blob: 8f270537fba13e4aae66d46987b62cb4815e005a [file] [log] [blame]
// Boost.Geometry Index
//
// R-tree R*-tree split algorithm implementation
//
// Copyright (c) 2011-2014 Adam Wulkiewicz, Lodz, Poland.
//
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_REDISTRIBUTE_ELEMENTS_HPP
#define BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_REDISTRIBUTE_ELEMENTS_HPP
#include <boost/geometry/index/detail/algorithms/intersection_content.hpp>
#include <boost/geometry/index/detail/algorithms/union_content.hpp>
#include <boost/geometry/index/detail/algorithms/margin.hpp>
#include <boost/geometry/index/detail/bounded_view.hpp>
#include <boost/geometry/index/detail/rtree/node/node.hpp>
#include <boost/geometry/index/detail/rtree/visitors/insert.hpp>
#include <boost/geometry/index/detail/rtree/visitors/is_leaf.hpp>
namespace boost { namespace geometry { namespace index {
namespace detail { namespace rtree {
namespace rstar {
template <typename Element, typename Translator, typename Tag, size_t Corner, size_t AxisIndex>
class element_axis_corner_less
{
typedef typename rtree::element_indexable_type<Element, Translator>::type indexable_type;
typedef typename geometry::point_type<indexable_type>::type point_type;
typedef geometry::model::box<point_type> bounds_type;
typedef index::detail::bounded_view<indexable_type, bounds_type> bounded_view_type;
public:
element_axis_corner_less(Translator const& tr)
: m_tr(tr)
{}
bool operator()(Element const& e1, Element const& e2) const
{
bounded_view_type bounded_ind1(rtree::element_indexable(e1, m_tr));
bounded_view_type bounded_ind2(rtree::element_indexable(e2, m_tr));
return geometry::get<Corner, AxisIndex>(bounded_ind1)
< geometry::get<Corner, AxisIndex>(bounded_ind2);
}
private:
Translator const& m_tr;
};
template <typename Element, typename Translator, size_t Corner, size_t AxisIndex>
class element_axis_corner_less<Element, Translator, box_tag, Corner, AxisIndex>
{
public:
element_axis_corner_less(Translator const& tr)
: m_tr(tr)
{}
bool operator()(Element const& e1, Element const& e2) const
{
return geometry::get<Corner, AxisIndex>(rtree::element_indexable(e1, m_tr))
< geometry::get<Corner, AxisIndex>(rtree::element_indexable(e2, m_tr));
}
private:
Translator const& m_tr;
};
template <typename Element, typename Translator, size_t Corner, size_t AxisIndex>
class element_axis_corner_less<Element, Translator, point_tag, Corner, AxisIndex>
{
public:
element_axis_corner_less(Translator const& tr)
: m_tr(tr)
{}
bool operator()(Element const& e1, Element const& e2) const
{
return geometry::get<AxisIndex>(rtree::element_indexable(e1, m_tr))
< geometry::get<AxisIndex>(rtree::element_indexable(e2, m_tr));
}
private:
Translator const& m_tr;
};
template <typename Box, size_t Corner, size_t AxisIndex>
struct choose_split_axis_and_index_for_corner
{
typedef typename index::detail::default_margin_result<Box>::type margin_type;
typedef typename index::detail::default_content_result<Box>::type content_type;
template <typename Elements, typename Parameters, typename Translator>
static inline void apply(Elements const& elements,
size_t & choosen_index,
margin_type & sum_of_margins,
content_type & smallest_overlap,
content_type & smallest_content,
Parameters const& parameters,
Translator const& translator)
{
typedef typename Elements::value_type element_type;
typedef typename rtree::element_indexable_type<element_type, Translator>::type indexable_type;
typedef typename tag<indexable_type>::type indexable_tag;
BOOST_GEOMETRY_INDEX_ASSERT(elements.size() == parameters.get_max_elements() + 1, "wrong number of elements");
// copy elements
Elements elements_copy(elements); // MAY THROW, STRONG (alloc, copy)
size_t const index_first = parameters.get_min_elements();
size_t const index_last = parameters.get_max_elements() - parameters.get_min_elements() + 2;
// sort elements
element_axis_corner_less<element_type, Translator, indexable_tag, Corner, AxisIndex> elements_less(translator);
std::sort(elements_copy.begin(), elements_copy.end(), elements_less); // MAY THROW, BASIC (copy)
