>
static inline bool apply(Masks const& masks, Matrix const& matrix)
{
typedef typename boost::tuples::element<I, Masks>::type mask_type;
mask_type const& mask = boost::get<I>(masks);
return check_dispatch<mask_type>::apply(mask, matrix)
|| check_dispatch_tuple<Masks, I+1>::apply(masks, matrix);
}
};
template <typename Masks, int N>
struct check_dispatch_tuple<Masks, N, N>
{
template <typename Matrix>
static inline bool apply(Masks const&, Matrix const&)
{
return false;
}
};
template <typename T0, typename T1, typename T2, typename T3, typename T4,
typename T5, typename T6, typename T7, typename T8, typename T9>
struct check_dispatch< boost::tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> >
{
typedef boost::tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> mask_type;
template <typename Matrix>
static inline bool apply(mask_type const& mask, Matrix const& matrix)
{
return check_dispatch_tuple<mask_type>::apply(mask, matrix);
}
};
template <typename Head, typename Tail>
struct check_dispatch< boost::tuples::cons<Head, Tail> >
{
typedef boost::tuples::cons<Head, Tail> mask_type;
template <typename Matrix>
static inline bool apply(mask_type const& mask, Matrix const& matrix)
{
return check_dispatch_tuple<mask_type>::apply(mask, matrix);
}
};
template <typename Mask, typename Matrix>
inline bool check_matrix(Mask const& mask, Matrix const& matrix)
{
return check_dispatch<Mask>::apply(mask, matrix);
}
// matrix_width
template <>
struct matrix_width<mask9>
{
static const std::size_t value = 3;
};
template <typename Tuple,
int I = 0,
int N = boost::tuples::length<Tuple>::value>
struct matrix_width_tuple
{
static const std::size_t
current = matrix_width<typename boost::tuples::element<I, Tuple>::type>::value;
static const std::size_t
next = matrix_width_tuple<Tuple, I+1>::value;
static const std::size_t
value = current > next ? current : next;
};
template <typename Tuple, int N>
struct matrix_width_tuple<Tuple, N, N>
{
static const std::size_t value = 0;
};
template <typename Head, typename Tail>
struct matrix_width< boost::tuples::cons<Head, Tail> >
{
static const std::size_t
value = matrix_width_tuple< boost::tuples::cons<Head, Tail> >::value;
};
// matrix_handler
template <typename Mask, bool Interrupt>
class mask_handler
: private matrix<matrix_width<Mask>::value>
{
typedef matrix<matrix_width<Mask>::value> base_t;
public:
typedef bool result_type;
bool interrupt;
inline mask_handler(Mask const& m)
: interrupt(false)
, m_mask(m)
{}
result_type result() const
{
return !interrupt
&& check_matrix(m_mask, static_cast<base_t const&>(*this));
}
template <field F1, field F2, char D>
inline bool may_update() const
{
return detail::relate::may_update<F1, F2, D>(
m_mask, static_cast<base_t const&>(*this)
);
}
//template <field F1, field F2>
//inline char get() const
//{
// return static_cast<base_t const&>(*this).template get<F1, F2>();
//}
template <field F1, field F2, char V>
inline void set()
{
if ( relate::interrupt<F1, F2, V, Interrupt>(m_mask) )
{
interrupt = true;
}
else
{
base_t::template set<F1, F2, V>();
}
}
template <field F1, field F2, char V>
inline void update()
{
if ( relate::interrupt<F1, F2, V, Interrupt>(m_mask) )
{
interrupt = true;
}
else
{
base_t::template update<F1, F2, V>();
}
}
private:
Mask const& m_mask;
};
// STATIC MASKS
// static_mask
template <char II, char IB, char IE,
char BI, char BB, char BE,
char EI, char EB, char EE>
class static_mask
{
typedef boost::mpl::vector_c
<
char, II, IB, IE, BI, BB, BE, EI, EB, EE
> vector_type;
public:
template <field F1, field F2>
struct get
{
BOOST_STATIC_ASSERT(F1 * 3 + F2 < boost::mpl::size<vector_type>::value);
static const char value
= boost::mpl::at_c<vector_type, F1 * 3 + F2>::type::value;
};
};
// static_should_handle_element
template <typename StaticMask, field F1, field F2, bool IsSequence>
