blob: 9a4ceff5875aa3d207d076d9a8b030605ebc7542 [file] [log] [blame]
///////////////////////////////////////////////////////////////
// Copyright 2013 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_
#ifndef BOOST_MATH_CPP_BIN_FLOAT_HPP
#define BOOST_MATH_CPP_BIN_FLOAT_HPP
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/integer.hpp>
#include <boost/math/special_functions/trunc.hpp>
#include <boost/multiprecision/detail/float_string_cvt.hpp>
namespace boost{ namespace multiprecision{ namespace backends{
enum digit_base_type
{
digit_base_2 = 2,
digit_base_10 = 10
};
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4522) // multiple assignment operators specified
#endif
namespace detail{
template <class U>
inline typename enable_if_c<is_unsigned<U>::value, bool>::type is_negative(U) { return false; }
template <class S>
inline typename disable_if_c<is_unsigned<S>::value, bool>::type is_negative(S s) { return s < 0; }
}
template <unsigned Digits, digit_base_type DigitBase = digit_base_10, class Allocator = void, class Exponent = int, Exponent MinExponent = 0, Exponent MaxExponent = 0>
class cpp_bin_float
{
public:
static const unsigned bit_count = DigitBase == digit_base_2 ? Digits : (Digits * 1000uL) / 301uL + ((Digits * 1000uL) % 301 ? 2u : 1u);
typedef cpp_int_backend<is_void<Allocator>::value ? bit_count : 0, bit_count, is_void<Allocator>::value ? unsigned_magnitude : signed_magnitude, unchecked, Allocator> rep_type;
typedef cpp_int_backend<is_void<Allocator>::value ? 2 * bit_count : 0, 2 * bit_count, is_void<Allocator>::value ? unsigned_magnitude : signed_magnitude, unchecked, Allocator> double_rep_type;
typedef typename rep_type::signed_types signed_types;
typedef typename rep_type::unsigned_types unsigned_types;
typedef boost::mpl::list<double, long double> float_types;
typedef Exponent exponent_type;
static const exponent_type max_exponent_limit = boost::integer_traits<exponent_type>::const_max - 2 * static_cast<exponent_type>(bit_count);
static const exponent_type min_exponent_limit = boost::integer_traits<exponent_type>::const_min + 2 * static_cast<exponent_type>(bit_count);
BOOST_STATIC_ASSERT_MSG(MinExponent >= min_exponent_limit, "Template parameter MinExponent is too negative for our internal logic to function correctly, sorry!");
BOOST_STATIC_ASSERT_MSG(MaxExponent <= max_exponent_limit, "Template parameter MaxExponent is too large for our internal logic to function correctly, sorry!");
BOOST_STATIC_ASSERT_MSG(MinExponent <= 0, "Template parameter MinExponent can not be positive!");
BOOST_STATIC_ASSERT_MSG(MaxExponent >= 0, "Template parameter MaxExponent can not be negative!");
static const exponent_type max_exponent = MaxExponent == 0 ? max_exponent_limit : MaxExponent;
static const exponent_type min_exponent = MinExponent == 0 ? min_exponent_limit : MinExponent;
static const exponent_type exponent_zero = max_exponent + 1;
static const exponent_type exponent_infinity = max_exponent + 2;
static const exponent_type exponent_nan = max_exponent + 3;
private:
rep_type m_data;
exponent_type m_exponent;
bool m_sign;
public:
cpp_bin_float() BOOST_NOEXCEPT_IF(noexcept(rep_type())) : m_data(), m_exponent(exponent_nan), m_sign(false) {}
cpp_bin_float(const cpp_bin_float &o) BOOST_NOEXCEPT_IF(noexcept(rep_type(std::declval<const rep_type&>())))
: m_data(o.m_data), m_exponent(o.m_exponent), m_sign(o.m_sign) {}
template <unsigned D, digit_base_type B, class A, class E, E MinE, E MaxE>
cpp_bin_float(const cpp_bin_float<D, B, A, E, MinE, MaxE> &o, typename boost::enable_if_c<(bit_count >= cpp_bin_float<D, B, A, E, MinE, MaxE>::bit_count)>::type const* = 0)
: m_exponent(o.exponent()), m_sign(o.sign())
{
typename cpp_bin_float<D, B, A, E, MinE, MaxE>::rep_type b(o.bits());
this->sign() = o.sign();
this->exponent() = o.exponent() + (int)bit_count - (int)cpp_bin_float<D, B, A, E, MinE, MaxE>::bit_count;
copy_and_round(*this, b);
}
template <unsigned D, digit_base_type B, class A, class E, E MinE, E MaxE>
explicit cpp_bin_float(const cpp_bin_float<D, B, A, E, MinE, MaxE> &o, typename boost::disable_if_c<(bit_count >= cpp_bin_float<D, B, A, E, MinE, MaxE>::bit_count)>::type const* = 0)
: m_exponent(o.exponent()), m_sign(o.sign())
{
typename cpp_bin_float<D, B, A, E, MinE, MaxE>::rep_type b(o.bits());
this->sign() = o.sign();
this->exponent() = o.exponent() - (int)(cpp_bin_float<D, B, A, E, MinE, MaxE>::bit_count - bit_count);
copy_and_round(*this, b);
}
template <class Float>
cpp_bin_float(const Float& f,
typename boost::enable_if_c<
(number_category<Float>::value == number_kind_floating_point)
&& (std::numeric_limits<Float>::digits <= (int)bit_count)
&& (std::numeric_limits<Float>::radix == 2)
>::type const* = 0)
: m_data(), m_exponent(0), m_sign(false)
{
this->assign_float(f);
}
cpp_bin_float& operator=(const cpp_bin_float &o) BOOST_NOEXCEPT_IF(noexcept(std::declval<rep_type&>() = std::declval<const rep_type&>()))
