blob: 8b32056f3e99198bc9d6d00f81ba320ddf853b2b [file] [log] [blame]
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGIES_SPHERICAL_DISTANCE_HAVERSINE_HPP
#define BOOST_GEOMETRY_STRATEGIES_SPHERICAL_DISTANCE_HAVERSINE_HPP
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/radian_access.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
#include <boost/geometry/util/promote_floating_point.hpp>
#include <boost/geometry/strategies/distance.hpp>
namespace boost { namespace geometry
{
namespace strategy { namespace distance
{
namespace comparable
{
// Comparable haversine.
// To compare distances, we can avoid:
// - multiplication with radius and 2.0
// - applying sqrt
// - applying asin (which is strictly (monotone) increasing)
template
<
typename RadiusType,
typename CalculationType = void
>
class haversine
{
public :
template <typename Point1, typename Point2>
struct calculation_type
: promote_floating_point
<
typename select_calculation_type
<
Point1,
Point2,
CalculationType
>::type
>
{};
typedef RadiusType radius_type;
explicit inline haversine(RadiusType const& r = 1.0)
: m_radius(r)
{}
template <typename Point1, typename Point2>
static inline typename calculation_type<Point1, Point2>::type
apply(Point1 const& p1, Point2 const& p2)
{
return calculate<typename calculation_type<Point1, Point2>::type>(
get_as_radian<0>(p1), get_as_radian<1>(p1),
get_as_radian<0>(p2), get_as_radian<1>(p2)
);
}
inline RadiusType radius() const
{
return m_radius;
}
private :
template <typename R, typename T1, typename T2>
static inline R calculate(T1 const& lon1, T1 const& lat1,
T2 const& lon2, T2 const& lat2)
{
return math::hav(lat2 - lat1)
+ cos(lat1) * cos(lat2) * math::hav(lon2 - lon1);
}
RadiusType m_radius;
};
} // namespace comparable
/*!
\brief Distance calculation for spherical coordinates
on a perfect sphere using haversine
\ingroup strategies
\tparam RadiusType \tparam_radius
\tparam CalculationType \tparam_calculation
\author Adapted from: http://williams.best.vwh.net/avform.htm
\see http://en.wikipedia.org/wiki/Great-circle_distance
\note (from Wiki:) The great circle distance d between two
points with coordinates {lat1,lon1} and {lat2,lon2} is given by:
d=acos(sin(lat1)*sin(lat2)+cos(lat1)*cos(lat2)*cos(lon1-lon2))
A mathematically equivalent formula, which is less subject
to rounding error for short distances is:
d=2*asin(sqrt((sin((lat1-lat2) / 2))^2
+ cos(lat1)*cos(lat2)*(sin((lon1-lon2) / 2))^2))
\qbk{
[heading See also]
[link geometry.reference.algorithms.distance.distance_3_with_strategy distance (with strategy)]
}
*/
template
<
typename RadiusType,
typename CalculationType = void
>
class haversine
{
typedef comparable::haversine<RadiusType, CalculationType> comparable_type;
public :
template <typename Point1, typename Point2>
struct calculation_type
: services::return_type<comparable_type, Point1, Point2>
{};
typedef RadiusType radius_type;
/*!
\brief Constructor
\param radius radius of the sphere, defaults to 1.0 for the unit sphere
*/
inline haversine(RadiusType const& radius = 1.0)
: m_radius(radius)
{}
/*!
\brief applies the distance calculation
\return the calculated distance (including multiplying with radius)
\param p1 first point
\param p2 second point
*/
template <typename Point1, typename Point2>
inline typename calculation_type<Point1, Point2>::type
apply(Point1 const& p1, Point2 const& p2) const
{
typedef typename calculation_type<Point1, Point2>::type calculation_type;
calculation_type const a = comparable_type::apply(p1, p2);
calculation_type const c = calculation_type(2.0) * asin(math::sqrt(a));
return calculation_type(m_radius) * c;
}
/*!
\brief access to radius value
\return the radius
*/
inline RadiusType radius() const
{
return m_radius;
}
private :
RadiusType m_radius;
};
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
namespace services
{
template <typename RadiusType, typename CalculationType>
struct tag<haversine<RadiusType, CalculationType> >
{
typedef strategy_tag_distance_point_point type;
};
template <typename RadiusType, typename CalculationType, typename P1, typename P2>
struct return_type<haversine<RadiusType, CalculationType>, P1, P2>
: haversine<RadiusType, CalculationType>::template calculation_type<P1, P2>
{};
template <typename RadiusType, typename CalculationType>
struct comparable_type<haversine<RadiusType, CalculationType> >
{
typedef comparable::haversine<RadiusType, CalculationType> type;
};
template <typename RadiusType, typename CalculationType>
struct get_comparable<haversine<RadiusType, CalculationType> >
{
private :
typedef haversine<RadiusType, CalculationType> this_type;
typedef comparable::haversine<RadiusType, CalculationType> comparable_type;
public :
static inline comparable_type apply(this_type const& input)
{
return comparable_type(input.radius());
}
};
template <typename RadiusType, typename CalculationType, typename P1, typename P2>
struct result_from_distance<haversine<RadiusType, CalculationType>, P1, P2>
{
private :
typedef haversine<RadiusType, CalculationType> this_type;
typedef typename return_type<this_type, P1, P2>::type return_type;
public :
template <typename T>
static inline return_type apply(this_type const& , T const& value)
{
return return_type(value);
}
};
// Specializations for comparable::haversine
template <typename RadiusType, typename CalculationType>
struct tag<comparable::haversine<RadiusType, CalculationType> >
{
typedef strategy_tag_distance_point_point type;
};
template <typename RadiusType, typename CalculationType, typename P1, typename P2>
struct return_type<comparable::haversine<RadiusType, CalculationType>, P1, P2>
: comparable::haversine<RadiusType, CalculationType>::template calculation_type<P1, P2>
{};
template <typename RadiusType, typename CalculationType>
struct comparable_type<comparable::haversine<RadiusType, CalculationType> >
{
typedef comparable::haversine<RadiusType, CalculationType> type;
};
template <typename RadiusType, typename CalculationType>
struct get_comparable<comparable::haversine<RadiusType, CalculationType> >
{
private :
typedef comparable::haversine<RadiusType, CalculationType> this_type;
public :
static inline this_type apply(this_type const& input)
{
return input;
}
};
template <typename RadiusType, typename CalculationType, typename P1, typename P2>
struct result_from_distance<comparable::haversine<RadiusType, CalculationType>, P1, P2>
{
private :
typedef comparable::haversine<RadiusType, CalculationType> strategy_type;
typedef typename return_type<strategy_type, P1, P2>::type return_type;
public :
template <typename T>
static inline return_type apply(strategy_type const& strategy, T const& distance)
{
return_type const s = sin((distance / strategy.radius()) / return_type(2));
return s * s;
}
};
// Register it as the default for point-types
// in a spherical equatorial coordinate system
template <typename Point1, typename Point2>
struct default_strategy
<
point_tag, point_tag, Point1, Point2,
spherical_equatorial_tag, spherical_equatorial_tag
>
{
typedef strategy::distance::haversine<typename select_coordinate_type<Point1, Point2>::type> type;
};
// Note: spherical polar coordinate system requires "get_as_radian_equatorial"
} // namespace services
#endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
}} // namespace strategy::distance
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGIES_SPHERICAL_DISTANCE_HAVERSINE_HPP