blob: 59ac4b83cb87280398025407e644a54cecfa3ac4 [file] [log] [blame]
/*
[auto_generated]
boost/numeric/odeint/external/mkl/mkl_operations.hpp
[begin_description]
Wrapper classes for intel math kernel library types.
Get a free, non-commercial download of MKL at
http://software.intel.com/en-us/articles/non-commercial-software-download/
[end_description]
Copyright 2010-2011 Mario Mulansky
Copyright 2011-2013 Karsten Ahnert
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_ODEINT_EXTERNAL_MKL_MKL_OPERATIONS_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_EXTERNAL_MKL_MKL_OPERATIONS_HPP_INCLUDED
#include <iostream>
#include <mkl_cblas.h>
#include <boost/numeric/odeint/algebra/default_operations.hpp>
/* exemplary example for writing bindings to the Intel MKL library
* see test/mkl for how to use mkl with odeint
* this is a quick and dirty implementation showing the general possibility.
* It works only with containers based on double and sequential memory allocation.
*/
namespace boost {
namespace numeric {
namespace odeint {
/* only defined for doubles */
struct mkl_operations
{
//template< class Fac1 , class Fac2 > struct scale_sum2;
template< class F1 = double , class F2 = F1 >
struct scale_sum2
{
typedef double Fac1;
typedef double Fac2;
const Fac1 m_alpha1;
const Fac2 m_alpha2;
scale_sum2( const Fac1 alpha1 , const Fac2 alpha2 ) : m_alpha1( alpha1 ) , m_alpha2( alpha2 ) { }
template< class T1 , class T2 , class T3 >
void operator()( T1 &t1 , const T2 &t2 , const T3 &t3) const
{ // t1 = m_alpha1 * t2 + m_alpha2 * t3;
// we get Containers that have size() and [i]-access
const int n = t1.size();
//boost::numeric::odeint::copy( t1 , t3 );
if( &(t2[0]) != &(t1[0]) )
{
cblas_dcopy( n , &(t2[0]) , 1 , &(t1[0]) , 1 );
}
cblas_dscal( n , m_alpha1 , &(t1[0]) , 1 );
cblas_daxpy( n , m_alpha2 , &(t3[0]) , 1 , &(t1[0]) , 1 );
//daxpby( &n , &m_alpha2 , &(t3[0]) , &one , &m_alpha1 , &(t1[0]) , &one );
}
};
template< class F1 = double , class F2 = F1 , class F3 = F2 >
struct scale_sum3
{
typedef double Fac1;
typedef double Fac2;
typedef double Fac3;
const Fac1 m_alpha1;
const Fac2 m_alpha2;
const Fac3 m_alpha3;
scale_sum3( const Fac1 alpha1 , const Fac2 alpha2 , const Fac3 alpha3 )
: m_alpha1( alpha1 ) , m_alpha2( alpha2 ) , m_alpha3( alpha3 ) { }
template< class T1 , class T2 , class T3 , class T4 >
void operator()( T1 &t1 , const T2 &t2 , const T3 &t3 , const T4 &t4 ) const
{ // t1 = m_alpha1 * t2 + m_alpha2 * t3 + m_alpha3 * t4;
// we get Containers that have size() and [i]-access
const int n = t1.size();
//boost::numeric::odeint::copy( t1 , t3 );
if( &(t2[0]) != &(t1[0]) )
{
cblas_dcopy( n , &(t2[0]) , 1 , &(t1[0]) , 1 );
}
cblas_dscal( n , m_alpha1 , &(t1[0]) , 1 );
cblas_daxpy( n , m_alpha2 , &(t3[0]) , 1 , &(t1[0]) , 1 );
