blob: 09c86e6ce039775aa58ce5a9fd4309ed7261745a [file] [log] [blame]
///////////////////////////////////////////////////////////////////////////////
// Copyright 2011 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_BIG_NUM_BASE_HPP
#define BOOST_MATH_BIG_NUM_BASE_HPP
#include <limits>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/type_traits/decay.hpp>
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable:4307)
#endif
#include <boost/lexical_cast.hpp>
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
#if defined(NDEBUG) && !defined(_DEBUG)
# define BOOST_MP_FORCEINLINE BOOST_FORCEINLINE
#else
# define BOOST_MP_FORCEINLINE inline
#endif
namespace boost{ namespace multiprecision{
enum expression_template_option
{
et_off = 0,
et_on = 1
};
template <class Backend>
struct expression_template_default
{
static const expression_template_option value = et_on;
};
template <class Backend, expression_template_option ExpressionTemplates = expression_template_default<Backend>::value>
class number;
template <class T>
struct is_number : public mpl::false_ {};
template <class Backend, expression_template_option ExpressionTemplates>
struct is_number<number<Backend, ExpressionTemplates> > : public mpl::true_ {};
namespace detail{
// Forward-declare an expression wrapper
template<class tag, class Arg1 = void, class Arg2 = void, class Arg3 = void, class Arg4 = void>
struct expression;
} // namespace detail
template <class T>
struct is_number_expression : public mpl::false_ {};
template<class tag, class Arg1, class Arg2, class Arg3, class Arg4>
struct is_number_expression<detail::expression<tag, Arg1, Arg2, Arg3, Arg4> > : public mpl::true_ {};
template <class T, class Num>
struct is_compatible_arithmetic_type
: public mpl::bool_<
is_convertible<T, Num>::value
&& !is_same<T, Num>::value
&& !is_number_expression<T>::value>
{};
namespace detail{
//
// Workaround for missing abs(long long) and abs(__int128) on some compilers:
//
template <class T>
BOOST_CONSTEXPR typename enable_if_c<(is_signed<T>::value || is_floating_point<T>::value), T>::type abs(T t) BOOST_NOEXCEPT
{
// This strange expression avoids a hardware trap in the corner case
// that val is the most negative value permitted in long long.
// See https://svn.boost.org/trac/boost/ticket/9740.
return t < 0 ? T(1u) + T(-(t + 1)) : t;
}
template <class T>
BOOST_CONSTEXPR typename enable_if_c<(is_unsigned<T>::value), T>::type abs(T t) BOOST_NOEXCEPT
{
return t;
}
#define BOOST_MP_USING_ABS using boost::multiprecision::detail::abs;
template <class T>
BOOST_CONSTEXPR typename enable_if_c<(is_signed<T>::value || is_floating_point<T>::value), typename make_unsigned<T>::type>::type unsigned_abs(T t) BOOST_NOEXCEPT
{
// This strange expression avoids a hardware trap in the corner case
// that val is the most negative value permitted in long long.
// See https://svn.boost.org/trac/boost/ticket/9740.
return t < 0 ? static_cast<typename make_unsigned<T>::type>(1u) + static_cast<typename make_unsigned<T>::type>(-(t + 1)) : static_cast<typename make_unsigned<T>::type>(t);
}
template <class T>
BOOST_CONSTEXPR typename enable_if_c<(is_unsigned<T>::value), T>::type unsigned_abs(T t) BOOST_NOEXCEPT
{
return t;
}
//
// Move support:
//
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
# define BOOST_MP_MOVE(x) std::move(x)
#else
# define BOOST_MP_MOVE(x) x
#endif
template <class T>
struct bits_of
{
BOOST_STATIC_ASSERT(is_integral<T>::value || is_enum<T>::value || std::numeric_limits<T>::is_specialized);
static const unsigned value =
std::numeric_limits<T>::is_specialized ?