{
m_data = o.m_data;
m_exponent = o.m_exponent;
m_sign = o.m_sign;
return *this;
}
template <unsigned D, digit_base_type B, class A, class E, E MinE, E MaxE>
cpp_bin_float& operator=(const cpp_bin_float<D, B, A, E, MinE, MaxE> &o)
{
typename cpp_bin_float<D, B, A, E, MinE, MaxE>::rep_type b(o.bits());
this->exponent() = o.exponent() + (int)bit_count - (int)cpp_bin_float<D, B, A, E, MinE, MaxE>::bit_count;
this->sign() = o.sign();
copy_and_round(*this, b);
return *this;
}
template <class Float>
typename boost::enable_if_c<
(number_category<Float>::value == number_kind_floating_point)
&& (std::numeric_limits<Float>::digits <= (int)bit_count)
&& (std::numeric_limits<Float>::radix == 2), cpp_bin_float&>::type operator=(const Float& f)
{
return assign_float(f);
}
template <class Float>
typename boost::enable_if_c<is_floating_point<Float>::value, cpp_bin_float&>::type assign_float(Float f)
{
BOOST_MATH_STD_USING
using default_ops::eval_add;
typedef typename boost::multiprecision::detail::canonical<int, cpp_bin_float>::type bf_int_type;
switch((boost::math::fpclassify)(f))
{
case FP_ZERO:
m_data = limb_type(0);
m_sign = false;
m_exponent = exponent_zero;
return *this;
case FP_NAN:
m_data = limb_type(0);
m_sign = false;
m_exponent = exponent_nan;
return *this;
case FP_INFINITE:
m_data = limb_type(0);
m_sign = false;
m_exponent = exponent_infinity;
return *this;
}
if(f < 0)
{
*this = -f;
this->negate();
return *this;
}
typedef typename mpl::front<unsigned_types>::type ui_type;
m_data = static_cast<ui_type>(0u);
m_sign = false;
m_exponent = 0;
static const int bits = sizeof(int) * CHAR_BIT - 1;
int e;
f = frexp(f, &e);
while(f)
{
f = ldexp(f, bits);
e -= bits;
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
int ipart = itrunc(f);
#else
int ipart = static_cast<int>(f);
#endif
f -= ipart;
m_exponent += bits;
cpp_bin_float t;
t = static_cast<bf_int_type>(ipart);
eval_add(*this, t);
}
m_exponent += static_cast<Exponent>(e);
return *this;
}
template <class Float>
typename boost::enable_if_c<
(number_category<Float>::value == number_kind_floating_point)
&& !is_floating_point<Float>::value
/*&& (std::numeric_limits<number<Float> >::radix == 2)*/,
cpp_bin_float&>::type assign_float(Float f)
{
BOOST_MATH_STD_USING
using default_ops::eval_add;
using default_ops::eval_get_sign;
using default_ops::eval_convert_to;
using default_ops::eval_subtract;
typedef typename boost::multiprecision::detail::canonical<int, Float>::type f_int_type;
typedef typename boost::multiprecision::detail::canonical<int, cpp_bin_float>::type bf_int_type;
switch(eval_fpclassify(f))
{
case FP_ZERO:
m_data = limb_type(0);
m_sign = false;
m_exponent = exponent_zero;
return *this;
case FP_NAN:
m_data = limb_type(0);
m_sign = false;
m_exponent = exponent_nan;
return *this;
case FP_INFINITE:
m_data = limb_type(0);
m_sign = false;
m_exponent = exponent_infinity;
return *this;
}
if(eval_get_sign(f) < 0)
{
f.negate();
*this = f;
this->negate();
return *this;
}
typedef typename mpl::front<unsigned_types>::type ui_type;
m_data = static_cast<ui_type>(0u);
m_sign = false;
m_exponent = 0;
static const int bits = sizeof(int) * CHAR_BIT - 1;
int e;
eval_frexp(f, f, &e);
while(eval_get_sign(f) != 0)
{
eval_ldexp(f, f, bits);
e -= bits;
int ipart;
eval_convert_to(&ipart, f);
eval_subtract(f, static_cast<f_int_type>(ipart));
m_exponent += bits;
eval_add(*this, static_cast<bf_int_type>(ipart));
}
m_exponent += e;
if(m_exponent > max_exponent)
m_exponent = exponent_infinity;
if(m_exponent < min_exponent)
{
m_data = limb_type(0u);
m_exponent = exponent_zero;
m_sign = false;
}
else if(eval_get_sign(m_data) == 0)
{
m_exponent = exponent_zero;
m_sign = false;
}
return *this;
}
template <class I>
typename boost::enable_if<is_integral<I>, cpp_bin_float&>::type operator=(const I& i)
{
using default_ops::eval_bit_test;
if(!i)
{
m_data = static_cast<limb_type>(0);
m_exponent = exponent_zero;
m_sign = false;
}
else
{
typedef typename make_unsigned<I>::type ui_type;
ui_type fi = static_cast<ui_type>(boost::multiprecision::detail::unsigned_abs(i));
typedef typename boost::multiprecision::detail::canonical<ui_type, rep_type>::type ar_type;
m_data = static_cast<ar_type>(fi);
unsigned shift = msb(fi);
if(shift >= bit_count)
{
m_exponent = static_cast<Exponent>(shift);
m_data = static_cast<ar_type>(fi >> (shift + 1 - bit_count));
}
else
{
m_exponent = static_cast<Exponent>(shift);
eval_left_shift(m_data, bit_count - shift - 1);
}
BOOST_ASSERT(eval_bit_test(m_data, bit_count-1));
m_sign = detail::is_negative(i);
}
return *this;
}
cpp_bin_float& operator=(const char *s);
void swap(cpp_bin_float &o) BOOST_NOEXCEPT
{
m_data.swap(o.m_data);
std::swap(m_exponent, o.m_exponent);
std::swap(m_sign, o.m_sign);
}
std::string str(std::streamsize dig, std::ios_base::fmtflags f) const;
void negate()
{
if((m_exponent != exponent_zero) && (m_exponent != exponent_nan))
m_sign = !m_sign;
