blob: f86b6ee2a0cde03253875740aae6af8e2249c6a6 [file] [log] [blame]
//=======================================================================
// Copyright (C) 2012 Flavio De Lorenzi (fdlorenzi@gmail.com)
// Copyright (C) 2013 Jakob Lykke Andersen, University of Southern Denmark (jlandersen@imada.sdu.dk)
//
// The algorithm implemented here is derived from original ideas by
// Pasquale Foggia and colaborators. For further information see
// e.g. Cordella et al. 2001, 2004.
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
// Revision History:
// 8 April 2013: Fixed a typo in vf2_print_callback. (Flavio De Lorenzi)
#ifndef BOOST_VF2_SUB_GRAPH_ISO_HPP
#define BOOST_VF2_SUB_GRAPH_ISO_HPP
#include <iostream>
#include <iomanip>
#include <iterator>
#include <vector>
#include <utility>
#include <boost/assert.hpp>
#include <boost/concept/assert.hpp>
#include <boost/concept_check.hpp>
#include <boost/graph/graph_utility.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/mcgregor_common_subgraphs.hpp> // for always_equivalent
#include <boost/graph/named_function_params.hpp>
#include <boost/type_traits/has_less.hpp>
#include <boost/mpl/int.hpp>
#include <boost/range/algorithm/sort.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/utility/enable_if.hpp>
#ifndef BOOST_GRAPH_ITERATION_MACROS_HPP
#define BOOST_ISO_INCLUDED_ITER_MACROS // local macro, see bottom of file
#include <boost/graph/iteration_macros.hpp>
#endif
namespace boost {
// Default print_callback
template <typename Graph1,
typename Graph2>
struct vf2_print_callback {
vf2_print_callback(const Graph1& graph1, const Graph2& graph2)
: graph1_(graph1), graph2_(graph2) {}
template <typename CorrespondenceMap1To2,
typename CorrespondenceMap2To1>
bool operator()(CorrespondenceMap1To2 f, CorrespondenceMap2To1) const {
// Print (sub)graph isomorphism map
BGL_FORALL_VERTICES_T(v, graph1_, Graph1)
std::cout << '(' << get(vertex_index_t(), graph1_, v) << ", "
<< get(vertex_index_t(), graph2_, get(f, v)) << ") ";
std::cout << std::endl;
return true;
}
private:
const Graph1& graph1_;
const Graph2& graph2_;
};
namespace detail {
// State associated with a single graph (graph_this)
template<typename GraphThis,
typename GraphOther,
typename IndexMapThis,
typename IndexMapOther>
class base_state {
typedef typename graph_traits<GraphThis>::vertex_descriptor vertex_this_type;
typedef typename graph_traits<GraphOther>::vertex_descriptor vertex_other_type;
typedef typename graph_traits<GraphThis>::vertices_size_type size_type;
const GraphThis& graph_this_;
const GraphOther& graph_other_;
IndexMapThis index_map_this_;
IndexMapOther index_map_other_;
std::vector<vertex_other_type> core_vec_;
typedef iterator_property_map<typename std::vector<vertex_other_type>::iterator,
IndexMapThis, vertex_other_type,
vertex_other_type&> core_map_type;
core_map_type core_;
std::vector<size_type> in_vec_, out_vec_;
typedef iterator_property_map<typename std::vector<size_type>::iterator,
IndexMapThis, size_type, size_type&> in_out_map_type;
in_out_map_type in_, out_;
size_type term_in_count_, term_out_count_, term_both_count_, core_count_;
// Forbidden
base_state(const base_state&);
base_state& operator=(const base_state&);
public:
base_state(const GraphThis& graph_this, const GraphOther& graph_other,
IndexMapThis index_map_this, IndexMapOther index_map_other)
: graph_this_(graph_this), graph_other_(graph_other),
index_map_this_(index_map_this), index_map_other_(index_map_other),
term_in_count_(0), term_out_count_(0), term_both_count_(0), core_count_(0) {
core_vec_.resize(num_vertices(graph_this_), graph_traits<GraphOther>::null_vertex());
core_ = make_iterator_property_map(core_vec_.begin(), index_map_this_);
in_vec_.resize(num_vertices(graph_this_), 0);
in_ = make_iterator_property_map(in_vec_.begin(), index_map_this_);
out_vec_.resize(num_vertices(graph_this_), 0);
out_ = make_iterator_property_map(out_vec_.begin(), index_map_this_);
}
// Adds a vertex pair to the state of graph graph_this
void push(const vertex_this_type& v_this, const vertex_other_type& v_other) {
++core_count_;
put(core_, v_this, v_other);
if (!get(in_, v_this)) {
put(in_, v_this, core_count_);
++term_in_count_;
if (get(out_, v_this))
++term_both_count_;
}
if (!get(out_, v_this)) {
put(out_, v_this, core_count_);
++term_out_count_;
if (get(in_, v_this))
++term_both_count_;
}
BGL_FORALL_INEDGES_T(v_this, e, graph_this_, GraphThis) {
vertex_this_type w = source(e, graph_this_);
if (!get(in_, w)) {
put(in_, w, core_count_);
++term_in_count_;
if (get(out_, w))
++term_both_count_;