//daxpby( &n , &m_alpha2 , &(t3[0]) , &one , &m_alpha1 , &(t1[0]) , &one );
cblas_daxpy( n , m_alpha3 , &(t4[0]) , 1 , &(t1[0]) , 1 );
}
};
template< class F1 = double , class F2 = F1 , class F3 = F2 , class F4 = F3 >
struct scale_sum4
{
typedef double Fac1;
typedef double Fac2;
typedef double Fac3;
typedef double Fac4;
const Fac1 m_alpha1;
const Fac2 m_alpha2;
const Fac3 m_alpha3;
const Fac4 m_alpha4;
scale_sum4( const Fac1 alpha1 , const Fac2 alpha2 , const Fac3 alpha3 , const Fac4 alpha4 )
: m_alpha1( alpha1 ) , m_alpha2( alpha2 ) , m_alpha3( alpha3 ) , m_alpha4( alpha4 ) { }
template< class T1 , class T2 , class T3 , class T4 , class T5 >
void operator()( T1 &t1 , const T2 &t2 , const T3 &t3 , const T4 &t4 , const T5 &t5 ) const
{ // t1 = m_alpha1 * t2 + m_alpha2 * t3 + m_alpha3 * t4 + m_alpha4 * t5;
// we get Containers that have size() and [i]-access
const int n = t1.size();
//boost::numeric::odeint::copy( t1 , t3 );
if( &(t2[0]) != &(t1[0]) )
{
cblas_dcopy( n , &(t2[0]) , 1 , &(t1[0]) , 1 );
}
cblas_dscal( n , m_alpha1 , &(t1[0]) , 1 );
cblas_daxpy( n , m_alpha2 , &(t3[0]) , 1 , &(t1[0]) , 1 );
//daxpby( &n , &m_alpha2 , &(t3[0]) , &one , &m_alpha1 , &(t1[0]) , &one );
cblas_daxpy( n , m_alpha3 , &(t4[0]) , 1 , &(t1[0]) , 1 );
cblas_daxpy( n , m_alpha4 , &(t5[0]) , 1 , &(t1[0]) , 1 );
}
};
template< class F1 = double , class F2 = F1 , class F3 = F2 , class F4 = F3 , class F5 = F4 >
struct scale_sum5
{
typedef double Fac1;
typedef double Fac2;
typedef double Fac3;
typedef double Fac4;
typedef double Fac5;
const Fac1 m_alpha1;
const Fac2 m_alpha2;
const Fac3 m_alpha3;
const Fac4 m_alpha4;
const Fac5 m_alpha5;
scale_sum5( const Fac1 alpha1 , const Fac2 alpha2 , const Fac3 alpha3 , const Fac4 alpha4 , const Fac5 alpha5 )
: m_alpha1( alpha1 ) , m_alpha2( alpha2 ) , m_alpha3( alpha3 ) , m_alpha4( alpha4 ) , m_alpha5( alpha5 ) { }
template< class T1 , class T2 , class T3 , class T4 , class T5 , class T6 >
void operator()( T1 &t1 , const T2 &t2 , const T3 &t3 , const T4 &t4 , const T5 &t5 , const T6 &t6 ) const
{ // t1 = m_alpha1 * t2 + m_alpha2 * t3 + m_alpha3 * t4 + m_alpha4 * t5 + m_alpha5 * t6;
// we get Containers that have size() and [i]-access
const int n = t1.size();
//boost::numeric::odeint::copy( t1 , t3 );
if( &(t2[0]) != &(t1[0]) )
{
cblas_dcopy( n , &(t2[0]) , 1 , &(t1[0]) , 1 );
}
cblas_dscal( n , m_alpha1 , &(t1[0]) , 1 );
cblas_daxpy( n , m_alpha2 , &(t3[0]) , 1 , &(t1[0]) , 1 );
//daxpby( &n , &m_alpha2 , &(t3[0]) , &one , &m_alpha1 , &(t1[0]) , &one );
cblas_daxpy( n , m_alpha3 , &(t4[0]) , 1 , &(t1[0]) , 1 );
cblas_daxpy( n , m_alpha4 , &(t5[0]) , 1 , &(t1[0]) , 1 );
cblas_daxpy( n , m_alpha5 , &(t6[0]) , 1 , &(t1[0]) , 1 );
}
};
};
} // odeint
} // numeric
} // boost
#endif // BOOST_NUMERIC_ODEINT_EXTERNAL_MKL_MKL_OPERATIONS_HPP_INCLUDED