struct static_should_handle_element_dispatch
{
static const char mask_el = StaticMask::template get<F1, F2>::value;
static const bool value = mask_el == 'F'
|| mask_el == 'T'
|| ( mask_el >= '0' && mask_el <= '9' );
};
template <typename First, typename Last, field F1, field F2>
struct static_should_handle_element_sequence
{
typedef typename boost::mpl::deref<First>::type StaticMask;
static const bool value
= static_should_handle_element_dispatch
<
StaticMask,
F1, F2,
boost::mpl::is_sequence<StaticMask>::value
>::value
|| static_should_handle_element_sequence
<
typename boost::mpl::next<First>::type,
Last,
F1, F2
>::value;
};
template <typename Last, field F1, field F2>
struct static_should_handle_element_sequence<Last, Last, F1, F2>
{
static const bool value = false;
};
template <typename StaticMask, field F1, field F2>
struct static_should_handle_element_dispatch<StaticMask, F1, F2, true>
{
static const bool value
= static_should_handle_element_sequence
<
typename boost::mpl::begin<StaticMask>::type,
typename boost::mpl::end<StaticMask>::type,
F1, F2
>::value;
};
template <typename StaticMask, field F1, field F2>
struct static_should_handle_element
{
static const bool value
= static_should_handle_element_dispatch
<
StaticMask,
F1, F2,
boost::mpl::is_sequence<StaticMask>::value
>::value;
};
// static_interrupt
template <typename StaticMask, char V, field F1, field F2, bool InterruptEnabled, bool IsSequence>
struct static_interrupt_dispatch
{
static const bool value = false;
};
template <typename StaticMask, char V, field F1, field F2, bool IsSequence>
struct static_interrupt_dispatch<StaticMask, V, F1, F2, true, IsSequence>
{
static const char mask_el = StaticMask::template get<F1, F2>::value;
static const bool value
= ( V >= '0' && V <= '9' ) ?
( mask_el == 'F' || ( mask_el < V && mask_el >= '0' && mask_el <= '9' ) ) :
( ( V == 'T' ) ? mask_el == 'F' : false );
};
template <typename First, typename Last, char V, field F1, field F2>
struct static_interrupt_sequence
{
typedef typename boost::mpl::deref<First>::type StaticMask;
static const bool value
= static_interrupt_dispatch
<
StaticMask,
V, F1, F2,
true,
boost::mpl::is_sequence<StaticMask>::value
>::value
&& static_interrupt_sequence
<
typename boost::mpl::next<First>::type,
Last,
V, F1, F2
>::value;
};
template <typename Last, char V, field F1, field F2>
struct static_interrupt_sequence<Last, Last, V, F1, F2>
{
static const bool value = true;
};
template <typename StaticMask, char V, field F1, field F2>
struct static_interrupt_dispatch<StaticMask, V, F1, F2, true, true>
{
static const bool value
= static_interrupt_sequence
<
typename boost::mpl::begin<StaticMask>::type,
typename boost::mpl::end<StaticMask>::type,
V, F1, F2
>::value;
};
template <typename StaticMask, char V, field F1, field F2, bool EnableInterrupt>
struct static_interrupt
{
static const bool value
= static_interrupt_dispatch
<
StaticMask,
V, F1, F2,
EnableInterrupt,
boost::mpl::is_sequence<StaticMask>::value
>::value;
};
// static_may_update
template <typename StaticMask, char D, field F1, field F2, bool IsSequence>
struct static_may_update_dispatch
{
static const char mask_el = StaticMask::template get<F1, F2>::value;
static const int version
= mask_el == 'F' ? 0
: mask_el == 'T' ? 1
: mask_el >= '0' && mask_el <= '9' ? 2
: 3;
template <typename Matrix>
static inline bool apply(Matrix const& matrix)
{
return apply_dispatch(matrix, integral_constant<int, version>());
}
// mask_el == 'F'
template <typename Matrix>
static inline bool apply_dispatch(Matrix const& , integral_constant<int, 0>)
{
return true;
}
// mask_el == 'T'
template <typename Matrix>
static inline bool apply_dispatch(Matrix const& matrix, integral_constant<int, 1>)
{
char const c = matrix.template get<F1, F2>();
