blob: f37a454e84ccb542cc04b03715bc69d367e0b226 [file] [log] [blame]
// Boost.Polygon library detail/voronoi_structures.hpp header file
// Copyright Andrii Sydorchuk 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for updates, documentation, and revision history.
#ifndef BOOST_POLYGON_DETAIL_VORONOI_STRUCTURES
#define BOOST_POLYGON_DETAIL_VORONOI_STRUCTURES
#include <list>
#include <queue>
#include <vector>
#include "boost/polygon/voronoi_geometry_type.hpp"
namespace boost {
namespace polygon {
namespace detail {
// Cartesian 2D point data structure.
template <typename T>
class point_2d {
public:
typedef T coordinate_type;
point_2d() {}
point_2d(coordinate_type x, coordinate_type y) :
x_(x),
y_(y) {}
bool operator==(const point_2d& that) const {
return (this->x_ == that.x()) && (this->y_ == that.y());
}
bool operator!=(const point_2d& that) const {
return (this->x_ != that.x()) || (this->y_ != that.y());
}
coordinate_type x() const {
return x_;
}
coordinate_type y() const {
return y_;
}
point_2d& x(coordinate_type x) {
x_ = x;
return *this;
}
point_2d& y(coordinate_type y) {
y_ = y;
return *this;
}
private:
coordinate_type x_;
coordinate_type y_;
};
// Site event type.
// Occurs when the sweepline sweeps over one of the initial sites:
// 1) point site
// 2) start-point of the segment site
// 3) endpoint of the segment site
// Implicit segment direction is defined: the start-point of
// the segment compares less than its endpoint.
// Each input segment is divided onto two site events:
// 1) One going from the start-point to the endpoint
// (is_inverse() = false)
// 2) Another going from the endpoint to the start-point
// (is_inverse() = true)
// In beach line data structure segment sites of the first
// type precede sites of the second type for the same segment.
// Members:
// point0_ - point site or segment's start-point
// point1_ - segment's endpoint if site is a segment
// sorted_index_ - the last bit encodes information if the site is inverse;
// the other bits encode site event index among the sorted site events
// initial_index_ - site index among the initial input set
// Note: for all sites is_inverse_ flag is equal to false by default.
template <typename T>
class site_event {
public:
typedef T coordinate_type;
typedef point_2d<T> point_type;
site_event() :
point0_(0, 0),
point1_(0, 0),
sorted_index_(0),
flags_(0) {}
site_event(coordinate_type x, coordinate_type y) :
point0_(x, y),
point1_(x, y),
sorted_index_(0),
flags_(0) {}
explicit site_event(const point_type& point) :
point0_(point),
point1_(point),
sorted_index_(0),
flags_(0) {}
site_event(coordinate_type x1, coordinate_type y1,
coordinate_type x2, coordinate_type y2):
point0_(x1, y1),
point1_(x2, y2),
sorted_index_(0),
flags_(0) {}
site_event(const point_type& point1, const point_type& point2) :
point0_(point1),
point1_(point2),
sorted_index_(0),
flags_(0) {}
bool operator==(const site_event& that) const {
return (this->point0_ == that.point0_) &&
(this->point1_ == that.point1_);
}
bool operator!=(const site_event& that) const {
return (this->point0_ != that.point0_) ||
(this->point1_ != that.point1_);
}
coordinate_type x() const {
return point0_.x();
}
coordinate_type y() const {
return point0_.y();
}
coordinate_type x0() const {
return point0_.x();
}
coordinate_type y0() const {
return point0_.y();
}
coordinate_type x1() const {
return point1_.x();
}
coordinate_type y1() const {
return point1_.y();
}
const point_type& point0() const {
return point0_;
}
const point_type& point1() const {
return point1_;
}
std::size_t sorted_index() const {
return sorted_index_;
}
site_event& sorted_index(std::size_t index) {
sorted_index_ = index;
return *this;
}
std::size_t initial_index() const {
return initial_index_;
}
site_event& initial_index(std::size_t index) {
initial_index_ = index;
return *this;
}
bool is_inverse() const {
return (flags_ & IS_INVERSE) ? true : false;
}
site_event& inverse() {
std::swap(point0_, point1_);
flags_ ^= IS_INVERSE;
return *this;
}
SourceCategory source_category() const {
return static_cast<SourceCategory>(flags_ & SOURCE_CATEGORY_BITMASK);
}
site_event& source_category(SourceCategory source_category) {
flags_ |= source_category;
return *this;
}
bool is_point() const {
return (point0_.x() == point1_.x()) && (point0_.y() == point1_.y());
}
bool is_segment() const {
return (point0_.x() != point1_.x()) || (point0_.y() != point1_.y());
}
private:
enum Bits {
IS_INVERSE = 0x20 // 32
};
point_type point0_;
point_type point1_;
std::size_t sorted_index_;
std::size_t initial_index_;
std::size_t flags_;
};
// Circle event type.
// Occurs when the sweepline sweeps over the rightmost point of the Voronoi
// circle (with the center at the intersection point of the bisectors).