// {
// typename Elements::iterator f = elements_copy.begin() + index_first;
// typename Elements::iterator l = elements_copy.begin() + index_last;
// std::nth_element(elements_copy.begin(), f, elements_copy.end(), elements_less); // MAY THROW, BASIC (copy)
// std::nth_element(f, l, elements_copy.end(), elements_less); // MAY THROW, BASIC (copy)
// std::sort(f, l, elements_less); // MAY THROW, BASIC (copy)
// }
// init outputs
choosen_index = index_first;
sum_of_margins = 0;
smallest_overlap = (std::numeric_limits<content_type>::max)();
smallest_content = (std::numeric_limits<content_type>::max)();
// calculate sum of margins for all distributions
for ( size_t i = index_first ; i < index_last ; ++i )
{
// TODO - awulkiew: may be optimized - box of group 1 may be initialized with
// box of min_elems number of elements and expanded for each iteration by another element
Box box1 = rtree::elements_box<Box>(elements_copy.begin(), elements_copy.begin() + i, translator);
Box box2 = rtree::elements_box<Box>(elements_copy.begin() + i, elements_copy.end(), translator);
sum_of_margins += index::detail::comparable_margin(box1) + index::detail::comparable_margin(box2);
content_type ovl = index::detail::intersection_content(box1, box2);
content_type con = index::detail::content(box1) + index::detail::content(box2);
// TODO - shouldn't here be < instead of <= ?
if ( ovl < smallest_overlap || (ovl == smallest_overlap && con <= smallest_content) )
{
choosen_index = i;
smallest_overlap = ovl;
smallest_content = con;
}
}
::boost::ignore_unused_variable_warning(parameters);
}
};
//template <typename Box, size_t AxisIndex, typename ElementIndexableTag>
//struct choose_split_axis_and_index_for_axis
//{
// BOOST_MPL_ASSERT_MSG(false, NOT_IMPLEMENTED_FOR_THIS_TAG, (ElementIndexableTag));
//};
template <typename Box, size_t AxisIndex, typename ElementIndexableTag>
struct choose_split_axis_and_index_for_axis
{
typedef typename index::detail::default_margin_result<Box>::type margin_type;
typedef typename index::detail::default_content_result<Box>::type content_type;
template <typename Elements, typename Parameters, typename Translator>
static inline void apply(Elements const& elements,
size_t & choosen_corner,
size_t & choosen_index,
margin_type & sum_of_margins,
content_type & smallest_overlap,
content_type & smallest_content,
Parameters const& parameters,
Translator const& translator)
{
size_t index1 = 0;
margin_type som1 = 0;
content_type ovl1 = (std::numeric_limits<content_type>::max)();
content_type con1 = (std::numeric_limits<content_type>::max)();
choose_split_axis_and_index_for_corner<Box, min_corner, AxisIndex>
::apply(elements, index1,
som1, ovl1, con1,
parameters, translator); // MAY THROW, STRONG
size_t index2 = 0;
margin_type som2 = 0;
content_type ovl2 = (std::numeric_limits<content_type>::max)();
content_type con2 = (std::numeric_limits<content_type>::max)();
choose_split_axis_and_index_for_corner<Box, max_corner, AxisIndex>
::apply(elements, index2,
som2, ovl2, con2,
parameters, translator); // MAY THROW, STRONG
sum_of_margins = som1 + som2;
if ( ovl1 < ovl2 || (ovl1 == ovl2 && con1 <= con2) )
{
choosen_corner = min_corner;
choosen_index = index1;
smallest_overlap = ovl1;
smallest_content = con1;
}
else
{
choosen_corner = max_corner;
choosen_index = index2;
smallest_overlap = ovl2;
smallest_content = con2;
}
}
};
template <typename Box, size_t AxisIndex>
struct choose_split_axis_and_index_for_axis<Box, AxisIndex, point_tag>
{
typedef typename index::detail::default_margin_result<Box>::type margin_type;
typedef typename index::detail::default_content_result<Box>::type content_type;
template <typename Elements, typename Parameters, typename Translator>
static inline void apply(Elements const& elements,
size_t & choosen_corner,
size_t & choosen_index,
margin_type & sum_of_margins,
content_type & smallest_overlap,
content_type & smallest_content,
Parameters const& parameters,
Translator const& translator)
{
choose_split_axis_and_index_for_corner<Box, min_corner, AxisIndex>