std::numeric_limits<T>::digits
: sizeof(T) * CHAR_BIT - (is_signed<T>::value ? 1 : 0);
};
template <int b>
struct has_enough_bits
{
template <class T>
struct type : public mpl::bool_<bits_of<T>::value>= b>{};
};
template <class Val, class Backend, class Tag>
struct canonical_imp
{
typedef typename remove_cv<typename decay<const Val>::type>::type type;
};
template <class B, class Backend, class Tag>
struct canonical_imp<number<B, et_on>, Backend, Tag>
{
typedef B type;
};
template <class B, class Backend, class Tag>
struct canonical_imp<number<B, et_off>, Backend, Tag>
{
typedef B type;
};
#ifdef __SUNPRO_CC
template <class B, class Backend>
struct canonical_imp<number<B, et_on>, Backend, mpl::int_<3> >
{
typedef B type;
};
template <class B, class Backend>
struct canonical_imp<number<B, et_off>, Backend, mpl::int_<3> >
{
typedef B type;
};
#endif
template <class Val, class Backend>
struct canonical_imp<Val, Backend, mpl::int_<0> >
{
typedef typename has_enough_bits<bits_of<Val>::value>::template type<mpl::_> pred_type;
typedef typename mpl::find_if<
typename Backend::signed_types,
pred_type
>::type iter_type;
typedef typename mpl::deref<iter_type>::type type;
};
template <class Val, class Backend>
struct canonical_imp<Val, Backend, mpl::int_<1> >
{
typedef typename has_enough_bits<bits_of<Val>::value>::template type<mpl::_> pred_type;
typedef typename mpl::find_if<
typename Backend::unsigned_types,
pred_type
>::type iter_type;
typedef typename mpl::deref<iter_type>::type type;
};
template <class Val, class Backend>
struct canonical_imp<Val, Backend, mpl::int_<2> >
{
typedef typename has_enough_bits<bits_of<Val>::value>::template type<mpl::_> pred_type;
typedef typename mpl::find_if<
typename Backend::float_types,
pred_type
>::type iter_type;
typedef typename mpl::deref<iter_type>::type type;
};
template <class Val, class Backend>
struct canonical_imp<Val, Backend, mpl::int_<3> >
{
typedef const char* type;
};
template <class Val, class Backend>
struct canonical
{
typedef typename mpl::if_<
is_signed<Val>,
mpl::int_<0>,
typename mpl::if_<
is_unsigned<Val>,
mpl::int_<1>,
typename mpl::if_<
is_floating_point<Val>,
mpl::int_<2>,
typename mpl::if_<
mpl::or_<
is_convertible<Val, const char*>,
is_same<Val, std::string>
>,
mpl::int_<3>,
mpl::int_<4>
>::type
>::type
>::type
>::type tag_type;
typedef typename canonical_imp<Val, Backend, tag_type>::type type;
};
struct terminal{};
struct negate{};
struct plus{};
struct minus{};
struct multiplies{};
struct divides{};
struct modulus{};
struct shift_left{};
struct shift_right{};
struct bitwise_and{};
struct bitwise_or{};
struct bitwise_xor{};
struct bitwise_complement{};
struct add_immediates{};
struct subtract_immediates{};
struct multiply_immediates{};
struct divide_immediates{};
struct modulus_immediates{};
struct bitwise_and_immediates{};
struct bitwise_or_immediates{};
struct bitwise_xor_immediates{};
struct complement_immediates{};
struct function{};
struct multiply_add{};
struct multiply_subtract{};
template <class T>
struct backend_type;
template <class T, expression_template_option ExpressionTemplates>
struct backend_type<number<T, ExpressionTemplates> >
{
typedef T type;
};
template <class tag, class A1, class A2, class A3, class A4>
struct backend_type<expression<tag, A1, A2, A3, A4> >
{
typedef typename backend_type<typename expression<tag, A1, A2, A3, A4>::result_type>::type type;
};
template <class T1, class T2>
struct combine_expression
{
#ifdef BOOST_NO_CXX11_DECLTYPE
typedef typename mpl::if_c<(sizeof(T1() + T2()) == sizeof(T1)), T1, T2>::type type;
#else
typedef decltype(T1() + T2()) type;
#endif
};
template <class T1, expression_template_option ExpressionTemplates, class T2>
struct combine_expression<number<T1, ExpressionTemplates>, T2>
{
typedef number<T1, ExpressionTemplates> type;
};
template <class T1, class T2, expression_template_option ExpressionTemplates>
struct combine_expression<T1, number<T2, ExpressionTemplates> >
{
typedef number<T2, ExpressionTemplates> type;
};
template <class T, expression_template_option ExpressionTemplates>
struct combine_expression<number<T, ExpressionTemplates>, number<T, ExpressionTemplates> >