return c == 'F'; // if it's T or between 0 and 9, the result will be the same
}
// mask_el >= '0' && mask_el <= '9'
template <typename Matrix>
static inline bool apply_dispatch(Matrix const& matrix, integral_constant<int, 2>)
{
char const c = matrix.template get<F1, F2>();
return D > c || c > '9';
}
// else
template <typename Matrix>
static inline bool apply_dispatch(Matrix const&, integral_constant<int, 3>)
{
return false;
}
};
template <typename First, typename Last, char D, field F1, field F2>
struct static_may_update_sequence
{
typedef typename boost::mpl::deref<First>::type StaticMask;
template <typename Matrix>
static inline bool apply(Matrix const& matrix)
{
return static_may_update_dispatch
<
StaticMask,
D, F1, F2,
boost::mpl::is_sequence<StaticMask>::value
>::apply(matrix)
|| static_may_update_sequence
<
typename boost::mpl::next<First>::type,
Last,
D, F1, F2
>::apply(matrix);
}
};
template <typename Last, char D, field F1, field F2>
struct static_may_update_sequence<Last, Last, D, F1, F2>
{
template <typename Matrix>
static inline bool apply(Matrix const& /*matrix*/)
{
return false;
}
};
template <typename StaticMask, char D, field F1, field F2>
struct static_may_update_dispatch<StaticMask, D, F1, F2, true>
{
template <typename Matrix>
static inline bool apply(Matrix const& matrix)
{
return static_may_update_sequence
<
typename boost::mpl::begin<StaticMask>::type,
typename boost::mpl::end<StaticMask>::type,
D, F1, F2
>::apply(matrix);
}
};
template <typename StaticMask, char D, field F1, field F2>
struct static_may_update
{
template <typename Matrix>
static inline bool apply(Matrix const& matrix)
{
return static_may_update_dispatch
<
StaticMask,
D, F1, F2,
boost::mpl::is_sequence<StaticMask>::value
>::apply(matrix);
}
};
// static_check
template <typename StaticMask, bool IsSequence>
struct static_check_dispatch
{
template <typename Matrix>
static inline bool apply(Matrix const& matrix)
{
return per_one<interior, interior>::apply(matrix)
&& per_one<interior, boundary>::apply(matrix)
&& per_one<interior, exterior>::apply(matrix)
&& per_one<boundary, interior>::apply(matrix)
&& per_one<boundary, boundary>::apply(matrix)
&& per_one<boundary, exterior>::apply(matrix)
&& per_one<exterior, interior>::apply(matrix)
&& per_one<exterior, boundary>::apply(matrix)
&& per_one<exterior, exterior>::apply(matrix);
}
template <field F1, field F2>
struct per_one
{
static const char mask_el = StaticMask::template get<F1, F2>::value;
static const int version
= mask_el == 'F' ? 0
: mask_el == 'T' ? 1
: mask_el >= '0' && mask_el <= '9' ? 2
: 3;
template <typename Matrix>
static inline bool apply(Matrix const& matrix)
{
const char el = matrix.template get<F1, F2>();
return apply_dispatch(el, integral_constant<int, version>());
}
// mask_el == 'F'
static inline bool apply_dispatch(char el, integral_constant<int, 0>)
{
return el == 'F';
}
// mask_el == 'T'
static inline bool apply_dispatch(char el, integral_constant<int, 1>)
{
return el == 'T' || ( el >= '0' && el <= '9' );
}
// mask_el >= '0' && mask_el <= '9'
static inline bool apply_dispatch(char el, integral_constant<int, 2>)
{
return el == mask_el;
}
// else
static inline bool apply_dispatch(char /*el*/, integral_constant<int, 3>)
{
return true;
}
};
};
template <typename First, typename Last>
struct static_check_sequence
{
typedef typename boost::mpl::deref<First>::type StaticMask;
template <typename Matrix>
static inline bool apply(Matrix const& matrix)
{
return static_check_dispatch
<
StaticMask,
boost::mpl::is_sequence<StaticMask>::value
>::apply(matrix)
|| static_check_sequence
<
typename boost::mpl::next<First>::type,
Last
>::apply(matrix);
}
};
template <typename Last>
struct static_check_sequence<Last, Last>
{
template <typename Matrix>
static inline bool apply(Matrix const& /*matrix*/)
{
return false;
}
};
template <typename StaticMask>