}
}
BGL_FORALL_OUTEDGES_T(v_this, e, graph_this_, GraphThis) {
vertex_this_type w = target(e, graph_this_);
if (!get(out_, w)) {
put(out_, w, core_count_);
++term_out_count_;
if (get(in_, w))
++term_both_count_;
}
}
}
// Removes vertex pair from state of graph_this
void pop(const vertex_this_type& v_this, const vertex_other_type&) {
if (!core_count_) return;
if (get(in_, v_this) == core_count_) {
put(in_, v_this, 0);
--term_in_count_;
if (get(out_, v_this))
--term_both_count_;
}
BGL_FORALL_INEDGES_T(v_this, e, graph_this_, GraphThis) {
vertex_this_type w = source(e, graph_this_);
if (get(in_, w) == core_count_) {
put(in_, w, 0);
--term_in_count_;
if (get(out_, w))
--term_both_count_;
}
}
if (get(out_, v_this) == core_count_) {
put(out_, v_this, 0);
--term_out_count_;
if (get(in_, v_this))
--term_both_count_;
}
BGL_FORALL_OUTEDGES_T(v_this, e, graph_this_, GraphThis) {
vertex_this_type w = target(e, graph_this_);
if (get(out_, w) == core_count_) {
put(out_, w, 0);
--term_out_count_;
if (get(in_, w))
--term_both_count_;
}
}
put(core_, v_this, graph_traits<GraphOther>::null_vertex());
--core_count_;
}
// Returns true if the in-terminal set is not empty
bool term_in() const {
return core_count_ < term_in_count_ ;
}
// Returns true if vertex belongs to the in-terminal set
bool term_in(const vertex_this_type& v) const {
return (get(in_, v) > 0) &&
(get(core_, v) == graph_traits<GraphOther>::null_vertex());
}
// Returns true if the out-terminal set is not empty
bool term_out() const {
return core_count_ < term_out_count_;
}
// Returns true if vertex belongs to the out-terminal set
bool term_out(const vertex_this_type& v) const {
return (get(out_, v) > 0) &&
(get(core_, v) == graph_traits<GraphOther>::null_vertex());
}
// Returns true of both (in- and out-terminal) sets are not empty
bool term_both() const {
return core_count_ < term_both_count_;
}
// Returns true if vertex belongs to both (in- and out-terminal) sets
bool term_both(const vertex_this_type& v) const {
return (get(in_, v) > 0) && (get(out_, v) > 0) &&
(get(core_, v) == graph_traits<GraphOther>::null_vertex());
}
// Returns true if vertex belongs to the core map, i.e. it is in the
// present mapping
bool in_core(const vertex_this_type& v) const {
return get(core_, v) != graph_traits<GraphOther>::null_vertex();
}
// Returns the number of vertices in the mapping
size_type count() const {
return core_count_;
}
// Returns the image (in graph_other) of vertex v (in graph_this)
vertex_other_type core(const vertex_this_type& v) const {
return get(core_, v);
}
// Returns the mapping
core_map_type get_map() const {
return core_;
}
// Returns the "time" (or depth) when vertex was added to the in-terminal set
size_type in_depth(const vertex_this_type& v) const {
return get(in_, v);
}
// Returns the "time" (or depth) when vertex was added to the out-terminal set
size_type out_depth(const vertex_this_type& v) const {
return get(out_, v);
}
// Returns the terminal set counts
boost::tuple<size_type, size_type, size_type>
term_set() const {
return boost::make_tuple(term_in_count_, term_out_count_,
term_both_count_);
}
};
// Function object that checks whether a valid edge
// exists. For multi-graphs matched edges are excluded
template <typename Graph, typename Enable = void>
struct equivalent_edge_exists {
typedef typename boost::graph_traits<Graph>::edge_descriptor edge_type;
BOOST_CONCEPT_ASSERT(( LessThanComparable<edge_type> ));
template<typename EdgePredicate>
bool operator()(typename graph_traits<Graph>::vertex_descriptor s,
typename graph_traits<Graph>::vertex_descriptor t,
EdgePredicate is_valid_edge, const Graph& g) {
BGL_FORALL_OUTEDGES_T(s, e, g, Graph) {
if ((target(e, g) == t) && is_valid_edge(e) &&
(matched_edges_.find(e) == matched_edges_.end())) {
matched_edges_.insert(e);
return true;
}
}
return false;
}
private:
std::set<edge_type> matched_edges_;
};
template <typename Graph>
struct equivalent_edge_exists<Graph, typename boost::disable_if<is_multigraph<Graph> >::type> {
template<typename EdgePredicate>
bool operator()(typename graph_traits<Graph>::vertex_descriptor s,
typename graph_traits<Graph>::vertex_descriptor t,
EdgePredicate is_valid_edge, const Graph& g) {
typename graph_traits<Graph>::edge_descriptor e;
bool found;
boost::tie(e, found) = edge(s, t, g);
if (!found)
return false;
else if (is_valid_edge(e))
return true;
return false;
}
};
// Generates a predicate for edge e1 given a binary predicate and a
// fixed edge e2
template <typename Graph1,
typename Graph2,
typename EdgeEquivalencePredicate>