}
int compare(const cpp_bin_float &o) const BOOST_NOEXCEPT
{
if(m_sign != o.m_sign)
return m_sign ? -1 : 1;
int result;
if(m_exponent == exponent_nan)
return -1;
else if(m_exponent != o.m_exponent)
{
if(m_exponent == exponent_zero)
result = -1;
else if(o.m_exponent == exponent_zero)
result = 1;
else
result = m_exponent > o.m_exponent ? 1 : -1;
}
else
result = m_data.compare(o.m_data);
if(m_sign)
result = -result;
return result;
}
template <class A>
int compare(const A& o) const BOOST_NOEXCEPT
{
cpp_bin_float b;
b = o;
return compare(b);
}
rep_type& bits() { return m_data; }
const rep_type& bits()const { return m_data; }
exponent_type& exponent() { return m_exponent; }
const exponent_type& exponent()const { return m_exponent; }
bool& sign() { return m_sign; }
const bool& sign()const { return m_sign; }
void check_invariants()
{
using default_ops::eval_bit_test;
using default_ops::eval_is_zero;
if((m_exponent <= max_exponent) && (m_exponent >= min_exponent))
{
BOOST_ASSERT(eval_bit_test(m_data, bit_count - 1));
}
else
{
BOOST_ASSERT(m_exponent > max_exponent);
BOOST_ASSERT(m_exponent <= exponent_nan);
BOOST_ASSERT(eval_is_zero(m_data));
}
}
template<class Archive>
void serialize(Archive & ar, const unsigned int /*version*/)
{
ar & m_data;
ar & m_exponent;
ar & m_sign;
}
};
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, class Int>
inline void copy_and_round(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, Int &arg)
{
// Precondition: exponent of res must have been set before this function is called
// as we may need to adjust it based on how many cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count in arg are set.
using default_ops::eval_msb;
using default_ops::eval_lsb;
using default_ops::eval_left_shift;
using default_ops::eval_bit_test;
using default_ops::eval_right_shift;
using default_ops::eval_increment;
using default_ops::eval_get_sign;
// cancellation may have resulted in arg being all zeros:
if(eval_get_sign(arg) == 0)
{
res.exponent() = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero;
res.sign() = false;
res.bits() = static_cast<limb_type>(0u);
return;
}
int msb = eval_msb(arg);
if(static_cast<int>(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count) > msb + 1)
{
// Must have had cancellation in subtraction, shift left and copy:
res.bits() = arg;
eval_left_shift(res.bits(), cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - msb - 1);
res.exponent() -= static_cast<Exponent>(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - msb - 1);
}
else if(static_cast<int>(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count) < msb + 1)
{
// We have more cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count than we need, so round as required,
// first get the rounding bit:
bool roundup = eval_bit_test(arg, msb - cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count);
// Then check for a tie:
if(roundup && (msb - cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count == eval_lsb(arg)))
{
// Ties round towards even:
if(!eval_bit_test(arg, msb - cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count + 1))
roundup = false;
}
// Shift off the cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count we don't need:
eval_right_shift(arg, msb - cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count + 1);
res.exponent() += static_cast<Exponent>(msb - (int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count + 1);
if(roundup)
{
eval_increment(arg);
if(eval_bit_test(arg, cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count))
{
// This happens very very rairly:
eval_right_shift(arg, 1u);
++res.exponent();
}
}
res.bits() = arg;
}
else
{
res.bits() = arg;
}
BOOST_ASSERT((eval_msb(res.bits()) == cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1));
if(res.exponent() > cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent)
{
// Overflow:
res.exponent() = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity;
res.bits() = static_cast<limb_type>(0u);
}
else if(res.exponent() < cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::min_exponent)
{
// Underflow:
res.exponent() = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero;
res.bits() = static_cast<limb_type>(0u);
res.sign() = false;
}
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void do_eval_add(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &a, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &b)
{
using default_ops::eval_add;
using default_ops::eval_bit_test;
typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::double_rep_type dt;
// Special cases first:
switch(a.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
res = b;
if(res.sign())
res.negate();
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
if(b.exponent() == cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan)
res = b;
else
res = a;
return; // result is still infinite.
