blob: c4090044f4315e05bf11a30b63ace95fd4241a58 [file] [log] [blame]
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2008-2014 Bruno Lalande, Paris, France.
// Copyright (c) 2008-2014 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2009-2014 Mateusz Loskot, London, UK.
// This file was modified by Oracle on 2014.
// Modifications copyright (c) 2014, Oracle and/or its affiliates.
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_AX_HPP
#define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_AX_HPP
#include <algorithm>
#include <boost/concept_check.hpp>
#include <boost/mpl/if.hpp>
#include <boost/type_traits.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/point_type.hpp>
#include <boost/geometry/algorithms/convert.hpp>
#include <boost/geometry/arithmetic/arithmetic.hpp>
#include <boost/geometry/arithmetic/dot_product.hpp>
#include <boost/geometry/strategies/tags.hpp>
#include <boost/geometry/strategies/distance.hpp>
#include <boost/geometry/strategies/default_distance_result.hpp>
#include <boost/geometry/strategies/cartesian/distance_pythagoras.hpp>
#include <boost/geometry/strategies/cartesian/distance_projected_point.hpp>
#include <boost/geometry/util/select_coordinate_type.hpp>
// Helper geometry (projected point on line)
#include <boost/geometry/geometries/point.hpp>
namespace boost { namespace geometry
{
namespace strategy { namespace distance
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail
{
template <typename T>
struct projected_point_ax_result
{
typedef T value_type;
projected_point_ax_result(T const& c = T(0))
: atd(c), xtd(c)
{}
projected_point_ax_result(T const& a, T const& x)
: atd(a), xtd(x)
{}
friend inline bool operator<(projected_point_ax_result const& left,
projected_point_ax_result const& right)
{
return left.xtd < right.xtd || left.atd < right.atd;
}
T atd, xtd;
};
// This less-comparator may be used as a parameter of detail::douglas_peucker.
// In this simplify strategy distances are compared in 2 places
// 1. to choose the furthest candidate (md < dist)
// 2. to check if the candidate is further than max_distance (max_distance < md)
template <typename Distance>
class projected_point_ax_less
{
public:
projected_point_ax_less(Distance const& max_distance)
: m_max_distance(max_distance)
{}
inline bool operator()(Distance const& left, Distance const& right) const
{
//return left.xtd < right.xtd && right.atd < m_max_distance.atd;
typedef typename Distance::value_type value_type;
value_type const lx = left.xtd > m_max_distance.xtd ? left.xtd - m_max_distance.xtd : 0;
value_type const rx = right.xtd > m_max_distance.xtd ? right.xtd - m_max_distance.xtd : 0;
value_type const la = left.atd > m_max_distance.atd ? left.atd - m_max_distance.atd : 0;
value_type const ra = right.atd > m_max_distance.atd ? right.atd - m_max_distance.atd : 0;
value_type const l = (std::max)(lx, la);
value_type const r = (std::max)(rx, ra);
return l < r;
}
private:
Distance const& m_max_distance;
};
// This strategy returns 2-component Point/Segment distance.
// The ATD (along track distance) is parallel to the Segment
// and is a distance between Point projected into a line defined by a Segment and the nearest Segment's endpoint.
// If the projected Point intersects the Segment the ATD is equal to 0.
// The XTD (cross track distance) is perpendicular to the Segment
// and is a distance between input Point and its projection.
// If the Segment has length equal to 0, ATD and XTD has value equal
// to the distance between the input Point and one of the Segment's endpoints.
//
// p3 p4
// ^ 7
// | /
// p1<-----e========e----->p2
//
// p1: atd=D, xtd=0
// p2: atd=D, xtd=0
// p3: atd=0, xtd=D
// p4: atd=D/2, xtd=D
template
<
typename CalculationType = void,
typename Strategy = pythagoras<CalculationType>
>
class projected_point_ax
{
public :
template <typename Point, typename PointOfSegment>
struct calculation_type
: public projected_point<CalculationType, Strategy>
::template calculation_type<Point, PointOfSegment>
{};
template <typename Point, typename PointOfSegment>
struct result_type
{
typedef projected_point_ax_result
<
typename calculation_type<Point, PointOfSegment>::type
> type;
};
public :
template <typename Point, typename PointOfSegment>
inline typename result_type<Point, PointOfSegment>::type
apply(Point const& p, PointOfSegment const& p1, PointOfSegment const& p2) const
{
assert_dimension_equal<Point, PointOfSegment>();
typedef typename calculation_type<Point, PointOfSegment>::type calculation_type;
// A projected point of points in Integer coordinates must be able to be
// represented in FP.