struct edge1_predicate {
edge1_predicate(EdgeEquivalencePredicate edge_comp,
typename graph_traits<Graph2>::edge_descriptor e2)
: edge_comp_(edge_comp), e2_(e2) {}
bool operator()(typename graph_traits<Graph1>::edge_descriptor e1) {
return edge_comp_(e1, e2_);
}
EdgeEquivalencePredicate edge_comp_;
typename graph_traits<Graph2>::edge_descriptor e2_;
};
// Generates a predicate for edge e2 given given a binary predicate and a
// fixed edge e1
template <typename Graph1,
typename Graph2,
typename EdgeEquivalencePredicate>
struct edge2_predicate {
edge2_predicate(EdgeEquivalencePredicate edge_comp,
typename graph_traits<Graph1>::edge_descriptor e1)
: edge_comp_(edge_comp), e1_(e1) {}
bool operator()(typename graph_traits<Graph2>::edge_descriptor e2) {
return edge_comp_(e1_, e2);
}
EdgeEquivalencePredicate edge_comp_;
typename graph_traits<Graph1>::edge_descriptor e1_;
};
enum problem_selector {subgraph_mono, subgraph_iso, isomorphism };
// The actual state associated with both graphs
template<typename Graph1,
typename Graph2,
typename IndexMap1,
typename IndexMap2,
typename EdgeEquivalencePredicate,
typename VertexEquivalencePredicate,
typename SubGraphIsoMapCallback,
problem_selector problem_selection>
class state {
typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_type;
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_type;
typedef typename graph_traits<Graph1>::edge_descriptor edge1_type;
typedef typename graph_traits<Graph2>::edge_descriptor edge2_type;
typedef typename graph_traits<Graph1>::vertices_size_type graph1_size_type;
typedef typename graph_traits<Graph2>::vertices_size_type graph2_size_type;
const Graph1& graph1_;
const Graph2& graph2_;
IndexMap1 index_map1_;
EdgeEquivalencePredicate edge_comp_;
VertexEquivalencePredicate vertex_comp_;
base_state<Graph1, Graph2, IndexMap1, IndexMap2> state1_;
base_state<Graph2, Graph1, IndexMap2, IndexMap1> state2_;
// Three helper functions used in Feasibility and Valid functions to test
// terminal set counts when testing for:
// - graph sub-graph monomorphism, or
inline bool comp_term_sets(graph1_size_type a,
graph2_size_type b,
boost::mpl::int_<subgraph_mono>) const {
return a <= b;
}
// - graph sub-graph isomorphism, or
inline bool comp_term_sets(graph1_size_type a,
graph2_size_type b,
boost::mpl::int_<subgraph_iso>) const {
return a <= b;
}
// - graph isomorphism
inline bool comp_term_sets(graph1_size_type a,
graph2_size_type b,
boost::mpl::int_<isomorphism>) const {
return a == b;
}
// Forbidden
state(const state&);
state& operator=(const state&);
public:
state(const Graph1& graph1, const Graph2& graph2,
IndexMap1 index_map1, IndexMap2 index_map2,
EdgeEquivalencePredicate edge_comp,
VertexEquivalencePredicate vertex_comp)
: graph1_(graph1), graph2_(graph2),
index_map1_(index_map1),
edge_comp_(edge_comp), vertex_comp_(vertex_comp),
state1_(graph1, graph2, index_map1, index_map2),
state2_(graph2, graph1, index_map2, index_map1) {}
// Add vertex pair to the state
void push(const vertex1_type& v, const vertex2_type& w) {
state1_.push(v, w);
state2_.push(w, v);
}
// Remove vertex pair from state
void pop(const vertex1_type& v, const vertex2_type&) {
vertex2_type w = state1_.core(v);
state1_.pop(v, w);
state2_.pop(w, v);
}
// Checks the feasibility of a new vertex pair
bool feasible(const vertex1_type& v_new, const vertex2_type& w_new) {
if (!vertex_comp_(v_new, w_new)) return false;
// graph1
graph1_size_type term_in1_count = 0, term_out1_count = 0, rest1_count = 0;
{
equivalent_edge_exists<Graph2> edge2_exists;
BGL_FORALL_INEDGES_T(v_new, e1, graph1_, Graph1) {
vertex1_type v = source(e1, graph1_);
if (state1_.in_core(v) || (v == v_new)) {
vertex2_type w = w_new;
if (v != v_new)
w = state1_.core(v);
if (!edge2_exists(w, w_new,
edge2_predicate<Graph1, Graph2, EdgeEquivalencePredicate>(edge_comp_, e1),
graph2_))
return false;
} else {
if (0 < state1_.in_depth(v))
++term_in1_count;
if (0 < state1_.out_depth(v))
++term_out1_count;
if ((state1_.in_depth(v) == 0) && (state1_.out_depth(v) == 0))
++rest1_count;
}
}
}
{
equivalent_edge_exists<Graph2> edge2_exists;
BGL_FORALL_OUTEDGES_T(v_new, e1, graph1_, Graph1) {
vertex1_type v = target(e1, graph1_);
if (state1_.in_core(v) || (v == v_new)) {
vertex2_type w = w_new;
if (v != v_new)
w = state1_.core(v);
if (!edge2_exists(w_new, w,
edge2_predicate<Graph1, Graph2, EdgeEquivalencePredicate>(edge_comp_, e1),
graph2_))
return false;
} else {
if (0 < state1_.in_depth(v))
++term_in1_count;
if (0 < state1_.out_depth(v))
++term_out1_count;