::apply(elements, choosen_index,
sum_of_margins, smallest_overlap, smallest_content,
parameters, translator); // MAY THROW, STRONG
choosen_corner = min_corner;
}
};
template <typename Box, size_t Dimension>
struct choose_split_axis_and_index
{
BOOST_STATIC_ASSERT(0 < Dimension);
typedef typename index::detail::default_margin_result<Box>::type margin_type;
typedef typename index::detail::default_content_result<Box>::type content_type;
template <typename Elements, typename Parameters, typename Translator>
static inline void apply(Elements const& elements,
size_t & choosen_axis,
size_t & choosen_corner,
size_t & choosen_index,
margin_type & smallest_sum_of_margins,
content_type & smallest_overlap,
content_type & smallest_content,
Parameters const& parameters,
Translator const& translator)
{
typedef typename rtree::element_indexable_type<typename Elements::value_type, Translator>::type element_indexable_type;
choose_split_axis_and_index<Box, Dimension - 1>
::apply(elements, choosen_axis, choosen_corner, choosen_index,
smallest_sum_of_margins, smallest_overlap, smallest_content,
parameters, translator); // MAY THROW, STRONG
margin_type sum_of_margins = 0;
size_t corner = min_corner;
size_t index = 0;
content_type overlap_val = (std::numeric_limits<content_type>::max)();
content_type content_val = (std::numeric_limits<content_type>::max)();
choose_split_axis_and_index_for_axis<
Box,
Dimension - 1,
typename tag<element_indexable_type>::type
>::apply(elements, corner, index, sum_of_margins, overlap_val, content_val, parameters, translator); // MAY THROW, STRONG
if ( sum_of_margins < smallest_sum_of_margins )
{
choosen_axis = Dimension - 1;
choosen_corner = corner;
choosen_index = index;
smallest_sum_of_margins = sum_of_margins;
smallest_overlap = overlap_val;
smallest_content = content_val;
}
}
};
template <typename Box>
struct choose_split_axis_and_index<Box, 1>
{
typedef typename index::detail::default_margin_result<Box>::type margin_type;
typedef typename index::detail::default_content_result<Box>::type content_type;
template <typename Elements, typename Parameters, typename Translator>
static inline void apply(Elements const& elements,
size_t & choosen_axis,
size_t & choosen_corner,
size_t & choosen_index,
margin_type & smallest_sum_of_margins,
content_type & smallest_overlap,
content_type & smallest_content,
Parameters const& parameters,
Translator const& translator)
{
typedef typename rtree::element_indexable_type<typename Elements::value_type, Translator>::type element_indexable_type;
choosen_axis = 0;
choose_split_axis_and_index_for_axis<
Box,
0,
typename tag<element_indexable_type>::type
>::apply(elements, choosen_corner, choosen_index, smallest_sum_of_margins, smallest_overlap, smallest_content, parameters, translator); // MAY THROW
}
};
template <size_t Corner, size_t Dimension, size_t I = 0>
struct nth_element
{
BOOST_STATIC_ASSERT(0 < Dimension);
BOOST_STATIC_ASSERT(I < Dimension);
template <typename Elements, typename Translator>
static inline void apply(Elements & elements, const size_t axis, const size_t index, Translator const& tr)
{
//BOOST_GEOMETRY_INDEX_ASSERT(axis < Dimension, "unexpected axis value");
if ( axis != I )
{
nth_element<Corner, Dimension, I + 1>::apply(elements, axis, index, tr); // MAY THROW, BASIC (copy)
}
else
{
typedef typename Elements::value_type element_type;
typedef typename rtree::element_indexable_type<element_type, Translator>::type indexable_type;
typedef typename tag<indexable_type>::type indexable_tag;
element_axis_corner_less<element_type, Translator, indexable_tag, Corner, I> less(tr);
std::nth_element(elements.begin(), elements.begin() + index, elements.end(), less); // MAY THROW, BASIC (copy)
}
}
};
template <size_t Corner, size_t Dimension>
struct nth_element<Corner, Dimension, Dimension>
{
template <typename Elements, typename Translator>
static inline void apply(Elements & /*elements*/, const size_t /*axis*/, const size_t /*index*/, Translator const& /*tr*/)
{}
};
} // namespace rstar
template <typename Value, typename Options, typename Translator, typename Box, typename Allocators>