typedef model::point
<
calculation_type,
dimension<PointOfSegment>::value,
typename coordinate_system<PointOfSegment>::type
> fp_point_type;
// For convenience
typedef fp_point_type fp_vector_type;
/*
Algorithm [p: (px,py), p1: (x1,y1), p2: (x2,y2)]
VECTOR v(x2 - x1, y2 - y1)
VECTOR w(px - x1, py - y1)
c1 = w . v
c2 = v . v
b = c1 / c2
RETURN POINT(x1 + b * vx, y1 + b * vy)
*/
// v is multiplied below with a (possibly) FP-value, so should be in FP
// For consistency we define w also in FP
fp_vector_type v, w, projected;
geometry::convert(p2, v);
geometry::convert(p, w);
geometry::convert(p1, projected);
subtract_point(v, projected);
subtract_point(w, projected);
Strategy strategy;
boost::ignore_unused_variable_warning(strategy);
typename result_type<Point, PointOfSegment>::type result;
calculation_type const zero = calculation_type();
calculation_type const c2 = dot_product(v, v);
if ( math::equals(c2, zero) )
{
result.xtd = strategy.apply(p, projected);
// assume that the 0-length segment is perpendicular to the Pt->ProjPt vector
result.atd = 0;
return result;
}
calculation_type const c1 = dot_product(w, v);
calculation_type const b = c1 / c2;
multiply_value(v, b);
add_point(projected, v);
result.xtd = strategy.apply(p, projected);
if (c1 <= zero)
{
result.atd = strategy.apply(p1, projected);
}
else if (c2 <= c1)
{
result.atd = strategy.apply(p2, projected);
}
else
{
result.atd = 0;
}
return result;
}
};
} // namespace detail
#endif // DOXYGEN_NO_DETAIL
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
namespace services
{
template <typename CalculationType, typename Strategy>
struct tag<detail::projected_point_ax<CalculationType, Strategy> >
{
typedef strategy_tag_distance_point_segment type;
};
template <typename CalculationType, typename Strategy, typename P, typename PS>
struct return_type<detail::projected_point_ax<CalculationType, Strategy>, P, PS>
{
typedef typename detail::projected_point_ax<CalculationType, Strategy>
::template result_type<P, PS>::type type;
};
template <typename CalculationType, typename Strategy>
struct comparable_type<detail::projected_point_ax<CalculationType, Strategy> >
{
// Define a projected_point strategy with its underlying point-point-strategy
// being comparable
typedef detail::projected_point_ax
<
CalculationType,
typename comparable_type<Strategy>::type
> type;
};
template <typename CalculationType, typename Strategy>
struct get_comparable<detail::projected_point_ax<CalculationType, Strategy> >
{
typedef typename comparable_type
<
detail::projected_point_ax<CalculationType, Strategy>
>::type comparable_type;
public :
static inline comparable_type apply(detail::projected_point_ax<CalculationType, Strategy> const& )
{
return comparable_type();
}
};
template <typename CalculationType, typename Strategy, typename P, typename PS>
struct result_from_distance<detail::projected_point_ax<CalculationType, Strategy>, P, PS>
{
private :
typedef typename return_type<detail::projected_point_ax<CalculationType, Strategy>, P, PS>::type return_type;
public :
template <typename T>
static inline return_type apply(detail::projected_point_ax<CalculationType, Strategy> const& , T const& value)
{
Strategy s;
return_type ret;
ret.atd = result_from_distance<Strategy, P, PS>::apply(s, value.atd);
ret.xtd = result_from_distance<Strategy, P, PS>::apply(s, value.xtd);
return ret;
}
};
} // namespace services
#endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
}} // namespace strategy::distance
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_AX_HPP