if ((state1_.in_depth(v) == 0) && (state1_.out_depth(v) == 0))
++rest1_count;
}
}
}
// graph2
graph2_size_type term_out2_count = 0, term_in2_count = 0, rest2_count = 0;
{
equivalent_edge_exists<Graph1> edge1_exists;
BGL_FORALL_INEDGES_T(w_new, e2, graph2_, Graph2) {
vertex2_type w = source(e2, graph2_);
if (state2_.in_core(w) || (w == w_new)) {
if (problem_selection != subgraph_mono) {
vertex1_type v = v_new;
if (w != w_new)
v = state2_.core(w);
if (!edge1_exists(v, v_new,
edge1_predicate<Graph1, Graph2, EdgeEquivalencePredicate>(edge_comp_, e2),
graph1_))
return false;
}
} else {
if (0 < state2_.in_depth(w))
++term_in2_count;
if (0 < state2_.out_depth(w))
++term_out2_count;
if ((state2_.in_depth(w) == 0) && (state2_.out_depth(w) == 0))
++rest2_count;
}
}
}
{
equivalent_edge_exists<Graph1> edge1_exists;
BGL_FORALL_OUTEDGES_T(w_new, e2, graph2_, Graph2) {
vertex2_type w = target(e2, graph2_);
if (state2_.in_core(w) || (w == w_new)) {
if (problem_selection != subgraph_mono) {
vertex1_type v = v_new;
if (w != w_new)
v = state2_.core(w);
if (!edge1_exists(v_new, v,
edge1_predicate<Graph1, Graph2, EdgeEquivalencePredicate>(edge_comp_, e2),
graph1_))
return false;
}
} else {
if (0 < state2_.in_depth(w))
++term_in2_count;
if (0 < state2_.out_depth(w))
++term_out2_count;
if ((state2_.in_depth(w) == 0) && (state2_.out_depth(w) == 0))
++rest2_count;
}
}
}
if (problem_selection != subgraph_mono) { // subgraph_iso and isomorphism
return comp_term_sets(term_in1_count, term_in2_count,
boost::mpl::int_<problem_selection>()) &&
comp_term_sets(term_out1_count, term_out2_count,
boost::mpl::int_<problem_selection>()) &&
comp_term_sets(rest1_count, rest2_count,
boost::mpl::int_<problem_selection>());
} else { // subgraph_mono
return comp_term_sets(term_in1_count, term_in2_count,
boost::mpl::int_<problem_selection>()) &&
comp_term_sets(term_out1_count, term_out2_count,
boost::mpl::int_<problem_selection>()) &&
comp_term_sets(term_in1_count + term_out1_count + rest1_count,
term_in2_count + term_out2_count + rest2_count,
boost::mpl::int_<problem_selection>());
}
}
// Returns true if vertex v in graph1 is a possible candidate to
// be added to the current state
bool possible_candidate1(const vertex1_type& v) const {
if (state1_.term_both() && state2_.term_both())
return state1_.term_both(v);
else if (state1_.term_out() && state2_.term_out())
return state1_.term_out(v);
else if (state1_.term_in() && state2_.term_in())
return state1_.term_in(v);
else
return !state1_.in_core(v);
}
// Returns true if vertex w in graph2 is a possible candidate to
// be added to the current state
bool possible_candidate2(const vertex2_type& w) const {
if (state1_.term_both() && state2_.term_both())
return state2_.term_both(w);
else if (state1_.term_out() && state2_.term_out())
return state2_.term_out(w);
else if (state1_.term_in() && state2_.term_in())
return state2_.term_in(w);
else
return !state2_.in_core(w);
}
// Returns true if a mapping was found
bool success() const {
return state1_.count() == num_vertices(graph1_);
}
// Returns true if a state is valid
bool valid() const {
boost::tuple<graph1_size_type, graph1_size_type, graph1_size_type> term1;
boost::tuple<graph2_size_type, graph2_size_type, graph2_size_type> term2;
term1 = state1_.term_set();
term2 = state2_.term_set();
return comp_term_sets(boost::get<0>(term1), boost::get<0>(term2),
boost::mpl::int_<problem_selection>()) &&
comp_term_sets(boost::get<1>(term1), boost::get<1>(term2),
boost::mpl::int_<problem_selection>()) &&
comp_term_sets(boost::get<2>(term1), boost::get<2>(term2),
boost::mpl::int_<problem_selection>());
}
// Calls the user_callback with a graph (sub)graph mapping
bool call_back(SubGraphIsoMapCallback user_callback) const {
return user_callback(state1_.get_map(), state2_.get_map());
}
};
// Data structure to keep info used for back tracking during
// matching process
template<typename Graph1,
typename Graph2,
typename VertexOrder1>
struct vf2_match_continuation {
typename VertexOrder1::const_iterator graph1_verts_iter;
typename graph_traits<Graph2>::vertex_iterator graph2_verts_iter;
};
// Non-recursive method that explores state space using a depth-first
// search strategy. At each depth possible pairs candidate are compute
// and tested for feasibility to extend the mapping. If a complete
// mapping is found, the mapping is output to user_callback in the form
// of a correspondence map (graph1 to graph2). Returning false from the
// user_callback will terminate the search. Function match will return
// true if the entire search space was explored.