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
res = a;
return; // result is still a NaN.
}
switch(b.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
res = a;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
res = b;
if(res.sign())
res.negate();
return; // result is infinite.
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
res = b;
return; // result is a NaN.
}
typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type e_diff = a.exponent() - b.exponent();
bool s = a.sign();
if(e_diff >= 0)
{
dt = a.bits();
if(e_diff < (int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count)
{
eval_left_shift(dt, e_diff);
res.exponent() = a.exponent() - e_diff;
eval_add(dt, b.bits());
}
else
res.exponent() = a.exponent();
}
else
{
dt= b.bits();
if(-e_diff < (int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count)
{
eval_left_shift(dt, -e_diff);
res.exponent() = b.exponent() + e_diff;
eval_add(dt, a.bits());
}
else
res.exponent() = b.exponent();
}
copy_and_round(res, dt);
res.check_invariants();
if(res.sign() != s)
res.negate();
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void do_eval_subtract(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &a, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &b)
{
using default_ops::eval_subtract;
using default_ops::eval_bit_test;
typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::double_rep_type dt;
// Special cases first:
switch(a.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
if(b.exponent() == cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan)
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::quiet_NaN().backend();
else
{
res = b;
if(!res.sign())
res.negate();
}
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
if((b.exponent() == cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan) || (b.exponent() == cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity))
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::quiet_NaN().backend();
else
res = a;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
res = a;
return; // result is still a NaN.
}
switch(b.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
res = a;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
res.exponent() = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan;
res.sign() = false;
res.bits() = static_cast<limb_type>(0u);
return; // result is a NaN.
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
res = b;
return; // result is still a NaN.
}
typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type e_diff = a.exponent() - b.exponent();
bool s = a.sign();
if((e_diff > 0) || ((e_diff == 0) && a.bits().compare(b.bits()) >= 0))
{
dt = a.bits();
if(e_diff < (int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count)
{
eval_left_shift(dt, e_diff);
res.exponent() = a.exponent() - e_diff;
eval_subtract(dt, b.bits());
}
else
res.exponent() = a.exponent();
}
else
{
dt = b.bits();
if(-e_diff < (int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count)
{
eval_left_shift(dt, -e_diff);
res.exponent() = b.exponent() + e_diff;
eval_subtract(dt, a.bits());
}
else
res.exponent() = b.exponent();
s = !s;
}
copy_and_round(res, dt);
if(res.sign() != s)
res.negate();
res.check_invariants();
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_add(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &a, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &b)
{
if(a.sign() == b.sign())
do_eval_add(res, a, b);
else
do_eval_subtract(res, a, b);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_add(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &a)
{
return eval_add(res, res, a);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_subtract(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &a, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &b)
{
if(a.sign() != b.sign())
do_eval_add(res, a, b);
else
do_eval_subtract(res, a, b);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_subtract(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &a)
{
return eval_subtract(res, res, a);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_multiply(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &a, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &b)
{
using default_ops::eval_bit_test;
using default_ops::eval_multiply;
// Special cases first:
switch(a.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
if(b.exponent() == cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan)
res = b;
else
res = a;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
switch(b.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::quiet_NaN().backend();
break;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
res = b;
break;
default:
res = a;
break;
}
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
res = a;
return;
}
if(b.exponent() > cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent)
{
res = b;
return;
}
if((a.exponent() > 0) && (b.exponent() > 0))
{
if(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent + 2 - a.exponent() < b.exponent())
{
// We will certainly overflow:
res.exponent() = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity;
res.sign() = a.sign() != b.sign();
res.bits() = static_cast<limb_type>(0u);
return;
}
}
if((a.exponent() < 0) && (b.exponent() < 0))
{
if(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::min_exponent - 2 - a.exponent() > b.exponent())
{
// We will certainly underflow:
res.exponent() = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero;
res.sign() = false;
res.bits() = static_cast<limb_type>(0u);
return;
}
}
typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::double_rep_type dt;
eval_multiply(dt, a.bits(), b.bits());
res.exponent() = a.exponent() + b.exponent() - cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count + 1;
copy_and_round(res, dt);
res.check_invariants();
res.sign() = a.sign() != b.sign();
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_multiply(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &a)
{
eval_multiply(res, res, a);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, class U>
inline typename enable_if_c<is_unsigned<U>::value>::type eval_multiply(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &a, const U &b)
{
using default_ops::eval_bit_test;
using default_ops::eval_multiply;
// Special cases first:
switch(a.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
res = a;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
if(b == 0)
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::quiet_NaN().backend();
else
res = a;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
res = a;
return;
}
typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::double_rep_type dt;
typedef typename boost::multiprecision::detail::canonical<U, typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::double_rep_type>::type canon_ui_type;
eval_multiply(dt, a.bits(), static_cast<canon_ui_type>(b));
res.exponent() = a.exponent();
copy_and_round(res, dt);
res.check_invariants();
res.sign() = a.sign();
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, class U>
inline typename enable_if_c<is_unsigned<U>::value>::type eval_multiply(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const U &b)
{
eval_multiply(res, res, b);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, class S>
inline typename enable_if_c<is_signed<S>::value>::type eval_multiply(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &a, const S &b)
{
typedef typename make_unsigned<S>::type ui_type;
eval_multiply(res, a, static_cast<ui_type>(boost::multiprecision::detail::unsigned_abs(b)));
if(b < 0)
res.negate();
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, class S>
inline typename enable_if_c<is_signed<S>::value>::type eval_multiply(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const S &b)
{
eval_multiply(res, res, b);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_divide(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &u, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &v)
{
using default_ops::eval_subtract;
using default_ops::eval_qr;
using default_ops::eval_bit_test;
using default_ops::eval_get_sign;
using default_ops::eval_increment;
//
// Special cases first:
//
switch(u.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
switch(v.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::quiet_NaN().backend();
return;
}
res = u;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
switch(v.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::quiet_NaN().backend();
return;
}
res = u;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::quiet_NaN().backend();
return;
}
switch(v.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
{
bool s = u.sign() != v.sign();
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::infinity().backend();
res.sign() = s;
return;
}
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
res.exponent() = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero;
res.bits() = limb_type(0);
res.sign() = false;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::quiet_NaN().backend();
return;
}
// We can scale u and v so that both are integers, then perform integer
// division to obtain quotient q and remainder r, such that:
//
// q * v + r = u
//
// and hense:
//
// q + r/v = u/v
//
// From this, assuming q has cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count
// bits we only need to determine whether
// r/v is less than, equal to, or greater than 0.5 to determine rounding -
// this we can do with a shift and comparison.
