blob: 8b55605c7f031fff1d9bc1e3e0595976db06c93f [file] [log] [blame]
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2013 Barend Gehrels, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_POLICIES_ROBUSTNESS_SEGMENT_RATIO_HPP
#define BOOST_GEOMETRY_POLICIES_ROBUSTNESS_SEGMENT_RATIO_HPP
#include <boost/assert.hpp>
#include <boost/config.hpp>
#include <boost/rational.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/promote_floating_point.hpp>
namespace boost { namespace geometry
{
namespace detail { namespace segment_ratio
{
template
<
typename Type,
bool IsIntegral = boost::is_integral<Type>::type::value
>
struct less {};
template <typename Type>
struct less<Type, true>
{
template <typename Ratio>
static inline bool apply(Ratio const& lhs, Ratio const& rhs)
{
return boost::rational<Type>(lhs.numerator(), lhs.denominator())
< boost::rational<Type>(rhs.numerator(), rhs.denominator());
}
};
template <typename Type>
struct less<Type, false>
{
template <typename Ratio>
static inline bool apply(Ratio const& lhs, Ratio const& rhs)
{
BOOST_ASSERT(lhs.denominator() != 0);
BOOST_ASSERT(rhs.denominator() != 0);
return lhs.numerator() * rhs.denominator()
< rhs.numerator() * lhs.denominator();
}
};
template
<
typename Type,
bool IsIntegral = boost::is_integral<Type>::type::value
>
struct equal {};
template <typename Type>
struct equal<Type, true>
{
template <typename Ratio>
static inline bool apply(Ratio const& lhs, Ratio const& rhs)
{
return boost::rational<Type>(lhs.numerator(), lhs.denominator())
== boost::rational<Type>(rhs.numerator(), rhs.denominator());
}
};
template <typename Type>
struct equal<Type, false>
{
template <typename Ratio>
static inline bool apply(Ratio const& lhs, Ratio const& rhs)
{
BOOST_ASSERT(lhs.denominator() != 0);
BOOST_ASSERT(rhs.denominator() != 0);
return geometry::math::equals
(
lhs.numerator() * rhs.denominator(),
rhs.numerator() * lhs.denominator()
);
}
};
}}
//! Small class to keep a ratio (e.g. 1/4)
//! Main purpose is intersections and checking on 0, 1, and smaller/larger
//! The prototype used Boost.Rational. However, we also want to store FP ratios,
//! (so numerator/denominator both in float)
//! and Boost.Rational starts with GCD which we prefer to avoid if not necessary
//! On a segment means: this ratio is between 0 and 1 (both inclusive)
//!
template <typename Type>
class segment_ratio
{
public :
typedef Type numeric_type;
// Type-alias for the type itself
typedef segment_ratio<Type> thistype;
inline segment_ratio()
: m_numerator(0)
, m_denominator(1)
, m_approximation(0)
{}
inline segment_ratio(const Type& nominator, const Type& denominator)
: m_numerator(nominator)
, m_denominator(denominator)
{
initialize();
}
inline Type const& numerator() const { return m_numerator; }
inline Type const& denominator() const { return m_denominator; }
inline void assign(const Type& nominator, const Type& denominator)
{
m_numerator = nominator;
m_denominator = denominator;
initialize();
}
inline void initialize()
{
// Minimal normalization
// 1/-4 => -1/4, -1/-4 => 1/4
if (m_denominator < 0)
{
m_numerator = -m_numerator;
m_denominator = -m_denominator;
}
typedef typename promote_floating_point<Type>::type num_type;
static const num_type scale = 1000000.0;
m_approximation =
m_denominator == 0 ? 0
: boost::numeric_cast<double>
(
boost::numeric_cast<num_type>(m_numerator) * scale
/ boost::numeric_cast<num_type>(m_denominator)
);
}
inline bool is_zero() const { return math::equals(m_numerator, 0); }
inline bool is_one() const { return math::equals(m_numerator, m_denominator); }
inline bool on_segment() const
{
// e.g. 0/4 or 4/4 or 2/4
return m_numerator >= 0 && m_numerator <= m_denominator;
}
inline bool in_segment() const
{
// e.g. 1/4
return m_numerator > 0 && m_numerator < m_denominator;
}
inline bool on_end() const
{
// e.g. 0/4 or 4/4
return is_zero() || is_one();
}
inline bool left() const
{
// e.g. -1/4
return m_numerator < 0;
}
inline bool right() const
{
// e.g. 5/4
return m_numerator > m_denominator;
}
inline bool close_to(thistype const& other) const
{
return geometry::math::abs(m_approximation - other.m_approximation) < 2;
}
inline bool operator< (thistype const& other) const
{
return close_to(other)
? detail::segment_ratio::less<Type>::apply(*this, other)
: m_approximation < other.m_approximation;
}
inline bool operator== (thistype const& other) const
{
return close_to(other)
&& detail::segment_ratio::equal<Type>::apply(*this, other);
}
static inline thistype zero()
{
static thistype result(0, 1);
return result;
}
static inline thistype one()
{
static thistype result(1, 1);
return result;
}
#if defined(BOOST_GEOMETRY_DEFINE_STREAM_OPERATOR_SEGMENT_RATIO)
friend std::ostream& operator<<(std::ostream &os, segment_ratio const& ratio)
{
os << ratio.m_numerator << "/" << ratio.m_denominator
<< " (" << (static_cast<double>(ratio.m_numerator)
/ static_cast<double>(ratio.m_denominator))
<< ")";
return os;
}
#endif
private :
Type m_numerator;
Type m_denominator;
// Contains ratio on scale 0..1000000 (for 0..1)
// This is an approximation for fast and rough comparisons
// Boost.Rational is used if the approximations are close.
// Reason: performance, Boost.Rational does a GCD by default and also the
// comparisons contain while-loops.
double m_approximation;
};
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_POLICIES_ROBUSTNESS_SEGMENT_RATIO_HPP