template<typename Graph1,
typename Graph2,
typename IndexMap1,
typename IndexMap2,
typename VertexOrder1,
typename EdgeEquivalencePredicate,
typename VertexEquivalencePredicate,
typename SubGraphIsoMapCallback,
problem_selector problem_selection>
bool match(const Graph1& graph1, const Graph2& graph2,
SubGraphIsoMapCallback user_callback, const VertexOrder1& vertex_order1,
state<Graph1, Graph2, IndexMap1, IndexMap2,
EdgeEquivalencePredicate, VertexEquivalencePredicate,
SubGraphIsoMapCallback, problem_selection>& s) {
typename VertexOrder1::const_iterator graph1_verts_iter;
typedef typename graph_traits<Graph2>::vertex_iterator vertex2_iterator_type;
vertex2_iterator_type graph2_verts_iter, graph2_verts_iter_end;
typedef vf2_match_continuation<Graph1, Graph2, VertexOrder1> match_continuation_type;
std::vector<match_continuation_type> k;
bool found_match = false;
recur:
if (s.success()) {
if (!s.call_back(user_callback))
return true;
found_match = true;
goto back_track;
}
if (!s.valid())
goto back_track;
graph1_verts_iter = vertex_order1.begin();
while (graph1_verts_iter != vertex_order1.end() &&
!s.possible_candidate1(*graph1_verts_iter)) {
++graph1_verts_iter;
}
boost::tie(graph2_verts_iter, graph2_verts_iter_end) = vertices(graph2);
while (graph2_verts_iter != graph2_verts_iter_end) {
if (s.possible_candidate2(*graph2_verts_iter)) {
if (s.feasible(*graph1_verts_iter, *graph2_verts_iter)) {
match_continuation_type kk;
kk.graph1_verts_iter = graph1_verts_iter;
kk.graph2_verts_iter = graph2_verts_iter;
k.push_back(kk);
s.push(*graph1_verts_iter, *graph2_verts_iter);
goto recur;
}
}
graph2_loop: ++graph2_verts_iter;
}
back_track:
if (k.empty())
return found_match;
const match_continuation_type kk = k.back();
graph1_verts_iter = kk.graph1_verts_iter;
graph2_verts_iter = kk.graph2_verts_iter;
k.pop_back();
s.pop(*graph1_verts_iter, *graph2_verts_iter);
goto graph2_loop;
}
// Used to sort nodes by in/out degrees
template<typename Graph>
struct vertex_in_out_degree_cmp {
typedef typename graph_traits<Graph>::vertex_descriptor vertex_type;
vertex_in_out_degree_cmp(const Graph& graph)
: graph_(graph) {}
bool operator()(const vertex_type& v, const vertex_type& w) const {
// lexicographical comparison
return std::make_pair(in_degree(v, graph_), out_degree(v, graph_)) <
std::make_pair(in_degree(w, graph_), out_degree(w, graph_));
}
const Graph& graph_;
};
// Used to sort nodes by multiplicity of in/out degrees
template<typename Graph,
typename FrequencyMap>
struct vertex_frequency_degree_cmp {
typedef typename graph_traits<Graph>::vertex_descriptor vertex_type;
vertex_frequency_degree_cmp(const Graph& graph, FrequencyMap freq)
: graph_(graph), freq_(freq) {}
bool operator()(const vertex_type& v, const vertex_type& w) const {
// lexicographical comparison
return std::make_pair(freq_[v], in_degree(v, graph_)+out_degree(v, graph_)) <
std::make_pair(freq_[w], in_degree(w, graph_)+out_degree(w, graph_));
}
const Graph& graph_;
FrequencyMap freq_;
};
// Sorts vertices of a graph by multiplicity of in/out degrees
template<typename Graph,
typename IndexMap,
typename VertexOrder>
void sort_vertices(const Graph& graph, IndexMap index_map, VertexOrder& order) {
typedef typename graph_traits<Graph>::vertices_size_type size_type;
boost::range::sort(order, vertex_in_out_degree_cmp<Graph>(graph));
std::vector<size_type> freq_vec(num_vertices(graph), 0);
typedef iterator_property_map<typename std::vector<size_type>::iterator,
IndexMap, size_type, size_type&> frequency_map_type;
frequency_map_type freq = make_iterator_property_map(freq_vec.begin(), index_map);
typedef typename VertexOrder::iterator order_iterator;
for (order_iterator order_iter = order.begin(); order_iter != order.end(); ) {
size_type count = 0;
for (order_iterator count_iter = order_iter;
(count_iter != order.end()) &&
(in_degree(*order_iter, graph) == in_degree(*count_iter, graph)) &&
(out_degree(*order_iter, graph) == out_degree(*count_iter, graph));
++count_iter)
++count;
for (size_type i = 0; i < count; ++i) {
freq[*order_iter] = count;
++order_iter;
}
}
boost::range::sort(order, vertex_frequency_degree_cmp<Graph, frequency_map_type>(graph, freq));
}
// Enumerates all graph sub-graph mono-/iso-morphism mappings between graphs
// graph_small and graph_large. Continues until user_callback returns true or the
// search space has been fully explored.