{
typedef number<T, ExpressionTemplates> type;
};
template <class T1, expression_template_option ExpressionTemplates1, class T2, expression_template_option ExpressionTemplates2>
struct combine_expression<number<T1, ExpressionTemplates1>, number<T2, ExpressionTemplates2> >
{
typedef typename mpl::if_c<
is_convertible<number<T2, ExpressionTemplates2>, number<T1, ExpressionTemplates2> >::value,
number<T1, ExpressionTemplates1>,
number<T2, ExpressionTemplates2>
>::type type;
};
template <class T>
struct arg_type
{
typedef expression<terminal, T> type;
};
template <class Tag, class Arg1, class Arg2, class Arg3, class Arg4>
struct arg_type<expression<Tag, Arg1, Arg2, Arg3, Arg4> >
{
typedef expression<Tag, Arg1, Arg2, Arg3, Arg4> type;
};
struct unmentionable
{
unmentionable* proc(){ return 0; }
};
typedef unmentionable* (unmentionable::*unmentionable_type)();
template <class T>
struct expression_storage
{
typedef const T& type;
};
template <class T>
struct expression_storage<T*>
{
typedef T* type;
};
template <class T>
struct expression_storage<const T*>
{
typedef const T* type;
};
template <class tag, class A1, class A2, class A3, class A4>
struct expression_storage<expression<tag, A1, A2, A3, A4> >
{
typedef expression<tag, A1, A2, A3, A4> type;
};
template<class tag, class Arg1>
struct expression<tag, Arg1, void, void, void>
{
typedef mpl::int_<1> arity;
typedef typename arg_type<Arg1>::type left_type;
typedef typename left_type::result_type left_result_type;
typedef typename left_type::result_type result_type;
typedef tag tag_type;
explicit expression(const Arg1& a) : arg(a) {}
left_type left()const { return left_type(arg); }
const Arg1& left_ref()const BOOST_NOEXCEPT { return arg; }
static const unsigned depth = left_type::depth + 1;
#ifndef BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS
explicit operator bool()const
{
result_type r(*this);
return static_cast<bool>(r);
}
#else
operator unmentionable_type()const
{
result_type r(*this);
return r ? &unmentionable::proc : 0;
}
#endif
private:
typename expression_storage<Arg1>::type arg;
expression& operator=(const expression&);
};
template<class Arg1>
struct expression<terminal, Arg1, void, void, void>
{
typedef mpl::int_<0> arity;
typedef Arg1 result_type;
typedef terminal tag_type;
explicit expression(const Arg1& a) : arg(a) {}
const Arg1& value()const BOOST_NOEXCEPT { return arg; }
static const unsigned depth = 0;
#ifndef BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS
explicit operator bool()const
{
return static_cast<bool>(arg);
}
#else
operator unmentionable_type()const
{
return arg ? &unmentionable::proc : 0;
}
#endif
private:
typename expression_storage<Arg1>::type arg;
expression& operator=(const expression&);
};
template <class tag, class Arg1, class Arg2>
struct expression<tag, Arg1, Arg2, void, void>
{
typedef mpl::int_<2> arity;
typedef typename arg_type<Arg1>::type left_type;
typedef typename arg_type<Arg2>::type right_type;
typedef typename left_type::result_type left_result_type;
typedef typename right_type::result_type right_result_type;
typedef typename combine_expression<left_result_type, right_result_type>::type result_type;
typedef tag tag_type;
expression(const Arg1& a1, const Arg2& a2) : arg1(a1), arg2(a2) {}
left_type left()const { return left_type(arg1); }
right_type right()const { return right_type(arg2); }
const Arg1& left_ref()const BOOST_NOEXCEPT { return arg1; }
const Arg2& right_ref()const BOOST_NOEXCEPT { return arg2; }
#ifndef BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS
explicit operator bool()const
{
result_type r(*this);
return static_cast<bool>(r);
}
#else
operator unmentionable_type()const
{
result_type r(*this);
return r ? &unmentionable::proc : 0;
}
#endif
static const unsigned left_depth = left_type::depth + 1;
static const unsigned right_depth = right_type::depth + 1;
static const unsigned depth = left_depth > right_depth ? left_depth : right_depth;
private:
typename expression_storage<Arg1>::type arg1;
typename expression_storage<Arg2>::type arg2;
expression& operator=(const expression&);
