blob: dff4a77f6fb2b430951548419ec22cc89c8f23dc [file] [log] [blame]
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2008-2014 Bruno Lalande, Paris, France.
// Copyright (c) 2008-2014 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2009-2014 Mateusz Loskot, London, UK.
// This file was modified by Oracle on 2014.
// Modifications copyright (c) 2014, Oracle and/or its affiliates.
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_HPP
#define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_HPP
#include <boost/concept_check.hpp>
#include <boost/mpl/if.hpp>
#include <boost/type_traits.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/point_type.hpp>
#include <boost/geometry/algorithms/convert.hpp>
#include <boost/geometry/arithmetic/arithmetic.hpp>
#include <boost/geometry/arithmetic/dot_product.hpp>
#include <boost/geometry/strategies/tags.hpp>
#include <boost/geometry/strategies/distance.hpp>
#include <boost/geometry/strategies/default_distance_result.hpp>
#include <boost/geometry/strategies/cartesian/distance_pythagoras.hpp>
#include <boost/geometry/util/select_coordinate_type.hpp>
// Helper geometry (projected point on line)
#include <boost/geometry/geometries/point.hpp>
namespace boost { namespace geometry
{
namespace strategy { namespace distance
{
/*!
\brief Strategy for distance point to segment
\ingroup strategies
\details Calculates distance using projected-point method, and (optionally) Pythagoras
\author Adapted from: http://geometryalgorithms.com/Archive/algorithm_0102/algorithm_0102.htm
\tparam CalculationType \tparam_calculation
\tparam Strategy underlying point-point distance strategy
\par Concepts for Strategy:
- cartesian_distance operator(Point,Point)
\note If the Strategy is a "comparable::pythagoras", this strategy
automatically is a comparable projected_point strategy (so without sqrt)
\qbk{
[heading See also]
[link geometry.reference.algorithms.distance.distance_3_with_strategy distance (with strategy)]
}
*/
template
<
typename CalculationType = void,
typename Strategy = pythagoras<CalculationType>
>
class projected_point
{
public :
// The three typedefs below are necessary to calculate distances
// from segments defined in integer coordinates.
// Integer coordinates can still result in FP distances.
// There is a division, which must be represented in FP.
// So promote.
template <typename Point, typename PointOfSegment>
struct calculation_type
: promote_floating_point
<
typename strategy::distance::services::return_type
<
Strategy,
Point,
PointOfSegment
>::type
>
{};
public :
template <typename Point, typename PointOfSegment>
inline typename calculation_type<Point, PointOfSegment>::type
apply(Point const& p, PointOfSegment const& p1, PointOfSegment const& p2) const
{
assert_dimension_equal<Point, PointOfSegment>();
typedef typename calculation_type<Point, PointOfSegment>::type calculation_type;
// A projected point of points in Integer coordinates must be able to be
// represented in FP.
typedef model::point
<
calculation_type,
dimension<PointOfSegment>::value,
typename coordinate_system<PointOfSegment>::type
> fp_point_type;
// For convenience
typedef fp_point_type fp_vector_type;
/*
Algorithm [p: (px,py), p1: (x1,y1), p2: (x2,y2)]
VECTOR v(x2 - x1, y2 - y1)
VECTOR w(px - x1, py - y1)
c1 = w . v
c2 = v . v
b = c1 / c2
RETURN POINT(x1 + b * vx, y1 + b * vy)
*/
// v is multiplied below with a (possibly) FP-value, so should be in FP
// For consistency we define w also in FP
fp_vector_type v, w, projected;
geometry::convert(p2, v);
geometry::convert(p, w);
geometry::convert(p1, projected);
subtract_point(v, projected);
subtract_point(w, projected);
Strategy strategy;
boost::ignore_unused_variable_warning(strategy);
calculation_type const zero = calculation_type();
calculation_type const c1 = dot_product(w, v);
if (c1 <= zero)
{
return strategy.apply(p, p1);
}
calculation_type const c2 = dot_product(v, v);
if (c2 <= c1)
{
return strategy.apply(p, p2);
}
// See above, c1 > 0 AND c2 > c1 so: c2 != 0
calculation_type const b = c1 / c2;
multiply_value(v, b);
add_point(projected, v);
return strategy.apply(p, projected);
}
};
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
namespace services
{
template <typename CalculationType, typename Strategy>
struct tag<projected_point<CalculationType, Strategy> >
{
typedef strategy_tag_distance_point_segment type;
};
template <typename CalculationType, typename Strategy, typename P, typename PS>
struct return_type<projected_point<CalculationType, Strategy>, P, PS>
: projected_point<CalculationType, Strategy>::template calculation_type<P, PS>
{};
template <typename CalculationType, typename Strategy>
struct comparable_type<projected_point<CalculationType, Strategy> >
{
// Define a projected_point strategy with its underlying point-point-strategy
// being comparable
typedef projected_point
<
CalculationType,
typename comparable_type<Strategy>::type
> type;
};
template <typename CalculationType, typename Strategy>
struct get_comparable<projected_point<CalculationType, Strategy> >
{
typedef typename comparable_type
<
projected_point<CalculationType, Strategy>
>::type comparable_type;
public :
static inline comparable_type apply(projected_point<CalculationType, Strategy> const& )
{
return comparable_type();
}
};
template <typename CalculationType, typename Strategy, typename P, typename PS>
struct result_from_distance<projected_point<CalculationType, Strategy>, P, PS>
{
private :
typedef typename return_type<projected_point<CalculationType, Strategy>, P, PS>::type return_type;
public :
template <typename T>
static inline return_type apply(projected_point<CalculationType, Strategy> const& , T const& value)
{
Strategy s;
return result_from_distance<Strategy, P, PS>::apply(s, value);
}
};
// Get default-strategy for point-segment distance calculation
// while still have the possibility to specify point-point distance strategy (PPS)
// It is used in algorithms/distance.hpp where users specify PPS for distance
// of point-to-segment or point-to-linestring.
// Convenient for geographic coordinate systems especially.
template <typename Point, typename PointOfSegment, typename Strategy>
struct default_strategy
<
point_tag, segment_tag, Point, PointOfSegment,
cartesian_tag, cartesian_tag, Strategy
>
{
typedef strategy::distance::projected_point
<
void,
typename boost::mpl::if_
<
boost::is_void<Strategy>,
typename default_strategy
<
point_tag, point_tag, Point, PointOfSegment,
cartesian_tag, cartesian_tag
>::type,
Strategy
>::type
> type;
};
template <typename PointOfSegment, typename Point, typename Strategy>
struct default_strategy
<
segment_tag, point_tag, PointOfSegment, Point,
cartesian_tag, cartesian_tag, Strategy
>
{
typedef typename default_strategy
<
point_tag, segment_tag, Point, PointOfSegment,
cartesian_tag, cartesian_tag, Strategy
>::type type;
};
} // namespace services
#endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
}} // namespace strategy::distance
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_HPP