struct static_check_dispatch<StaticMask, true>
{
template <typename Matrix>
static inline bool apply(Matrix const& matrix)
{
return static_check_sequence
<
typename boost::mpl::begin<StaticMask>::type,
typename boost::mpl::end<StaticMask>::type
>::apply(matrix);
}
};
template <typename StaticMask>
struct static_check_matrix
{
template <typename Matrix>
static inline bool apply(Matrix const& matrix)
{
return static_check_dispatch
<
StaticMask,
boost::mpl::is_sequence<StaticMask>::value
>::apply(matrix);
}
};
// static_mask_handler
template <typename StaticMask, bool Interrupt>
class static_mask_handler
: private matrix<3>
{
typedef matrix<3> base_t;
public:
typedef bool result_type;
bool interrupt;
inline static_mask_handler(StaticMask const& /*dummy*/)
: interrupt(false)
{}
result_type result() const
{
return (!Interrupt || !interrupt)
&& static_check_matrix<StaticMask>::
apply(static_cast<base_t const&>(*this));
}
template <field F1, field F2, char D>
inline bool may_update() const
{
return static_may_update<StaticMask, D, F1, F2>::
apply(static_cast<base_t const&>(*this));
}
template <field F1, field F2>
static inline bool expects()
{
return static_should_handle_element<StaticMask, F1, F2>::value;
}
//template <field F1, field F2>
//inline char get() const
//{
// return base_t::template get<F1, F2>();
//}
template <field F1, field F2, char V>
inline void set()
{
static const bool interrupt_c = static_interrupt<StaticMask, V, F1, F2, Interrupt>::value;
static const bool should_handle = static_should_handle_element<StaticMask, F1, F2>::value;
static const int version = interrupt_c ? 0
: should_handle ? 1
: 2;
set_dispatch<F1, F2, V>(integral_constant<int, version>());
}
template <field F1, field F2, char V>
inline void update()
{
static const bool interrupt_c = static_interrupt<StaticMask, V, F1, F2, Interrupt>::value;
static const bool should_handle = static_should_handle_element<StaticMask, F1, F2>::value;
static const int version = interrupt_c ? 0
: should_handle ? 1
: 2;
update_dispatch<F1, F2, V>(integral_constant<int, version>());
}
private:
// Interrupt && interrupt
template <field F1, field F2, char V>
inline void set_dispatch(integral_constant<int, 0>)
{
interrupt = true;
}
// else should_handle
template <field F1, field F2, char V>
inline void set_dispatch(integral_constant<int, 1>)
{
base_t::template set<F1, F2, V>();
}
// else
template <field F1, field F2, char V>
inline void set_dispatch(integral_constant<int, 2>)
{}
// Interrupt && interrupt
template <field F1, field F2, char V>
inline void update_dispatch(integral_constant<int, 0>)
{
interrupt = true;
}
// else should_handle
template <field F1, field F2, char V>
inline void update_dispatch(integral_constant<int, 1>)
{
base_t::template update<F1, F2, V>();
}
// else
template <field F1, field F2, char V>
inline void update_dispatch(integral_constant<int, 2>)
{}
};
// OPERATORS
template <typename Mask1, typename Mask2> inline
boost::tuples::cons<
Mask1,
boost::tuples::cons<Mask2, boost::tuples::null_type>
>
operator||(Mask1 const& m1, Mask2 const& m2)
{
namespace bt = boost::tuples;
return
bt::cons< Mask1, bt::cons<Mask2, bt::null_type> >
( m1, bt::cons<Mask2, bt::null_type>(m2, bt::null_type()) );
}
template <typename Head, typename Tail, typename Mask> inline
typename index::detail::tuples::push_back<
boost::tuples::cons<Head, Tail>, Mask
>::type
operator||(boost::tuples::cons<Head, Tail> const& t, Mask const& m)
{
namespace bt = boost::tuples;
return
index::detail::tuples::push_back<
bt::cons<Head, Tail>, Mask
>::apply(t, m);
}
// PREDEFINED MASKS
// TODO:
// 1. specialize for simplified masks if available
// e.g. for TOUCHES use 1 mask for A/A
// 2. Think about dimensions > 2 e.g. should TOUCHES be true
// if the interior of the Areal overlaps the boundary of the Volumetric
