blob: b7be41ab2b3ae6bd7af485300cd12e003962f4d1 [file] [log] [blame]
// Boost.Geometry Index
//
// R-tree initial packing
//
// Copyright (c) 2011-2015 Adam Wulkiewicz, Lodz, Poland.
//
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_INDEX_DETAIL_RTREE_PACK_CREATE_HPP
#define BOOST_GEOMETRY_INDEX_DETAIL_RTREE_PACK_CREATE_HPP
namespace boost { namespace geometry { namespace index { namespace detail { namespace rtree {
namespace pack_utils {
template <std::size_t Dimension>
struct biggest_edge
{
BOOST_STATIC_ASSERT(0 < Dimension);
template <typename Box>
static inline void apply(Box const& box, typename coordinate_type<Box>::type & length, std::size_t & dim_index)
{
biggest_edge<Dimension-1>::apply(box, length, dim_index);
typename coordinate_type<Box>::type curr
= geometry::get<max_corner, Dimension-1>(box) - geometry::get<min_corner, Dimension-1>(box);
if ( length < curr )
{
dim_index = Dimension - 1;
length = curr;
}
}
};
template <>
struct biggest_edge<1>
{
template <typename Box>
static inline void apply(Box const& box, typename coordinate_type<Box>::type & length, std::size_t & dim_index)
{
dim_index = 0;
length = geometry::get<max_corner, 0>(box) - geometry::get<min_corner, 0>(box);
}
};
template <std::size_t I>
struct point_entries_comparer
{
template <typename PointEntry>
bool operator()(PointEntry const& e1, PointEntry const& e2) const
{
return geometry::get<I>(e1.first) < geometry::get<I>(e2.first);
}
};
template <std::size_t I, std::size_t Dimension>
struct nth_element_and_half_boxes
{
template <typename EIt, typename Box>
static inline void apply(EIt first, EIt median, EIt last, Box const& box, Box & left, Box & right, std::size_t dim_index)
{
if ( I == dim_index )
{
std::nth_element(first, median, last, point_entries_comparer<I>());
geometry::convert(box, left);
geometry::convert(box, right);
typename coordinate_type<Box>::type edge_len
= geometry::get<max_corner, I>(box) - geometry::get<min_corner, I>(box);
typename coordinate_type<Box>::type median
= geometry::get<min_corner, I>(box) + edge_len / 2;
geometry::set<max_corner, I>(left, median);
geometry::set<min_corner, I>(right, median);
}
else
nth_element_and_half_boxes<I+1, Dimension>::apply(first, median, last, box, left, right, dim_index);
}
};
template <std::size_t Dimension>
struct nth_element_and_half_boxes<Dimension, Dimension>
{
template <typename EIt, typename Box>
static inline void apply(EIt , EIt , EIt , Box const& , Box & , Box & , std::size_t ) {}
};
} // namespace pack_utils
// STR leafs number are calculated as rcount/max
// and the number of splitting planes for each dimension as (count/max)^(1/dimension)
// <-> for dimension==2 -> sqrt(count/max)
//
// The main flaw of this algorithm is that the resulting tree will have bad structure for:
// 1. non-uniformly distributed elements
// Statistic check could be performed, e.g. based on variance of lengths of elements edges for each dimension
// 2. elements distributed mainly along one axis
// Calculate bounding box of all elements and then number of dividing planes for a dimension
// from the length of BB edge for this dimension (more or less assuming that elements are uniformly-distributed squares)
//
// Another thing is that the last node may have less elements than Max or even Min.
// The number of splitting planes must be chosen more carefully than count/max
//
// This algorithm is something between STR and TGS
// it is more similar to the top-down recursive kd-tree creation algorithm
// using object median split and split axis of greatest BB edge
// BB is only used as a hint (assuming objects are distributed uniformly)
//
// Implemented algorithm guarantees that the number of elements in nodes will be between Min and Max
// and that nodes are packed as tightly as possible
// e.g. for 177 values Max = 5 and Min = 2 it will construct the following tree:
// ROOT 177
// L1 125 52
// L2 25 25 25 25 25 25 17 10
// L3 5x5 5x5 5x5 5x5 5x5 5x5 3x5+2 2x5
template <typename Value, typename Options, typename Translator, typename Box, typename Allocators>
class pack
{
typedef typename rtree::node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type node;
typedef typename rtree::internal_node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type internal_node;
typedef typename rtree::leaf<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type leaf;
typedef typename Allocators::node_pointer node_pointer;
typedef rtree::subtree_destroyer<Value, Options, Translator, Box, Allocators> subtree_destroyer;
typedef typename Allocators::size_type size_type;
typedef typename geometry::point_type<Box>::type point_type;
typedef typename geometry::coordinate_type<point_type>::type coordinate_type;
typedef typename detail::default_content_result<Box>::type content_type;
typedef typename Options::parameters_type parameters_type;
static const std::size_t dimension = geometry::dimension<point_type>::value;
typedef typename rtree::container_from_elements_type<
typename rtree::elements_type<leaf>::type,
std::size_t
>::type values_counts_container;
typedef typename rtree::elements_type<internal_node>::type internal_elements;
typedef typename internal_elements::value_type internal_element;
public:
// Arbitrary iterators
template <typename InIt> inline static
node_pointer apply(InIt first, InIt last, size_type & values_count, size_type & leafs_level,
parameters_type const& parameters, Translator const& translator, Allocators & allocators)
{
typedef typename std::iterator_traits<InIt>::difference_type diff_type;
diff_type diff = std::distance(first, last);
if ( diff <= 0 )
return node_pointer(0);
typedef std::pair<point_type, InIt> entry_type;
std::vector<entry_type> entries;
values_count = static_cast<size_type>(diff);
entries.reserve(values_count);
Box hint_box;
geometry::assign_inverse(hint_box);
for ( ; first != last ; ++first )
{
// NOTE: support for iterators not returning true references adapted
// to Geometry concept and default translator returning true reference
// An alternative would be to dereference the iterator and translate
// in one expression each time the indexable was needed.