};
template <class tag, class Arg1, class Arg2, class Arg3>
struct expression<tag, Arg1, Arg2, Arg3, void>
{
typedef mpl::int_<3> arity;
typedef typename arg_type<Arg1>::type left_type;
typedef typename arg_type<Arg2>::type middle_type;
typedef typename arg_type<Arg3>::type right_type;
typedef typename left_type::result_type left_result_type;
typedef typename middle_type::result_type middle_result_type;
typedef typename right_type::result_type right_result_type;
typedef typename combine_expression<
left_result_type,
typename combine_expression<right_result_type, middle_result_type>::type
>::type result_type;
typedef tag tag_type;
expression(const Arg1& a1, const Arg2& a2, const Arg3& a3) : arg1(a1), arg2(a2), arg3(a3) {}
left_type left()const { return left_type(arg1); }
middle_type middle()const { return middle_type(arg2); }
right_type right()const { return right_type(arg3); }
const Arg1& left_ref()const BOOST_NOEXCEPT { return arg1; }
const Arg2& middle_ref()const BOOST_NOEXCEPT { return arg2; }
const Arg3& right_ref()const BOOST_NOEXCEPT { return arg3; }
#ifndef BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS
explicit operator bool()const
{
result_type r(*this);
return static_cast<bool>(r);
}
#else
operator unmentionable_type()const
{
result_type r(*this);
return r ? &unmentionable::proc : 0;
}
#endif
static const unsigned left_depth = left_type::depth + 1;
static const unsigned middle_depth = middle_type::depth + 1;
static const unsigned right_depth = right_type::depth + 1;
static const unsigned depth = left_depth > right_depth ? (left_depth > middle_depth ? left_depth : middle_depth) : (right_depth > middle_depth ? right_depth : middle_depth);
private:
typename expression_storage<Arg1>::type arg1;
typename expression_storage<Arg2>::type arg2;
typename expression_storage<Arg3>::type arg3;
expression& operator=(const expression&);
};
template <class tag, class Arg1, class Arg2, class Arg3, class Arg4>
struct expression
{
typedef mpl::int_<4> arity;
typedef typename arg_type<Arg1>::type left_type;
typedef typename arg_type<Arg2>::type left_middle_type;
typedef typename arg_type<Arg3>::type right_middle_type;
typedef typename arg_type<Arg4>::type right_type;
typedef typename left_type::result_type left_result_type;
typedef typename left_middle_type::result_type left_middle_result_type;
typedef typename right_middle_type::result_type right_middle_result_type;
typedef typename right_type::result_type right_result_type;
typedef typename combine_expression<
typename combine_expression<
typename combine_expression<left_result_type, left_middle_result_type>::type,
right_middle_result_type
>::type,
right_result_type
>::type result_type;
typedef tag tag_type;
expression(const Arg1& a1, const Arg2& a2, const Arg3& a3, const Arg4& a4) : arg1(a1), arg2(a2), arg3(a3), arg4(a4) {}
left_type left()const { return left_type(arg1); }
left_middle_type left_middle()const { return left_middle_type(arg2); }
right_middle_type right_middle()const { return right_middle_type(arg3); }
right_type right()const { return right_type(arg4); }
const Arg1& left_ref()const BOOST_NOEXCEPT { return arg1; }
const Arg2& left_middle_ref()const BOOST_NOEXCEPT { return arg2; }
const Arg3& right_middle_ref()const BOOST_NOEXCEPT { return arg3; }
const Arg4& right_ref()const BOOST_NOEXCEPT { return arg4; }
#ifndef BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS
explicit operator bool()const
{
result_type r(*this);
return static_cast<bool>(r);
}
#else
operator unmentionable_type()const
{
result_type r(*this);
return r ? &unmentionable::proc : 0;
}
#endif
static const unsigned left_depth = left_type::depth + 1;
static const unsigned left_middle_depth = left_middle_type::depth + 1;
static const unsigned right_middle_depth = right_middle_type::depth + 1;
static const unsigned right_depth = right_type::depth + 1;
static const unsigned left_max_depth = left_depth > left_middle_depth ? left_depth : left_middle_depth;
static const unsigned right_max_depth = right_depth > right_middle_depth ? right_depth : right_middle_depth;
static const unsigned depth = left_max_depth > right_max_depth ? left_max_depth : right_max_depth;