//
// We can set the exponent and sign of the result up front:
//
res.exponent() = u.exponent() - v.exponent() - 1;
res.sign() = u.sign() != v.sign();
//
// Now get the quotient and remainder:
//
typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::double_rep_type t(u.bits()), t2(v.bits()), q, r;
eval_left_shift(t, cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count);
eval_qr(t, t2, q, r);
//
// We now have either "cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count"
// or "cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count+1" significant
// bits in q.
//
static const unsigned limb_bits = sizeof(limb_type) * CHAR_BIT;
if(eval_bit_test(q, cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count))
{
//
// OK we have cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count+1 bits,
// so we already have rounding info,
// we just need to changes things if the last bit is 1 and either the
// remainder is non-zero (ie we do not have a tie) or the quotient would
// be odd if it were shifted to the correct number of bits (ie a tiebreak).
//
BOOST_ASSERT((eval_msb(q) == cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count));
if((q.limbs()[0] & 1u) && (eval_get_sign(r) || (q.limbs()[0] & 2u)))
{
eval_increment(q);
}
}
else
{
//
// We have exactly "cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count" bits in q.
// Get rounding info, which we can get by comparing 2r with v.
// We want to call copy_and_round to handle rounding and general cleanup,
// so we'll left shift q and add some fake digits on the end to represent
// how we'll be rounding.
//
BOOST_ASSERT((eval_msb(q) == cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1));
static const unsigned lshift = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count < limb_bits ? 2 : limb_bits;
eval_left_shift(q, lshift);
res.exponent() -= lshift;
eval_left_shift(r, 1u);
int c = r.compare(v.bits());
if(c == 0)
q.limbs()[0] |= static_cast<limb_type>(1u) << (lshift - 1);
else if(c > 0)
q.limbs()[0] |= (static_cast<limb_type>(1u) << (lshift - 1)) + static_cast<limb_type>(1u);
}
copy_and_round(res, q);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_divide(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
{
eval_divide(res, res, arg);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, class U>
inline typename enable_if_c<is_unsigned<U>::value>::type eval_divide(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &u, const U &v)
{
using default_ops::eval_subtract;
using default_ops::eval_qr;
using default_ops::eval_bit_test;
using default_ops::eval_get_sign;
using default_ops::eval_increment;
//
// Special cases first:
//
switch(u.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
if(v == 0)
{
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::quiet_NaN().backend();
return;
}
res = u;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
res = u;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::quiet_NaN().backend();
return;
}
if(v == 0)
{
bool s = u.sign();
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::infinity().backend();
res.sign() = s;
return;
}
// We can scale u and v so that both are integers, then perform integer
// division to obtain quotient q and remainder r, such that:
//
// q * v + r = u
//
// and hense:
//
// q + r/v = u/v
//
// From this, assuming q has "cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count" cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count, we only need to determine whether
// r/v is less than, equal to, or greater than 0.5 to determine rounding -
// this we can do with a shift and comparison.
//
// We can set the exponent and sign of the result up front:
//
int gb = msb(v);
res.exponent() = u.exponent() - static_cast<Exponent>(gb) - static_cast<Exponent>(1);
res.sign() = u.sign();
//
// Now get the quotient and remainder:
//
typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::double_rep_type t(u.bits()), q, r;
eval_left_shift(t, gb + 1);
eval_qr(t, number<typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::double_rep_type>::canonical_value(v), q, r);
//
// We now have either "cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count" or "cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count+1" significant cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count in q.
//
static const unsigned limb_bits = sizeof(limb_type) * CHAR_BIT;
if(eval_bit_test(q, cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count))
{
//
// OK we have cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count+1 cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count, so we already have rounding info,
// we just need to changes things if the last bit is 1 and the
// remainder is non-zero (ie we do not have a tie).
//
BOOST_ASSERT((eval_msb(q) == cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count));
if((q.limbs()[0] & 1u) && eval_get_sign(r))
{
eval_increment(q);
}
}
else
{
//
// We have exactly "cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count" cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count in q.
