blob: 1d59e13cf6ba4c2a855e58b952f8eb5d7a335e55 [file] [log] [blame]
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// This file was modified by Oracle on 2014.
// Modifications copyright (c) 2014 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGIES_AGNOSTIC_CONVEX_GRAHAM_ANDREW_HPP
#define BOOST_GEOMETRY_STRATEGIES_AGNOSTIC_CONVEX_GRAHAM_ANDREW_HPP
#include <cstddef>
#include <algorithm>
#include <vector>
#include <boost/range.hpp>
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/core/point_type.hpp>
#include <boost/geometry/strategies/convex_hull.hpp>
#include <boost/geometry/views/detail/range_type.hpp>
#include <boost/geometry/policies/compare.hpp>
#include <boost/geometry/algorithms/detail/for_each_range.hpp>
#include <boost/geometry/views/reversible_view.hpp>
namespace boost { namespace geometry
{
namespace strategy { namespace convex_hull
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail
{
template
<
typename InputRange,
typename RangeIterator,
typename StrategyLess,
typename StrategyGreater
>
struct get_extremes
{
typedef typename point_type<InputRange>::type point_type;
point_type left, right;
bool first;
StrategyLess less;
StrategyGreater greater;
inline get_extremes()
: first(true)
{}
inline void apply(InputRange const& range)
{
if (boost::size(range) == 0)
{
return;
}
// First iterate through this range
// (this two-stage approach avoids many point copies,
// because iterators are kept in memory. Because iterators are
// not persistent (in MSVC) this approach is not applicable
// for more ranges together)
RangeIterator left_it = boost::begin(range);
RangeIterator right_it = boost::begin(range);
for (RangeIterator it = boost::begin(range) + 1;
it != boost::end(range);
++it)
{
if (less(*it, *left_it))
{
left_it = it;
}
if (greater(*it, *right_it))
{
right_it = it;
}
}
// Then compare with earlier
if (first)
{
// First time, assign left/right
left = *left_it;
right = *right_it;
first = false;
}
else
{
// Next time, check if this range was left/right from
// the extremes already collected
if (less(*left_it, left))
{
left = *left_it;
}
if (greater(*right_it, right))
{
right = *right_it;
}
}
}
};
template
<
typename InputRange,
typename RangeIterator,
typename Container,
typename SideStrategy
>
struct assign_range
{
Container lower_points, upper_points;
typedef typename point_type<InputRange>::type point_type;
point_type const& most_left;
point_type const& most_right;
inline assign_range(point_type const& left, point_type const& right)
: most_left(left)
, most_right(right)
{}
inline void apply(InputRange const& range)
{
typedef SideStrategy side;
// Put points in one of the two output sequences
for (RangeIterator it = boost::begin(range);
it != boost::end(range);
++it)
{
// check if it is lying most_left or most_right from the line
int dir = side::apply(most_left, most_right, *it);
switch(dir)
{
case 1 : // left side
upper_points.push_back(*it);
break;
case -1 : // right side
lower_points.push_back(*it);
break;
// 0: on line most_left-most_right,
// or most_left, or most_right,
// -> all never part of hull
}
}
}
};
template <typename Range>
static inline void sort(Range& range)
{
typedef typename boost::range_value<Range>::type point_type;
typedef geometry::less<point_type> comparator;
std::sort(boost::begin(range), boost::end(range), comparator());
}
} // namespace detail
#endif // DOXYGEN_NO_DETAIL
/*!
\brief Graham scan strategy to calculate convex hull
\ingroup strategies
\note Completely reworked version inspired on the sources listed below
\see http://www.ddj.com/architect/201806315
\see http://marknelson.us/2007/08/22/convex
*/
template <typename InputGeometry, typename OutputPoint>
class graham_andrew
{
public :
typedef OutputPoint point_type;
typedef InputGeometry geometry_type;
private:
typedef typename cs_tag<point_type>::type cs_tag;
typedef typename std::vector<point_type> container_type;
typedef typename std::vector<point_type>::const_iterator iterator;
typedef typename std::vector<point_type>::const_reverse_iterator rev_iterator;
class partitions
{
friend class graham_andrew;
container_type m_lower_hull;
container_type m_upper_hull;
container_type m_copied_input;
};
public:
typedef partitions state_type;
inline void apply(InputGeometry const& geometry, partitions& state) const
{
// First pass.