template <problem_selector problem_selection,
typename GraphSmall,
typename GraphLarge,
typename IndexMapSmall,
typename IndexMapLarge,
typename VertexOrderSmall,
typename EdgeEquivalencePredicate,
typename VertexEquivalencePredicate,
typename SubGraphIsoMapCallback>
bool vf2_subgraph_morphism(const GraphSmall& graph_small, const GraphLarge& graph_large,
SubGraphIsoMapCallback user_callback,
IndexMapSmall index_map_small, IndexMapLarge index_map_large,
const VertexOrderSmall& vertex_order_small,
EdgeEquivalencePredicate edge_comp,
VertexEquivalencePredicate vertex_comp) {
// Graph requirements
BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<GraphSmall> ));
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<GraphSmall> ));
BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<GraphSmall> ));
BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<GraphSmall> ));
BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<GraphLarge> ));
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<GraphLarge> ));
BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<GraphLarge> ));
BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<GraphLarge> ));
typedef typename graph_traits<GraphSmall>::vertex_descriptor vertex_small_type;
typedef typename graph_traits<GraphLarge>::vertex_descriptor vertex_large_type;
typedef typename graph_traits<GraphSmall>::vertices_size_type size_type_small;
typedef typename graph_traits<GraphLarge>::vertices_size_type size_type_large;
// Property map requirements
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMapSmall, vertex_small_type> ));
typedef typename property_traits<IndexMapSmall>::value_type IndexMapSmallValue;
BOOST_STATIC_ASSERT(( is_convertible<IndexMapSmallValue, size_type_small>::value ));
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMapLarge, vertex_large_type> ));
typedef typename property_traits<IndexMapLarge>::value_type IndexMapLargeValue;
BOOST_STATIC_ASSERT(( is_convertible<IndexMapLargeValue, size_type_large>::value ));
// Edge & vertex requirements
typedef typename graph_traits<GraphSmall>::edge_descriptor edge_small_type;
typedef typename graph_traits<GraphLarge>::edge_descriptor edge_large_type;
BOOST_CONCEPT_ASSERT(( BinaryPredicateConcept<EdgeEquivalencePredicate,
edge_small_type, edge_large_type> ));
BOOST_CONCEPT_ASSERT(( BinaryPredicateConcept<VertexEquivalencePredicate,
vertex_small_type, vertex_large_type> ));
// Vertex order requirements
BOOST_CONCEPT_ASSERT(( ContainerConcept<VertexOrderSmall> ));
typedef typename VertexOrderSmall::value_type order_value_type;
BOOST_STATIC_ASSERT(( is_same<vertex_small_type, order_value_type>::value ));
BOOST_ASSERT( num_vertices(graph_small) == vertex_order_small.size() );
if (num_vertices(graph_small) > num_vertices(graph_large))
return false;
typename graph_traits<GraphSmall>::edges_size_type num_edges_small = num_edges(graph_small);
typename graph_traits<GraphLarge>::edges_size_type num_edges_large = num_edges(graph_large);
// Double the number of edges for undirected graphs: each edge counts as
// in-edge and out-edge
if (is_undirected(graph_small)) num_edges_small *= 2;
if (is_undirected(graph_large)) num_edges_large *= 2;
if (num_edges_small > num_edges_large)
return false;
detail::state<GraphSmall, GraphLarge, IndexMapSmall, IndexMapLarge,
EdgeEquivalencePredicate, VertexEquivalencePredicate,
SubGraphIsoMapCallback, problem_selection>
s(graph_small, graph_large, index_map_small, index_map_large, edge_comp, vertex_comp);
return detail::match(graph_small, graph_large, user_callback, vertex_order_small, s);
}
} // namespace detail
// Returns vertex order (vertices sorted by multiplicity of in/out degrees)
template<typename Graph>
std::vector<typename graph_traits<Graph>::vertex_descriptor>
vertex_order_by_mult(const Graph& graph) {
std::vector<typename graph_traits<Graph>::vertex_descriptor> vertex_order;
std::copy(vertices(graph).first, vertices(graph).second, std::back_inserter(vertex_order));
detail::sort_vertices(graph, get(vertex_index, graph), vertex_order);
return vertex_order;
}
// Enumerates all graph sub-graph monomorphism mappings between graphs
// graph_small and graph_large. Continues until user_callback returns true or the
// search space has been fully explored.