// like it's true for Linear/Areal
// EQUALS
template <typename Geometry1, typename Geometry2>
struct static_mask_equals_type
{
typedef static_mask<'T', '*', 'F', '*', '*', 'F', 'F', 'F', '*'> type; // wikipedia
//typedef static_mask<'T', 'F', 'F', 'F', 'T', 'F', 'F', 'F', 'T'> type; // OGC
};
// DISJOINT
typedef static_mask<'F', 'F', '*', 'F', 'F', '*', '*', '*', '*'> static_mask_disjoint;
// TOUCHES - NOT P/P
template <typename Geometry1,
typename Geometry2,
std::size_t Dim1 = topological_dimension<Geometry1>::value,
std::size_t Dim2 = topological_dimension<Geometry2>::value>
struct static_mask_touches_impl
{
typedef boost::mpl::vector<
static_mask<'F', 'T', '*', '*', '*', '*', '*', '*', '*'>,
static_mask<'F', '*', '*', 'T', '*', '*', '*', '*', '*'>,
static_mask<'F', '*', '*', '*', 'T', '*', '*', '*', '*'>
> type;
};
// According to OGC, doesn't apply to P/P
// Using the above mask the result would be always false
template <typename Geometry1, typename Geometry2>
struct static_mask_touches_impl<Geometry1, Geometry2, 0, 0>
: not_implemented<typename geometry::tag<Geometry1>::type,
typename geometry::tag<Geometry2>::type>
{};
template <typename Geometry1, typename Geometry2>
struct static_mask_touches_type
: static_mask_touches_impl<Geometry1, Geometry2>
{};
// WITHIN
typedef static_mask<'T', '*', 'F', '*', '*', 'F', '*', '*', '*'> static_mask_within;
// COVERED_BY (non OGC)
typedef boost::mpl::vector<
static_mask<'T', '*', 'F', '*', '*', 'F', '*', '*', '*'>,
static_mask<'*', 'T', 'F', '*', '*', 'F', '*', '*', '*'>,
static_mask<'*', '*', 'F', 'T', '*', 'F', '*', '*', '*'>,
static_mask<'*', '*', 'F', '*', 'T', 'F', '*', '*', '*'>
> static_mask_covered_by;
// CROSSES
// dim(G1) < dim(G2) - P/L P/A L/A
template <typename Geometry1,
typename Geometry2,
std::size_t Dim1 = topological_dimension<Geometry1>::value,
std::size_t Dim2 = topological_dimension<Geometry2>::value,
bool D1LessD2 = (Dim1 < Dim2)
>
struct static_mask_crosses_impl
{
typedef static_mask<'T', '*', 'T', '*', '*', '*', '*', '*', '*'> type;
};
// TODO: I'm not sure if this one below should be available!
// dim(G1) > dim(G2) - L/P A/P A/L
template <typename Geometry1, typename Geometry2,
std::size_t Dim1, std::size_t Dim2
>
struct static_mask_crosses_impl<Geometry1, Geometry2, Dim1, Dim2, false>
{
typedef static_mask<'T', '*', '*', '*', '*', '*', 'T', '*', '*'> type;
};
// dim(G1) == dim(G2) - P/P A/A
template <typename Geometry1, typename Geometry2,
std::size_t Dim
>
struct static_mask_crosses_impl<Geometry1, Geometry2, Dim, Dim, false>
: not_implemented<typename geometry::tag<Geometry1>::type,
typename geometry::tag<Geometry2>::type>
{};
// dim(G1) == 1 && dim(G2) == 1 - L/L
template <typename Geometry1, typename Geometry2>
struct static_mask_crosses_impl<Geometry1, Geometry2, 1, 1, false>
{
typedef static_mask<'0', '*', '*', '*', '*', '*', '*', '*', '*'> type;
};
template <typename Geometry1, typename Geometry2>
struct static_mask_crosses_type
: static_mask_crosses_impl<Geometry1, Geometry2>
{};
// OVERLAPS
// dim(G1) != dim(G2) - NOT P/P, L/L, A/A
template <typename Geometry1,
typename Geometry2,
std::size_t Dim1 = topological_dimension<Geometry1>::value,
std::size_t Dim2 = topological_dimension<Geometry2>::value
>
struct static_mask_overlaps_impl
: not_implemented<typename geometry::tag<Geometry1>::type,
typename geometry::tag<Geometry2>::type>
{};
// dim(G1) == D && dim(G2) == D - P/P A/A
template <typename Geometry1, typename Geometry2, std::size_t Dim>
struct static_mask_overlaps_impl<Geometry1, Geometry2, Dim, Dim>
{
typedef static_mask<'T', '*', 'T', '*', '*', '*', 'T', '*', '*'> type;
};
// dim(G1) == 1 && dim(G2) == 1 - L/L
template <typename Geometry1, typename Geometry2>
struct static_mask_overlaps_impl<Geometry1, Geometry2, 1, 1>
{
typedef static_mask<'1', '*', 'T', '*', '*', '*', 'T', '*', '*'> type;