struct redistribute_elements<Value, Options, Translator, Box, Allocators, rstar_tag>
{
typedef typename rtree::node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type node;
typedef typename rtree::internal_node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type internal_node;
typedef typename rtree::leaf<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type leaf;
typedef typename Options::parameters_type parameters_type;
static const size_t dimension = geometry::dimension<Box>::value;
typedef typename index::detail::default_margin_result<Box>::type margin_type;
typedef typename index::detail::default_content_result<Box>::type content_type;
template <typename Node>
static inline void apply(
Node & n,
Node & second_node,
Box & box1,
Box & box2,
parameters_type const& parameters,
Translator const& translator,
Allocators & allocators)
{
typedef typename rtree::elements_type<Node>::type elements_type;
typedef typename elements_type::value_type element_type;
elements_type & elements1 = rtree::elements(n);
elements_type & elements2 = rtree::elements(second_node);
// copy original elements - use in-memory storage (std::allocator)
// TODO: move if noexcept
typedef typename rtree::container_from_elements_type<elements_type, element_type>::type
container_type;
container_type elements_copy(elements1.begin(), elements1.end()); // MAY THROW, STRONG
container_type elements_backup(elements1.begin(), elements1.end()); // MAY THROW, STRONG
size_t split_axis = 0;
size_t split_corner = 0;
size_t split_index = parameters.get_min_elements();
margin_type smallest_sum_of_margins = (std::numeric_limits<margin_type>::max)();
content_type smallest_overlap = (std::numeric_limits<content_type>::max)();
content_type smallest_content = (std::numeric_limits<content_type>::max)();
// NOTE: this function internally copies passed elements
// why not pass mutable elements and use the same container for all axes/corners
// and again, the same below calling partial_sort/nth_element
// It would be even possible to not re-sort/find nth_element if the axis/corner
// was found for the last sorting - last combination of axis/corner
rstar::choose_split_axis_and_index<Box, dimension>
::apply(elements_copy,
split_axis, split_corner, split_index,
smallest_sum_of_margins, smallest_overlap, smallest_content,
parameters, translator); // MAY THROW, STRONG
// TODO: awulkiew - get rid of following static_casts?
BOOST_GEOMETRY_INDEX_ASSERT(split_axis < dimension, "unexpected value");
BOOST_GEOMETRY_INDEX_ASSERT(split_corner == static_cast<size_t>(min_corner) || split_corner == static_cast<size_t>(max_corner), "unexpected value");
BOOST_GEOMETRY_INDEX_ASSERT(parameters.get_min_elements() <= split_index && split_index <= parameters.get_max_elements() - parameters.get_min_elements() + 1, "unexpected value");
// TODO: consider using nth_element
if ( split_corner == static_cast<size_t>(min_corner) )
{
rstar::nth_element<min_corner, dimension>
::apply(elements_copy, split_axis, split_index, translator); // MAY THROW, BASIC (copy)
}
else
{
rstar::nth_element<max_corner, dimension>
::apply(elements_copy, split_axis, split_index, translator); // MAY THROW, BASIC (copy)
}
BOOST_TRY
{
// copy elements to nodes
elements1.assign(elements_copy.begin(), elements_copy.begin() + split_index); // MAY THROW, BASIC
elements2.assign(elements_copy.begin() + split_index, elements_copy.end()); // MAY THROW, BASIC
// calculate boxes
box1 = rtree::elements_box<Box>(elements1.begin(), elements1.end(), translator);
box2 = rtree::elements_box<Box>(elements2.begin(), elements2.end(), translator);
}
BOOST_CATCH(...)
{
//elements_copy.clear();
elements1.clear();
elements2.clear();
rtree::destroy_elements<Value, Options, Translator, Box, Allocators>::apply(elements_backup, allocators);
//elements_backup.clear();
BOOST_RETHROW // RETHROW, BASIC
}
BOOST_CATCH_END
}
};
}} // namespace detail::rtree
}}} // namespace boost::geometry::index
#endif // BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_REDISTRIBUTE_ELEMENTS_HPP