template <typename GraphSmall,
typename GraphLarge,
typename IndexMapSmall,
typename IndexMapLarge,
typename VertexOrderSmall,
typename EdgeEquivalencePredicate,
typename VertexEquivalencePredicate,
typename SubGraphIsoMapCallback>
bool vf2_subgraph_mono(const GraphSmall& graph_small, const GraphLarge& graph_large,
SubGraphIsoMapCallback user_callback,
IndexMapSmall index_map_small, IndexMapLarge index_map_large,
const VertexOrderSmall& vertex_order_small,
EdgeEquivalencePredicate edge_comp,
VertexEquivalencePredicate vertex_comp) {
return detail::vf2_subgraph_morphism<detail::subgraph_mono>
(graph_small, graph_large,
user_callback,
index_map_small, index_map_large,
vertex_order_small,
edge_comp,
vertex_comp);
}
// All default interface for vf2_subgraph_iso
template <typename GraphSmall,
typename GraphLarge,
typename SubGraphIsoMapCallback>
bool vf2_subgraph_mono(const GraphSmall& graph_small, const GraphLarge& graph_large,
SubGraphIsoMapCallback user_callback) {
return vf2_subgraph_mono(graph_small, graph_large, user_callback,
get(vertex_index, graph_small), get(vertex_index, graph_large),
vertex_order_by_mult(graph_small),
always_equivalent(), always_equivalent());
}
// Named parameter interface of vf2_subgraph_iso
template <typename GraphSmall,
typename GraphLarge,
typename VertexOrderSmall,
typename SubGraphIsoMapCallback,
typename Param,
typename Tag,
typename Rest>
bool vf2_subgraph_mono(const GraphSmall& graph_small, const GraphLarge& graph_large,
SubGraphIsoMapCallback user_callback,
const VertexOrderSmall& vertex_order_small,
const bgl_named_params<Param, Tag, Rest>& params) {
return vf2_subgraph_mono(graph_small, graph_large, user_callback,
choose_const_pmap(get_param(params, vertex_index1),
graph_small, vertex_index),
choose_const_pmap(get_param(params, vertex_index2),
graph_large, vertex_index),
vertex_order_small,
choose_param(get_param(params, edges_equivalent_t()),
always_equivalent()),
choose_param(get_param(params, vertices_equivalent_t()),
always_equivalent())
);
}
// Enumerates all graph sub-graph isomorphism mappings between graphs
// graph_small and graph_large. Continues until user_callback returns true or the
// search space has been fully explored.
template <typename GraphSmall,
typename GraphLarge,
typename IndexMapSmall,
typename IndexMapLarge,
typename VertexOrderSmall,
typename EdgeEquivalencePredicate,
typename VertexEquivalencePredicate,
typename SubGraphIsoMapCallback>
bool vf2_subgraph_iso(const GraphSmall& graph_small, const GraphLarge& graph_large,
SubGraphIsoMapCallback user_callback,
IndexMapSmall index_map_small, IndexMapLarge index_map_large,
const VertexOrderSmall& vertex_order_small,
EdgeEquivalencePredicate edge_comp,
VertexEquivalencePredicate vertex_comp) {
return detail::vf2_subgraph_morphism<detail::subgraph_iso>
(graph_small, graph_large,
user_callback,
index_map_small, index_map_large,
vertex_order_small,
edge_comp,
vertex_comp);
}
// All default interface for vf2_subgraph_iso
template <typename GraphSmall,
typename GraphLarge,
typename SubGraphIsoMapCallback>
bool vf2_subgraph_iso(const GraphSmall& graph_small, const GraphLarge& graph_large,
SubGraphIsoMapCallback user_callback) {
return vf2_subgraph_iso(graph_small, graph_large, user_callback,
get(vertex_index, graph_small), get(vertex_index, graph_large),
vertex_order_by_mult(graph_small),
always_equivalent(), always_equivalent());
}
// Named parameter interface of vf2_subgraph_iso
template <typename GraphSmall,
typename GraphLarge,
typename VertexOrderSmall,
typename SubGraphIsoMapCallback,
typename Param,
typename Tag,
typename Rest>
bool vf2_subgraph_iso(const GraphSmall& graph_small, const GraphLarge& graph_large,
SubGraphIsoMapCallback user_callback,
const VertexOrderSmall& vertex_order_small,
const bgl_named_params<Param, Tag, Rest>& params) {
return vf2_subgraph_iso(graph_small, graph_large, user_callback,
choose_const_pmap(get_param(params, vertex_index1),
graph_small, vertex_index),
choose_const_pmap(get_param(params, vertex_index2),
graph_large, vertex_index),
vertex_order_small,
choose_param(get_param(params, edges_equivalent_t()),
always_equivalent()),
choose_param(get_param(params, vertices_equivalent_t()),
always_equivalent())
);
}
// Enumerates all isomorphism mappings between graphs graph1_ and graph2_.
// Continues until user_callback returns true or the search space has been
// fully explored.