// Get rounding info, which we can get by comparing 2r with v.
// We want to call copy_and_round to handle rounding and general cleanup,
// so we'll left shift q and add some fake cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count on the end to represent
// how we'll be rounding.
//
BOOST_ASSERT((eval_msb(q) == cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1));
static const unsigned lshift = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count < limb_bits ? 2 : limb_bits;
eval_left_shift(q, lshift);
res.exponent() -= lshift;
eval_left_shift(r, 1u);
int c = r.compare(number<typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::double_rep_type>::canonical_value(v));
if(c == 0)
q.limbs()[0] |= static_cast<limb_type>(1u) << (lshift - 1);
else if(c > 0)
q.limbs()[0] |= (static_cast<limb_type>(1u) << (lshift - 1)) + static_cast<limb_type>(1u);
}
copy_and_round(res, q);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, class U>
inline typename enable_if_c<is_unsigned<U>::value>::type eval_divide(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const U &v)
{
eval_divide(res, res, v);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, class S>
inline typename enable_if_c<is_signed<S>::value>::type eval_divide(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &u, const S &v)
{
typedef typename make_unsigned<S>::type ui_type;
eval_divide(res, u, static_cast<ui_type>(boost::multiprecision::detail::unsigned_abs(v)));
if(v < 0)
res.negate();
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, class S>
inline typename enable_if_c<is_signed<S>::value>::type eval_divide(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const S &v)
{
eval_divide(res, res, v);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline int eval_get_sign(const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
{
return arg.exponent() == cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero ? 0 : arg.sign() ? -1 : 1;
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline bool eval_is_zero(const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
{
return arg.exponent() == cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero;
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline bool eval_eq(const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &a, cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &b)
{
return (a.exponent() == b.exponent())
&& (a.sign() == b.sign())
&& (a.bits().compare(b.bits()) == 0)
&& (a.exponent() != cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_convert_to(long long *res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
{
switch(arg.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
*res = 0;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
BOOST_THROW_EXCEPTION(std::runtime_error("Could not convert NaN to integer."));
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
*res = (std::numeric_limits<long long>::max)();
if(arg.sign())
*res = -*res;
return;
}
typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::rep_type man(arg.bits());
typename mpl::if_c<sizeof(typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type) < sizeof(int), int, typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type>::type shift
= (int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1 - arg.exponent();
if(shift > (int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1)
{
*res = 0;
return;
}
if(arg.sign() && (arg.compare((std::numeric_limits<long long>::min)()) <= 0))
{
*res = (std::numeric_limits<long long>::min)();
return;
}
else if(!arg.sign() && (arg.compare((std::numeric_limits<long long>::max)()) >= 0))
{
*res = (std::numeric_limits<long long>::max)();
return;
}
eval_right_shift(man, shift);
eval_convert_to(res, man);
if(arg.sign())
{
*res = -*res;
}
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_convert_to(unsigned long long *res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
{
switch(arg.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
*res = 0;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
BOOST_THROW_EXCEPTION(std::runtime_error("Could not convert NaN to integer."));
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
*res = (std::numeric_limits<unsigned long long>::max)();
return;
}
typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::rep_type man(arg.bits());
typename mpl::if_c<sizeof(typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type) < sizeof(int), int, typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type>::type shift
= (int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1 - arg.exponent();
if(shift > (int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1)
{
*res = 0;
return;
}
else if(shift < 0)
{
// TODO: what if we have fewer cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count than a long long?
*res = (std::numeric_limits<long long>::max)();
return;
}
eval_right_shift(man, shift);
eval_convert_to(res, man);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_convert_to(long double *res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
{
switch(arg.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
*res = 0;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
*res = std::numeric_limits<long double>::quiet_NaN();
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
*res = (std::numeric_limits<long double>::infinity)();
if(arg.sign())
*res = -*res;
return;
}
typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type e = arg.exponent();
e -= cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1;
*res = std::ldexp(static_cast<long double>(*arg.bits().limbs()), e);
for(unsigned i = 1; i < arg.bits().size(); ++i)
{
e += sizeof(*arg.bits().limbs()) * CHAR_BIT;
*res += std::ldexp(static_cast<long double>(arg.bits().limbs()[i]), e);
}
if(arg.sign())
*res = -*res;
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_frexp(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg, Exponent *e)
{
switch(arg.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
*e = 0;
res = arg;
return;
}
res = arg;
*e = arg.exponent() + 1;
res.exponent() = -1;
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, class I>
inline void eval_frexp(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg, I *pe)
{
Exponent e;
eval_frexp(res, arg, &e);
if((e > (std::numeric_limits<I>::max)()) || (e < (std::numeric_limits<I>::min)()))
{
BOOST_THROW_EXCEPTION(std::runtime_error("Exponent was outside of the range of the argument type to frexp."));
}
*pe = static_cast<I>(e);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_ldexp(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg, Exponent e)
{
switch(arg.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
res = arg;
return;
}
if((e > 0) && (cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent - e < arg.exponent()))
{
// Overflow:
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::infinity().backend();
res.sign() = arg.sign();
}
else if((e < 0) && (cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::min_exponent - e > arg.exponent()))
{
// Underflow:
res = limb_type(0);
}
else
{
res = arg;
res.exponent() += e;
}
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, class I>
inline typename enable_if_c<is_unsigned<I>::value>::type eval_ldexp(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg, I e)
{
typedef typename make_signed<I>::type si_type;
if(e > static_cast<I>((std::numeric_limits<si_type>::max)()))
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::infinity().backend();
else
eval_ldexp(res, arg, static_cast<si_type>(e));
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, class I>
inline typename enable_if_c<is_signed<I>::value>::type eval_ldexp(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg, I e)
{
if((e > (std::numeric_limits<Exponent>::max)()) || (e < (std::numeric_limits<Exponent>::min)()))