// Get min/max (in most cases left / right) points
// This makes use of the geometry::less/greater predicates
// For the left boundary it is important that multiple points
// are sorted from bottom to top. Therefore the less predicate
// does not take the x-only template parameter (this fixes ticket #6019.
// For the right boundary it is not necessary (though also not harmful),
// because points are sorted from bottom to top in a later stage.
// For symmetry and to get often more balanced lower/upper halves
// we keep it.
typedef typename geometry::detail::range_type<InputGeometry>::type range_type;
typedef typename boost::range_iterator
<
range_type const
>::type range_iterator;
detail::get_extremes
<
range_type,
range_iterator,
geometry::less<point_type>,
geometry::greater<point_type>
> extremes;
geometry::detail::for_each_range(geometry, extremes);
// Bounding left/right points
// Second pass, now that extremes are found, assign all points
// in either lower, either upper
detail::assign_range
<
range_type,
range_iterator,
container_type,
typename strategy::side::services::default_strategy<cs_tag>::type
> assigner(extremes.left, extremes.right);
geometry::detail::for_each_range(geometry, assigner);
// Sort both collections, first on x(, then on y)
detail::sort(assigner.lower_points);
detail::sort(assigner.upper_points);
//std::cout << boost::size(assigner.lower_points) << std::endl;
//std::cout << boost::size(assigner.upper_points) << std::endl;
// And decide which point should be in the final hull
build_half_hull<-1>(assigner.lower_points, state.m_lower_hull,
extremes.left, extremes.right);
build_half_hull<1>(assigner.upper_points, state.m_upper_hull,
extremes.left, extremes.right);
}
template <typename OutputIterator>
inline void result(partitions const& state,
OutputIterator out,
bool clockwise,
bool closed) const
{
if (clockwise)
{
output_ranges(state.m_upper_hull, state.m_lower_hull, out, closed);
}
else
{
output_ranges(state.m_lower_hull, state.m_upper_hull, out, closed);
}
}
private:
template <int Factor>
static inline void build_half_hull(container_type const& input,
container_type& output,
point_type const& left, point_type const& right)
{
output.push_back(left);
for(iterator it = input.begin(); it != input.end(); ++it)
{
add_to_hull<Factor>(*it, output);
}
add_to_hull<Factor>(right, output);
}
template <int Factor>
static inline void add_to_hull(point_type const& p, container_type& output)
{
typedef typename strategy::side::services::default_strategy<cs_tag>::type side;
output.push_back(p);
std::size_t output_size = output.size();
while (output_size >= 3)
{
rev_iterator rit = output.rbegin();
point_type const last = *rit++;
point_type const& last2 = *rit++;
if (Factor * side::apply(*rit, last, last2) <= 0)
{
// Remove last two points from stack, and add last again
// This is much faster then erasing the one but last.
output.pop_back();
output.pop_back();
output.push_back(last);
output_size--;
}
else
{
return;
}
}
}
template <typename OutputIterator>
static inline void output_ranges(container_type const& first, container_type const& second,
OutputIterator out, bool closed)
{
std::copy(boost::begin(first), boost::end(first), out);
BOOST_ASSERT(closed ? !boost::empty(second) : boost::size(second) > 1);
std::copy(++boost::rbegin(second), // skip the first Point
closed ? boost::rend(second) : --boost::rend(second), // skip the last Point if open
out);
typedef typename boost::range_size<container_type>::type size_type;
size_type const count = boost::size(first) + boost::size(second) - 1;
// count describes a closed case but comparison with min size of closed
// gives the result compatible also with open
// here core_detail::closure::minimum_ring_size<closed> could be used
if (count < 4)
{
// there should be only one missing
*out++ = *boost::begin(first);
}
}
};
}} // namespace strategy::convex_hull
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
template <typename InputGeometry, typename OutputPoint>
struct strategy_convex_hull<InputGeometry, OutputPoint, cartesian_tag>
{
typedef strategy::convex_hull::graham_andrew<InputGeometry, OutputPoint> type;
};
#endif
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGIES_AGNOSTIC_CONVEX_GRAHAM_ANDREW_HPP