private:
typename expression_storage<Arg1>::type arg1;
typename expression_storage<Arg2>::type arg2;
typename expression_storage<Arg3>::type arg3;
typename expression_storage<Arg4>::type arg4;
expression& operator=(const expression&);
};
template <class T>
struct digits2
{
BOOST_STATIC_ASSERT(std::numeric_limits<T>::is_specialized);
BOOST_STATIC_ASSERT((std::numeric_limits<T>::radix == 2) || (std::numeric_limits<T>::radix == 10));
// If we really have so many digits that this fails, then we're probably going to hit other problems anyway:
BOOST_STATIC_ASSERT(LONG_MAX / 1000 > (std::numeric_limits<T>::digits + 1));
static const long value = std::numeric_limits<T>::radix == 10 ? (((std::numeric_limits<T>::digits + 1) * 1000L) / 301L) : std::numeric_limits<T>::digits;
};
#ifndef BOOST_MP_MIN_EXPONENT_DIGITS
#ifdef _MSC_VER
# define BOOST_MP_MIN_EXPONENT_DIGITS 2
#else
# define BOOST_MP_MIN_EXPONENT_DIGITS 2
#endif
#endif
template <class S>
void format_float_string(S& str, boost::intmax_t my_exp, boost::intmax_t digits, std::ios_base::fmtflags f, bool iszero)
{
typedef typename S::size_type size_type;
bool scientific = (f & std::ios_base::scientific) == std::ios_base::scientific;
bool fixed = (f & std::ios_base::fixed) == std::ios_base::fixed;
bool showpoint = (f & std::ios_base::showpoint) == std::ios_base::showpoint;
bool showpos = (f & std::ios_base::showpos) == std::ios_base::showpos;
bool neg = str.size() && (str[0] == '-');
if(neg)
str.erase(0, 1);
if(digits == 0)
{
digits = (std::max)(str.size(), size_type(16));
}
if(iszero || str.empty() || (str.find_first_not_of('0') == S::npos))
{
// We will be printing zero, even though the value might not
// actually be zero (it just may have been rounded to zero).
str = "0";
if(scientific || fixed)
{
str.append(1, '.');
str.append(size_type(digits), '0');
if(scientific)
str.append("e+00");
}
else
{
if(showpoint)
{
str.append(1, '.');
if(digits > 1)
str.append(size_type(digits - 1), '0');
}
}
if(neg)
str.insert(static_cast<std::string::size_type>(0), 1, '-');
else if(showpos)
str.insert(static_cast<std::string::size_type>(0), 1, '+');
return;
}
if(!fixed && !scientific && !showpoint)
{
//
// Suppress trailing zeros:
//
std::string::iterator pos = str.end();
while(pos != str.begin() && *--pos == '0'){}
if(pos != str.end())
++pos;
str.erase(pos, str.end());
if(str.empty())
str = '0';
}
else if(!fixed || (my_exp >= 0))
{
//
// Pad out the end with zero's if we need to:
//
boost::intmax_t chars = str.size();
chars = digits - chars;
if(scientific)
++chars;
if(chars > 0)
{
str.append(static_cast<std::string::size_type>(chars), '0');
}
}
if(fixed || (!scientific && (my_exp >= -4) && (my_exp < digits)))
{
if(1 + my_exp > static_cast<boost::intmax_t>(str.size()))
{
// Just pad out the end with zeros:
str.append(static_cast<std::string::size_type>(1 + my_exp - str.size()), '0');
if(showpoint || fixed)
str.append(".");
}
else if(my_exp + 1 < static_cast<boost::intmax_t>(str.size()))
{
if(my_exp < 0)
{
str.insert(static_cast<std::string::size_type>(0), static_cast<std::string::size_type>(-1 - my_exp), '0');
str.insert(static_cast<std::string::size_type>(0), "0.");
}
else
{
// Insert the decimal point:
str.insert(static_cast<std::string::size_type>(my_exp + 1), 1, '.');
}
}
else if(showpoint || fixed) // we have exactly the digits we require to left of the point
str += ".";
if(fixed)
{
// We may need to add trailing zeros:
boost::intmax_t l = str.find('.') + 1;
l = digits - (str.size() - l);
if(l > 0)
str.append(size_type(l), '0');
}
}
else
{
BOOST_MP_USING_ABS
// Scientific format:
if(showpoint || (str.size() > 1))
str.insert(static_cast<std::string::size_type>(1u), 1, '.');
str.append(static_cast<std::string::size_type>(1u), 'e');
S e = boost::lexical_cast<S>(abs(my_exp));
if(e.size() < BOOST_MP_MIN_EXPONENT_DIGITS)
e.insert(static_cast<std::string::size_type>(0), BOOST_MP_MIN_EXPONENT_DIGITS - e.size(), '0');
if(my_exp < 0)
e.insert(static_cast<std::string::size_type>(0), 1, '-');
else
e.insert(static_cast<std::string::size_type>(0), 1, '+');
str.append(e);
}
if(neg)