typename std::iterator_traits<InIt>::reference in_ref = *first;
typename Translator::result_type indexable = translator(in_ref);
// NOTE: added for consistency with insert()
// CONSIDER: alternative - ignore invalid indexable or throw an exception
BOOST_GEOMETRY_INDEX_ASSERT(detail::is_valid(indexable), "Indexable is invalid");
geometry::expand(hint_box, indexable);
point_type pt;
geometry::centroid(indexable, pt);
entries.push_back(std::make_pair(pt, first));
}
subtree_elements_counts subtree_counts = calculate_subtree_elements_counts(values_count, parameters, leafs_level);
internal_element el = per_level(entries.begin(), entries.end(), hint_box, values_count, subtree_counts,
parameters, translator, allocators);
return el.second;
}
private:
struct subtree_elements_counts
{
subtree_elements_counts(std::size_t ma, std::size_t mi) : maxc(ma), minc(mi) {}
std::size_t maxc;
std::size_t minc;
};
template <typename EIt> inline static
internal_element per_level(EIt first, EIt last, Box const& hint_box, std::size_t values_count, subtree_elements_counts const& subtree_counts,
parameters_type const& parameters, Translator const& translator, Allocators & allocators)
{
BOOST_GEOMETRY_INDEX_ASSERT(0 < std::distance(first, last) && static_cast<std::size_t>(std::distance(first, last)) == values_count,
"unexpected parameters");
if ( subtree_counts.maxc <= 1 )
{
// ROOT or LEAF
BOOST_GEOMETRY_INDEX_ASSERT(values_count <= parameters.get_max_elements(),
"too big number of elements");
// if !root check m_parameters.get_min_elements() <= count
// create new leaf node
node_pointer n = rtree::create_node<Allocators, leaf>::apply(allocators); // MAY THROW (A)
subtree_destroyer auto_remover(n, allocators);
leaf & l = rtree::get<leaf>(*n);
// reserve space for values
rtree::elements(l).reserve(values_count); // MAY THROW (A)
// calculate values box and copy values
Box elements_box;
geometry::assign_inverse(elements_box);
for ( ; first != last ; ++first )
{
// NOTE: push_back() must be called at the end in order to support move_iterator.
// The iterator is dereferenced 2x (no temporary reference) to support
// non-true reference types and move_iterator without boost::forward<>.
geometry::expand(elements_box, translator(*(first->second)));
rtree::elements(l).push_back(*(first->second)); // MAY THROW (A?,C)
}
auto_remover.release();
return internal_element(elements_box, n);
}
// calculate next max and min subtree counts
subtree_elements_counts next_subtree_counts = subtree_counts;
next_subtree_counts.maxc /= parameters.get_max_elements();
next_subtree_counts.minc /= parameters.get_max_elements();
// create new internal node
node_pointer n = rtree::create_node<Allocators, internal_node>::apply(allocators); // MAY THROW (A)
subtree_destroyer auto_remover(n, allocators);
internal_node & in = rtree::get<internal_node>(*n);
// reserve space for values
std::size_t nodes_count = calculate_nodes_count(values_count, subtree_counts);
rtree::elements(in).reserve(nodes_count); // MAY THROW (A)
// calculate values box and copy values
Box elements_box;
geometry::assign_inverse(elements_box);
per_level_packets(first, last, hint_box, values_count, subtree_counts, next_subtree_counts,
rtree::elements(in), elements_box,
parameters, translator, allocators);
auto_remover.release();
return internal_element(elements_box, n);
}
template <typename EIt> inline static
void per_level_packets(EIt first, EIt last, Box const& hint_box,
std::size_t values_count,
subtree_elements_counts const& subtree_counts,
subtree_elements_counts const& next_subtree_counts,
internal_elements & elements, Box & elements_box,
parameters_type const& parameters, Translator const& translator, Allocators & allocators)
{
BOOST_GEOMETRY_INDEX_ASSERT(0 < std::distance(first, last) && static_cast<std::size_t>(std::distance(first, last)) == values_count,
"unexpected parameters");
BOOST_GEOMETRY_INDEX_ASSERT(subtree_counts.minc <= values_count,
"too small number of elements");
// only one packet
if ( values_count <= subtree_counts.maxc )
{
// the end, move to the next level
internal_element el = per_level(first, last, hint_box, values_count, next_subtree_counts,
parameters, translator, allocators);
// in case if push_back() do throw here
// and even if this is not probable (previously reserved memory, nonthrowing pairs copy)
// this case is also tested by exceptions test.