// Circle event is made of the two consecutive nodes in the beach line data
// structure. In case another node was inserted during algorithm execution
// between the given two nodes circle event becomes inactive.
// Variables:
// center_x_ - center x-coordinate;
// center_y_ - center y-coordinate;
// lower_x_ - leftmost x-coordinate;
// is_active_ - states whether circle event is still active.
// NOTE: lower_y coordinate is always equal to center_y.
template <typename T>
class circle_event {
public:
typedef T coordinate_type;
circle_event() : is_active_(true) {}
circle_event(coordinate_type c_x,
coordinate_type c_y,
coordinate_type lower_x) :
center_x_(c_x),
center_y_(c_y),
lower_x_(lower_x),
is_active_(true) {}
coordinate_type x() const {
return center_x_;
}
circle_event& x(coordinate_type center_x) {
center_x_ = center_x;
return *this;
}
coordinate_type y() const {
return center_y_;
}
circle_event& y(coordinate_type center_y) {
center_y_ = center_y;
return *this;
}
coordinate_type lower_x() const {
return lower_x_;
}
circle_event& lower_x(coordinate_type lower_x) {
lower_x_ = lower_x;
return *this;
}
coordinate_type lower_y() const {
return center_y_;
}
bool is_active() const {
return is_active_;
}
circle_event& deactivate() {
is_active_ = false;
return *this;
}
private:
coordinate_type center_x_;
coordinate_type center_y_;
coordinate_type lower_x_;
bool is_active_;
};
// Event queue data structure, holds circle events.
// During algorithm run, some of the circle events disappear (become
// inactive). Priority queue data structure doesn't support
// iterators (there is no direct ability to modify its elements).
// Instead list is used to store all the circle events and priority queue
// of the iterators to the list elements is used to keep the correct circle
// events ordering.
template <typename T, typename Predicate>
class ordered_queue {
public:
ordered_queue() {}
bool empty() const {
return c_.empty();
}
const T &top() const {
return *c_.top();
}
void pop() {
list_iterator_type it = c_.top();
c_.pop();
c_list_.erase(it);
}
T &push(const T &e) {
c_list_.push_front(e);
c_.push(c_list_.begin());
return c_list_.front();
}
void clear() {
while (!c_.empty())
c_.pop();
c_list_.clear();
}
private:
typedef typename std::list<T>::iterator list_iterator_type;
struct comparison {
bool operator() (const list_iterator_type &it1,
const list_iterator_type &it2) const {
return cmp_(*it1, *it2);
}
Predicate cmp_;
};
std::priority_queue< list_iterator_type,
std::vector<list_iterator_type>,
comparison > c_;
std::list<T> c_list_;
// Disallow copy constructor and operator=
ordered_queue(const ordered_queue&);
void operator=(const ordered_queue&);
};
// Represents a bisector node made by two arcs that correspond to the left
// and right sites. Arc is defined as a curve with points equidistant from
// the site and from the sweepline. If the site is a point then arc is
// a parabola, otherwise it's a line segment. A segment site event will
// produce different bisectors based on its direction.
// In general case two sites will create two opposite bisectors. That's
// why the order of the sites is important to define the unique bisector.
// The one site is considered to be newer than the other one if it was
// processed by the algorithm later (has greater index).
template <typename Site>
class beach_line_node_key {
public:
typedef Site site_type;
// Constructs degenerate bisector, used to search an arc that is above
// the given site. The input to the constructor is the new site point.
explicit beach_line_node_key(const site_type &new_site) :
left_site_(new_site),
right_site_(new_site) {}
// Constructs a new bisector. The input to the constructor is the two
// sites that create the bisector. The order of sites is important.
beach_line_node_key(const site_type &left_site,
const site_type &right_site) :
left_site_(left_site),
right_site_(right_site) {}
const site_type &left_site() const {
return left_site_;
}
site_type &left_site() {
return left_site_;
}
beach_line_node_key& left_site(const site_type &site) {
left_site_ = site;
return *this;
}
const site_type &right_site() const {
return right_site_;
}
site_type &right_site() {
return right_site_;
}
beach_line_node_key& right_site(const site_type &site) {
right_site_ = site;
return *this;
}
private:
site_type left_site_;
site_type right_site_;
};
// Represents edge data structure from the Voronoi output, that is
// associated as a value with beach line bisector in the beach
// line. Contains pointer to the circle event in the circle event
// queue if the edge corresponds to the right bisector of the circle event.
template <typename Edge, typename Circle>
class beach_line_node_data {
public:
explicit beach_line_node_data(Edge* new_edge) :
circle_event_(NULL),
edge_(new_edge) {}
Circle* circle_event() const {
return circle_event_;
}
beach_line_node_data& circle_event(Circle* circle_event) {
circle_event_ = circle_event;
return *this;
}
Edge* edge() const {
return edge_;
}
beach_line_node_data& edge(Edge* new_edge) {
edge_ = new_edge;
return *this;
}
private:
Circle* circle_event_;
Edge* edge_;
};
} // detail
} // polygon
} // boost
#endif // BOOST_POLYGON_DETAIL_VORONOI_STRUCTURES