{
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::infinity().backend();
if(e < 0)
res.negate();
}
else
eval_ldexp(res, arg, static_cast<Exponent>(e));
}
/*
* Sign manipulation
*/
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_abs(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
{
res = arg;
res.sign() = false;
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_fabs(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
{
res = arg;
res.sign() = false;
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline int eval_fpclassify(const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
{
switch(arg.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
return FP_ZERO;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
return FP_INFINITE;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
return FP_NAN;
}
return FP_NORMAL;
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_sqrt(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
{
using default_ops::eval_integer_sqrt;
using default_ops::eval_bit_test;
using default_ops::eval_increment;
switch(arg.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
res = arg;
return;
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::quiet_NaN().backend();
return;
}
if(arg.sign())
{
res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::quiet_NaN().backend();
return;
}
typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::double_rep_type t(arg.bits()), r, s;
eval_left_shift(t, arg.exponent() & 1 ? cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count : cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1);
eval_integer_sqrt(s, r, t);
if(!eval_bit_test(s, cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count))
{
// We have exactly the right number of cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count in the result, round as required:
if(s.compare(r) < 0)
{
eval_increment(s);
}
}
typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type ae = arg.exponent();
res.exponent() = ae / 2;
if((ae & 1) && (ae < 0))
--res.exponent();
copy_and_round(res, s);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_floor(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
{
using default_ops::eval_increment;
switch(arg.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
res = arg;
return;
}
typename mpl::if_c<sizeof(typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type) < sizeof(int), int, typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type>::type shift =
(int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - arg.exponent() - 1;
if((arg.exponent() > (int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent) || (shift <= 0))
{
// Either arg is already an integer, or a special value:
res = arg;
return;
}
if(shift >= (int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count)
{
res = static_cast<signed_limb_type>(arg.sign() ? -1 : 0);
return;
}
bool fractional = (int)eval_lsb(arg.bits()) < shift;
res = arg;
eval_right_shift(res.bits(), shift);
if(fractional && res.sign())
{
eval_increment(res.bits());
if(eval_msb(res.bits()) != cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1 - shift)
{
// Must have extended result by one bit in the increment:
--shift;
++res.exponent();
}
}
eval_left_shift(res.bits(), shift);
}
template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
inline void eval_ceil(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
{
using default_ops::eval_increment;
switch(arg.exponent())
{
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_zero:
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_nan:
case cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity:
res = arg;
return;
}
typename mpl::if_c<sizeof(typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type) < sizeof(int), int, typename cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type>::type shift = (int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - arg.exponent() - 1;
if((arg.exponent() > (int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent) || (shift <= 0))
{
// Either arg is already an integer, or a special value:
res = arg;
return;
}
if(shift >= (int)cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count)
{
res = static_cast<signed_limb_type>(arg.sign() ? 0 : 1);
return;
}
bool fractional = (int)eval_lsb(arg.bits()) < shift;
res = arg;
eval_right_shift(res.bits(), shift);
if(fractional && !res.sign())
{
eval_increment(res.bits());
if(eval_msb(res.bits()) != cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count - 1 - shift)
{
// Must have extended result by one bit in the increment:
--shift;
++res.exponent();
}
}
eval_left_shift(res.bits(), shift);
}
} // namespace backends
#ifdef BOOST_NO_SFINAE_EXPR
namespace detail{
template<unsigned D1, backends::digit_base_type B1, class A1, class E1, E1 M1, E1 M2, unsigned D2, backends::digit_base_type B2, class A2, class E2, E2 M3, E2 M4>
struct is_explicitly_convertible<backends::cpp_bin_float<D1, B1, A1, E1, M1, M2>, backends::cpp_bin_float<D2, B2, A2, E2, M3, M4> > : public mpl::true_ {};
}
#endif
using backends::cpp_bin_float;
using backends::digit_base_2;
using backends::digit_base_10;
template<unsigned Digits, backends::digit_base_type DigitBase, class Exponent, Exponent MinE, Exponent MaxE, class Allocator>
struct number_category<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > : public boost::mpl::int_<boost::multiprecision::number_kind_floating_point>{};
template<unsigned Digits, backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
struct expression_template_default<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >
{
static const expression_template_option value = is_void<Allocator>::value ? et_off : et_on;
};
typedef number<backends::cpp_bin_float<50> > cpp_bin_float_50;
typedef number<backends::cpp_bin_float<100> > cpp_bin_float_100;
typedef number<backends::cpp_bin_float<24, backends::digit_base_2, void, boost::int16_t, -126, 127>, et_off> cpp_bin_float_single;
typedef number<backends::cpp_bin_float<53, backends::digit_base_2, void, boost::int16_t, -1022, 1023>, et_off> cpp_bin_float_double;
typedef number<backends::cpp_bin_float<64, backends::digit_base_2, void, boost::int16_t, -16382, 16383>, et_off> cpp_bin_float_double_extended;
typedef number<backends::cpp_bin_float<113, backends::digit_base_2, void, boost::int16_t, -16382, 16383>, et_off> cpp_bin_float_quad;
}} // namespaces
#include <boost/multiprecision/cpp_bin_float/io.hpp>
#include <boost/multiprecision/cpp_bin_float/transcendental.hpp>
namespace std{
//
// numeric_limits [partial] specializations for the types declared in this header:
//
template<unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
class numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >
{
typedef boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> number_type;
public:
BOOST_STATIC_CONSTEXPR bool is_specialized = true;
static number_type (min)()
{
initializer.do_nothing();
static std::pair<bool, number_type> value;
if(!value.first)
{
value.first = true;
value.second = 1u;
value.second.backend().exponent() = boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::min_exponent;
}
return value.second;
}
static number_type (max)()
{
initializer.do_nothing();
static std::pair<bool, number_type> value;
if(!value.first)
{
value.first = true;
eval_complement(value.second.backend().bits(), value.second.backend().bits());
value.second.backend().exponent() = boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent;
}
return value.second;
}
BOOST_STATIC_CONSTEXPR number_type lowest()
{
return -(max)();
}
BOOST_STATIC_CONSTEXPR int digits = boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count;
BOOST_STATIC_CONSTEXPR int digits10 = digits * 301 / 1000;
// Is this really correct???
