blob: 3beedc7809a0d4b6e60ea37178fc5eddbb470400 [file] [log] [blame]
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2011-2012 Barend Gehrels, Amsterdam, the Netherlands.
// This file was modified by Oracle on 2014.
// Modifications copyright (c) 2014 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_MAPPING_SSF_HPP
#define BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_MAPPING_SSF_HPP
#include <boost/core/ignore_unused.hpp>
#include <boost/geometry/core/radius.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/promote_floating_point.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
#include <boost/geometry/strategies/side.hpp>
#include <boost/geometry/strategies/spherical/ssf.hpp>
namespace boost { namespace geometry
{
namespace strategy { namespace side
{
// An enumeration type defining types of mapping of geographical
// latitude to spherical latitude.
// See: http://en.wikipedia.org/wiki/Great_ellipse
// http://en.wikipedia.org/wiki/Latitude#Auxiliary_latitudes
enum mapping_type { mapping_geodetic, mapping_reduced, mapping_geocentric };
#ifndef DOXYGEN_NO_DETAIL
namespace detail
{
template <typename Spheroid, mapping_type Mapping>
struct mapper
{
explicit inline mapper(Spheroid const& /*spheroid*/) {}
template <typename CalculationType>
static inline CalculationType const& apply(CalculationType const& lat)
{
return lat;
}
};
template <typename Spheroid>
struct mapper<Spheroid, mapping_reduced>
{
typedef typename promote_floating_point
<
typename radius_type<Spheroid>::type
>::type fraction_type;
explicit inline mapper(Spheroid const& spheroid)
{
fraction_type const a = geometry::get_radius<0>(spheroid);
fraction_type const b = geometry::get_radius<2>(spheroid);
b_div_a = b / a;
}
template <typename CalculationType>
inline CalculationType apply(CalculationType const& lat) const
{
return atan(static_cast<CalculationType>(b_div_a) * tan(lat));
}
fraction_type b_div_a;
};
template <typename Spheroid>
struct mapper<Spheroid, mapping_geocentric>
{
typedef typename promote_floating_point
<
typename radius_type<Spheroid>::type
>::type fraction_type;
explicit inline mapper(Spheroid const& spheroid)
{
fraction_type const a = geometry::get_radius<0>(spheroid);
fraction_type const b = geometry::get_radius<2>(spheroid);
sqr_b_div_a = b / a;
sqr_b_div_a *= sqr_b_div_a;
}
template <typename CalculationType>
inline CalculationType apply(CalculationType const& lat) const
{
return atan(static_cast<CalculationType>(sqr_b_div_a) * tan(lat));
}
fraction_type sqr_b_div_a;
};
}
#endif // DOXYGEN_NO_DETAIL
/*!
\brief Check at which side of a geographical segment a point lies
left of segment (> 0), right of segment (< 0), on segment (0).
The check is performed by mapping the geographical coordinates
to spherical coordinates and using spherical_side_formula.
\ingroup strategies
\tparam Spheroid The reference spheroid model
\tparam Mapping The type of mapping of geographical to spherical latitude
\tparam CalculationType \tparam_calculation
*/
template <typename Spheroid,
mapping_type Mapping = mapping_geodetic,
typename CalculationType = void>
class mapping_spherical_side_formula
{
public :
inline mapping_spherical_side_formula()
: m_mapper(Spheroid())
{}
explicit inline mapping_spherical_side_formula(Spheroid const& spheroid)
: m_mapper(spheroid)
{}
template <typename P1, typename P2, typename P>
inline int apply(P1 const& p1, P2 const& p2, P const& p)
{
typedef typename promote_floating_point
<
typename select_calculation_type_alt
<
CalculationType,
P1, P2, P
>::type
>::type calculation_type;
calculation_type lon1 = get_as_radian<0>(p1);
calculation_type lat1 = m_mapper.template apply<calculation_type>(get_as_radian<1>(p1));
calculation_type lon2 = get_as_radian<0>(p2);
calculation_type lat2 = m_mapper.template apply<calculation_type>(get_as_radian<1>(p2));
calculation_type lon = get_as_radian<0>(p);
calculation_type lat = m_mapper.template apply<calculation_type>(get_as_radian<1>(p));
return detail::spherical_side_formula(lon1, lat1, lon2, lat2, lon, lat);
}
private:
side::detail::mapper<Spheroid, Mapping> const m_mapper;
};
// The specialization for geodetic latitude which can be used directly
template <typename Spheroid,
typename CalculationType>
class mapping_spherical_side_formula<Spheroid, mapping_geodetic, CalculationType>
{
public :
inline mapping_spherical_side_formula() {}
explicit inline mapping_spherical_side_formula(Spheroid const& /*spheroid*/) {}
template <typename P1, typename P2, typename P>
static inline int apply(P1 const& p1, P2 const& p2, P const& p)
{
return spherical_side_formula<CalculationType>::apply(p1, p2, p);
}
};
}} // namespace strategy::side
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_MAPPING_SSF_HPP