template <typename Graph1,
typename Graph2,
typename IndexMap1,
typename IndexMap2,
typename VertexOrder1,
typename EdgeEquivalencePredicate,
typename VertexEquivalencePredicate,
typename GraphIsoMapCallback>
bool vf2_graph_iso(const Graph1& graph1, const Graph2& graph2,
GraphIsoMapCallback user_callback,
IndexMap1 index_map1, IndexMap2 index_map2,
const VertexOrder1& vertex_order1,
EdgeEquivalencePredicate edge_comp,
VertexEquivalencePredicate vertex_comp) {
// Graph requirements
BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<Graph1> ));
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph1> ));
BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<Graph1> ));
BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<Graph1> ));
BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<Graph2> ));
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph2> ));
BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<Graph2> ));
BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<Graph2> ));
typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_type;
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_type;
typedef typename graph_traits<Graph1>::vertices_size_type size_type1;
typedef typename graph_traits<Graph2>::vertices_size_type size_type2;
// Property map requirements
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMap1, vertex1_type> ));
typedef typename property_traits<IndexMap1>::value_type IndexMap1Value;
BOOST_STATIC_ASSERT(( is_convertible<IndexMap1Value, size_type1>::value ));
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMap2, vertex2_type> ));
typedef typename property_traits<IndexMap2>::value_type IndexMap2Value;
BOOST_STATIC_ASSERT(( is_convertible<IndexMap2Value, size_type2>::value ));
// Edge & vertex requirements
typedef typename graph_traits<Graph1>::edge_descriptor edge1_type;
typedef typename graph_traits<Graph2>::edge_descriptor edge2_type;
BOOST_CONCEPT_ASSERT(( BinaryPredicateConcept<EdgeEquivalencePredicate,
edge1_type, edge2_type> ));
BOOST_CONCEPT_ASSERT(( BinaryPredicateConcept<VertexEquivalencePredicate,
vertex1_type, vertex2_type> ));
// Vertex order requirements
BOOST_CONCEPT_ASSERT(( ContainerConcept<VertexOrder1> ));
typedef typename VertexOrder1::value_type order_value_type;
BOOST_STATIC_ASSERT(( is_same<vertex1_type, order_value_type>::value ));
BOOST_ASSERT( num_vertices(graph1) == vertex_order1.size() );
if (num_vertices(graph1) != num_vertices(graph2))
return false;
typename graph_traits<Graph1>::edges_size_type num_edges1 = num_edges(graph1);
typename graph_traits<Graph2>::edges_size_type num_edges2 = num_edges(graph2);
// Double the number of edges for undirected graphs: each edge counts as
// in-edge and out-edge
if (is_undirected(graph1)) num_edges1 *= 2;
if (is_undirected(graph2)) num_edges2 *= 2;
if (num_edges1 != num_edges2)
return false;
detail::state<Graph1, Graph2, IndexMap1, IndexMap2,
EdgeEquivalencePredicate, VertexEquivalencePredicate,
GraphIsoMapCallback, detail::isomorphism>
s(graph1, graph2, index_map1, index_map2, edge_comp, vertex_comp);
return detail::match(graph1, graph2, user_callback, vertex_order1, s);
}
// All default interface for vf2_graph_iso
template <typename Graph1,
typename Graph2,
typename GraphIsoMapCallback>
bool vf2_graph_iso(const Graph1& graph1, const Graph2& graph2,
GraphIsoMapCallback user_callback) {
return vf2_graph_iso(graph1, graph2, user_callback,
get(vertex_index, graph1), get(vertex_index, graph2),
vertex_order_by_mult(graph1),
always_equivalent(), always_equivalent());
}
// Named parameter interface of vf2_graph_iso
template <typename Graph1,
typename Graph2,
typename VertexOrder1,
typename GraphIsoMapCallback,
typename Param,
typename Tag,
typename Rest>
bool vf2_graph_iso(const Graph1& graph1, const Graph2& graph2,
GraphIsoMapCallback user_callback,
const VertexOrder1& vertex_order1,
const bgl_named_params<Param, Tag, Rest>& params) {
return vf2_graph_iso(graph1, graph2, user_callback,
choose_const_pmap(get_param(params, vertex_index1),
graph1, vertex_index),
choose_const_pmap(get_param(params, vertex_index2),
graph2, vertex_index),
vertex_order1,
choose_param(get_param(params, edges_equivalent_t()),
always_equivalent()),
choose_param(get_param(params, vertices_equivalent_t()),
always_equivalent())
);
}
// Verifies a graph (sub)graph isomorphism map
template<typename Graph1,
typename Graph2,
typename CorresponenceMap1To2,
typename EdgeEquivalencePredicate,
typename VertexEquivalencePredicate>
inline bool verify_vf2_subgraph_iso(const Graph1& graph1, const Graph2& graph2,
const CorresponenceMap1To2 f,
EdgeEquivalencePredicate edge_comp,
VertexEquivalencePredicate vertex_comp) {
BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<Graph1> ));
BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<Graph2> ));
detail::equivalent_edge_exists<Graph2> edge2_exists;
BGL_FORALL_EDGES_T(e1, graph1, Graph1) {
typename graph_traits<Graph1>::vertex_descriptor s1, t1;
typename graph_traits<Graph2>::vertex_descriptor s2, t2;
s1 = source(e1, graph1); t1 = target(e1, graph1);
s2 = get(f, s1); t2 = get(f, t1);
if (!vertex_comp(s1, s2) || !vertex_comp(t1, t2))
return false;
typename graph_traits<Graph2>::edge_descriptor e2;
if (!edge2_exists(s2, t2,
detail::edge2_predicate<Graph1, Graph2, EdgeEquivalencePredicate>(edge_comp, e1),
graph2))
return false;
}
return true;
}
// Variant of verify_subgraph_iso with all default parameters
template<typename Graph1,
typename Graph2,
typename CorresponenceMap1To2>
inline bool verify_vf2_subgraph_iso(const Graph1& graph1, const Graph2& graph2,
const CorresponenceMap1To2 f) {
return verify_vf2_subgraph_iso(graph1, graph2, f,
always_equivalent(), always_equivalent());
}
} // namespace boost
#ifdef BOOST_ISO_INCLUDED_ITER_MACROS
#undef BOOST_ISO_INCLUDED_ITER_MACROS
#include <boost/graph/iteration_macros_undef.hpp>
#endif
#endif // BOOST_VF2_SUB_GRAPH_ISO_HPP