};
template <typename Geometry1, typename Geometry2>
struct static_mask_overlaps_type
: static_mask_overlaps_impl<Geometry1, Geometry2>
{};
// RESULTS/HANDLERS UTILS
template <field F1, field F2, char V, typename Result>
inline void set(Result & res)
{
res.template set<F1, F2, V>();
}
template <field F1, field F2, char V, bool Transpose>
struct set_dispatch
{
template <typename Result>
static inline void apply(Result & res)
{
res.template set<F1, F2, V>();
}
};
template <field F1, field F2, char V>
struct set_dispatch<F1, F2, V, true>
{
template <typename Result>
static inline void apply(Result & res)
{
res.template set<F2, F1, V>();
}
};
template <field F1, field F2, char V, bool Transpose, typename Result>
inline void set(Result & res)
{
set_dispatch<F1, F2, V, Transpose>::apply(res);
}
template <char V, typename Result>
inline void set(Result & res)
{
res.template set<interior, interior, V>();
res.template set<interior, boundary, V>();
res.template set<interior, exterior, V>();
res.template set<boundary, interior, V>();
res.template set<boundary, boundary, V>();
res.template set<boundary, exterior, V>();
res.template set<exterior, interior, V>();
res.template set<exterior, boundary, V>();
res.template set<exterior, exterior, V>();
}
template <char II, char IB, char IE, char BI, char BB, char BE, char EI, char EB, char EE, typename Result>
inline void set(Result & res)
{
res.template set<interior, interior, II>();
res.template set<interior, boundary, IB>();
res.template set<interior, exterior, IE>();
res.template set<boundary, interior, BI>();
res.template set<boundary, boundary, BB>();
res.template set<boundary, exterior, BE>();
res.template set<exterior, interior, EI>();
res.template set<exterior, boundary, EB>();
res.template set<exterior, exterior, EE>();
}
template <field F1, field F2, char D, typename Result>
inline void update(Result & res)
{
res.template update<F1, F2, D>();
}
template <field F1, field F2, char D, bool Transpose>
struct update_result_dispatch
{
template <typename Result>
static inline void apply(Result & res)
{
update<F1, F2, D>(res);
}
};
template <field F1, field F2, char D>
struct update_result_dispatch<F1, F2, D, true>
{
template <typename Result>
static inline void apply(Result & res)
{
update<F2, F1, D>(res);
}
};
template <field F1, field F2, char D, bool Transpose, typename Result>
inline void update(Result & res)
{
update_result_dispatch<F1, F2, D, Transpose>::apply(res);
}
template <field F1, field F2, char D, typename Result>
inline bool may_update(Result const& res)
{
return res.template may_update<F1, F2, D>();
}
template <field F1, field F2, char D, bool Transpose>
struct may_update_result_dispatch
{
template <typename Result>
static inline bool apply(Result const& res)
{
return may_update<F1, F2, D>(res);
}
};
template <field F1, field F2, char D>
struct may_update_result_dispatch<F1, F2, D, true>
{
template <typename Result>
static inline bool apply(Result const& res)
{
return may_update<F2, F1, D>(res);
}
};
template <field F1, field F2, char D, bool Transpose, typename Result>
inline bool may_update(Result const& res)
{
return may_update_result_dispatch<F1, F2, D, Transpose>::apply(res);
}
template <typename Result, char II, char IB, char IE, char BI, char BB, char BE, char EI, char EB, char EE>
inline Result return_result()
{
Result res;
set<II, IB, IE, BI, BB, BE, EI, EB, EE>(res);
return res;
}
template <typename Geometry>
struct result_dimension
{
BOOST_STATIC_ASSERT(geometry::dimension<Geometry>::value >= 0);
static const char value
= ( geometry::dimension<Geometry>::value <= 9 ) ?
( '0' + geometry::dimension<Geometry>::value ) :
'T';
};
}} // namespace detail::relate
#endif // DOXYGEN_NO_DETAIL
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_RELATE_RESULT_HPP