subtree_destroyer auto_remover(el.second, allocators);
// this container should have memory allocated, reserve() called outside
elements.push_back(el); // MAY THROW (A?,C) - however in normal conditions shouldn't
auto_remover.release();
geometry::expand(elements_box, el.first);
return;
}
std::size_t median_count = calculate_median_count(values_count, subtree_counts);
EIt median = first + median_count;
coordinate_type greatest_length;
std::size_t greatest_dim_index = 0;
pack_utils::biggest_edge<dimension>::apply(hint_box, greatest_length, greatest_dim_index);
Box left, right;
pack_utils::nth_element_and_half_boxes<0, dimension>
::apply(first, median, last, hint_box, left, right, greatest_dim_index);
per_level_packets(first, median, left,
median_count, subtree_counts, next_subtree_counts,
elements, elements_box,
parameters, translator, allocators);
per_level_packets(median, last, right,
values_count - median_count, subtree_counts, next_subtree_counts,
elements, elements_box,
parameters, translator, allocators);
}
inline static
subtree_elements_counts calculate_subtree_elements_counts(std::size_t elements_count, parameters_type const& parameters, size_type & leafs_level)
{
boost::ignore_unused_variable_warning(parameters);
subtree_elements_counts res(1, 1);
leafs_level = 0;
std::size_t smax = parameters.get_max_elements();
for ( ; smax < elements_count ; smax *= parameters.get_max_elements(), ++leafs_level )
res.maxc = smax;
res.minc = parameters.get_min_elements() * (res.maxc / parameters.get_max_elements());
return res;
}
inline static
std::size_t calculate_nodes_count(std::size_t count,
subtree_elements_counts const& subtree_counts)
{
std::size_t n = count / subtree_counts.maxc;
std::size_t r = count % subtree_counts.maxc;
if ( 0 < r && r < subtree_counts.minc )
{
std::size_t count_minus_min = count - subtree_counts.minc;
n = count_minus_min / subtree_counts.maxc;
r = count_minus_min % subtree_counts.maxc;
++n;
}
if ( 0 < r )
++n;
return n;
}
inline static
std::size_t calculate_median_count(std::size_t count,
subtree_elements_counts const& subtree_counts)
{
// e.g. for max = 5, min = 2, count = 52, subtree_max = 25, subtree_min = 10
std::size_t n = count / subtree_counts.maxc; // e.g. 52 / 25 = 2
std::size_t r = count % subtree_counts.maxc; // e.g. 52 % 25 = 2
std::size_t median_count = (n / 2) * subtree_counts.maxc; // e.g. 2 / 2 * 25 = 25
if ( 0 != r ) // e.g. 0 != 2
{
if ( subtree_counts.minc <= r ) // e.g. 10 <= 2 == false
{
//BOOST_GEOMETRY_INDEX_ASSERT(0 < n, "unexpected value");
median_count = ((n+1)/2) * subtree_counts.maxc; // if calculated ((2+1)/2) * 25 which would be ok, but not in all cases
}
else // r < subtree_counts.second // e.g. 2 < 10 == true
{
std::size_t count_minus_min = count - subtree_counts.minc; // e.g. 52 - 10 = 42
n = count_minus_min / subtree_counts.maxc; // e.g. 42 / 25 = 1
r = count_minus_min % subtree_counts.maxc; // e.g. 42 % 25 = 17
if ( r == 0 ) // e.g. false
{
// n can't be equal to 0 because then there wouldn't be any element in the other node
//BOOST_GEOMETRY_INDEX_ASSERT(0 < n, "unexpected value");
median_count = ((n+1)/2) * subtree_counts.maxc; // if calculated ((1+1)/2) * 25 which would be ok, but not in all cases
}
else
{
if ( n == 0 ) // e.g. false
median_count = r; // if calculated -> 17 which is wrong!
else
median_count = ((n+2)/2) * subtree_counts.maxc; // e.g. ((1+2)/2) * 25 = 25
}
}
}
return median_count;
}
};
}}}}} // namespace boost::geometry::index::detail::rtree
#endif // BOOST_GEOMETRY_INDEX_DETAIL_RTREE_PACK_CREATE_HPP