str.insert(static_cast<std::string::size_type>(0), 1, '-');
else if(showpos)
str.insert(static_cast<std::string::size_type>(0), 1, '+');
}
template <class V>
void check_shift_range(V val, const mpl::true_&, const mpl::true_&)
{
if(val > (std::numeric_limits<std::size_t>::max)())
BOOST_THROW_EXCEPTION(std::out_of_range("Can not shift by a value greater than std::numeric_limits<std::size_t>::max()."));
if(val < 0)
BOOST_THROW_EXCEPTION(std::out_of_range("Can not shift by a negative value."));
}
template <class V>
void check_shift_range(V val, const mpl::false_&, const mpl::true_&)
{
if(val < 0)
BOOST_THROW_EXCEPTION(std::out_of_range("Can not shift by a negative value."));
}
template <class V>
void check_shift_range(V val, const mpl::true_&, const mpl::false_&)
{
if(val > (std::numeric_limits<std::size_t>::max)())
BOOST_THROW_EXCEPTION(std::out_of_range("Can not shift by a value greater than std::numeric_limits<std::size_t>::max()."));
}
template <class V>
void check_shift_range(V, const mpl::false_&, const mpl::false_&) BOOST_NOEXCEPT{}
} // namespace detail
//
// Traits class, lets us know what kind of number we have, defaults to a floating point type:
//
enum number_category_type
{
number_kind_unknown = -1,
number_kind_integer = 0,
number_kind_floating_point = 1,
number_kind_rational = 2,
number_kind_fixed_point = 3
};
template <class Num>
struct number_category : public mpl::int_<std::numeric_limits<Num>::is_integer ? number_kind_integer : (std::numeric_limits<Num>::max_exponent ? number_kind_floating_point : number_kind_unknown)> {};
template <class Backend, expression_template_option ExpressionTemplates>
struct number_category<number<Backend, ExpressionTemplates> > : public number_category<Backend>{};
template <class tag, class A1, class A2, class A3, class A4>
struct number_category<detail::expression<tag, A1, A2, A3, A4> > : public number_category<typename detail::expression<tag, A1, A2, A3, A4>::result_type>{};
template <class T>
struct component_type;
template <class T, expression_template_option ExpressionTemplates>
struct component_type<number<T, ExpressionTemplates> > : public component_type<T>{};
template <class tag, class A1, class A2, class A3, class A4>
struct component_type<detail::expression<tag, A1, A2, A3, A4> > : public component_type<typename detail::expression<tag, A1, A2, A3, A4>::result_type>{};
template <class T>
struct is_unsigned_number : public mpl::false_{};
template <class Backend, expression_template_option ExpressionTemplates>
struct is_unsigned_number<number<Backend, ExpressionTemplates> > : public is_unsigned_number<Backend> {};
template <class T>
struct is_signed_number : public mpl::bool_<!is_unsigned_number<T>::value> {};
template <class T>
struct is_interval_number : public mpl::false_ {};
template <class Backend, expression_template_option ExpressionTemplates>
struct is_interval_number<number<Backend, ExpressionTemplates> > : public is_interval_number<Backend>{};
}} // namespaces
namespace boost{ namespace math{ namespace tools{
template <class T>
struct promote_arg;
template <class tag, class A1, class A2, class A3, class A4>
struct promote_arg<boost::multiprecision::detail::expression<tag, A1, A2, A3, A4> >
{
typedef typename boost::multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type type;
};
template <class R, class B, boost::multiprecision::expression_template_option ET>
inline R real_cast(const boost::multiprecision::number<B, ET>& val)
{
return val.template convert_to<R>();
}
template <class R, class tag, class A1, class A2, class A3, class A4>
inline R real_cast(const boost::multiprecision::detail::expression<tag, A1, A2, A3, A4>& val)
{
typedef typename boost::multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type val_type;
return val_type(val).template convert_to<R>();
}
}
namespace constants{
template <class T>
struct is_explicitly_convertible_from_string;
template <class B, boost::multiprecision::expression_template_option ET>
struct is_explicitly_convertible_from_string<boost::multiprecision::number<B, ET> >
{
static const bool value = true;
};
}
}}
#endif // BOOST_MATH_BIG_NUM_BASE_HPP