BOOST_STATIC_CONSTEXPR int max_digits10 = digits10 + 2;
BOOST_STATIC_CONSTEXPR bool is_signed = true;
BOOST_STATIC_CONSTEXPR bool is_integer = false;
BOOST_STATIC_CONSTEXPR bool is_exact = false;
BOOST_STATIC_CONSTEXPR int radix = 2;
static number_type epsilon()
{
initializer.do_nothing();
static std::pair<bool, number_type> value;
if(!value.first)
{
value.first = true;
value.second = 1;
value.second = ldexp(value.second, 1 - (int)digits);
}
return value.second;
}
// What value should this be????
static number_type round_error()
{
// returns 0.5
initializer.do_nothing();
static std::pair<bool, number_type> value;
if(!value.first)
{
value.first = true;
value.second = 1;
value.second = ldexp(value.second, -1);
}
return value.second;
}
BOOST_STATIC_CONSTEXPR typename boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type min_exponent = boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::min_exponent;
BOOST_STATIC_CONSTEXPR typename boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type min_exponent10 = (min_exponent / 1000) * 301L;
BOOST_STATIC_CONSTEXPR typename boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type max_exponent = boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::max_exponent;
BOOST_STATIC_CONSTEXPR typename boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type max_exponent10 = (max_exponent / 1000) * 301L;
BOOST_STATIC_CONSTEXPR bool has_infinity = true;
BOOST_STATIC_CONSTEXPR bool has_quiet_NaN = true;
BOOST_STATIC_CONSTEXPR bool has_signaling_NaN = false;
BOOST_STATIC_CONSTEXPR float_denorm_style has_denorm = denorm_absent;
BOOST_STATIC_CONSTEXPR bool has_denorm_loss = false;
static number_type infinity()
{
// returns epsilon/2
initializer.do_nothing();
static std::pair<bool, number_type> value;
if(!value.first)
{
value.first = true;
value.second.backend().exponent() = boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_infinity;
}
return value.second;
}
static number_type quiet_NaN()
{
return number_type();
}
BOOST_STATIC_CONSTEXPR number_type signaling_NaN()
{
return number_type(0);
}
BOOST_STATIC_CONSTEXPR number_type denorm_min() { return number_type(0); }
BOOST_STATIC_CONSTEXPR bool is_iec559 = false;
BOOST_STATIC_CONSTEXPR bool is_bounded = true;
BOOST_STATIC_CONSTEXPR bool is_modulo = false;
BOOST_STATIC_CONSTEXPR bool traps = true;
BOOST_STATIC_CONSTEXPR bool tinyness_before = false;
BOOST_STATIC_CONSTEXPR float_round_style round_style = round_to_nearest;
private:
struct data_initializer
{
data_initializer()
{
std::numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::epsilon();
std::numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::round_error();
(std::numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::min)();
(std::numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::max)();
std::numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::infinity();
std::numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::quiet_NaN();
}
void do_nothing()const{}
};
static const data_initializer initializer;
};
template<unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
const typename numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::data_initializer numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::initializer;
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::digits;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::digits10;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::max_digits10;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::is_signed;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::is_integer;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::is_exact;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::radix;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST typename boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::min_exponent;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST typename boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::min_exponent10;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST typename boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::max_exponent;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST typename boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::exponent_type numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::max_exponent10;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::has_infinity;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::has_quiet_NaN;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::has_signaling_NaN;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST float_denorm_style numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::has_denorm;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::has_denorm_loss;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::is_iec559;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::is_bounded;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::is_modulo;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::traps;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::tinyness_before;
template <unsigned Digits, boost::multiprecision::backends::digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST float_round_style numeric_limits<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>, ExpressionTemplates> >::round_style;
#endif
} // namespace std
#endif