blob: 14c23ce0e282b965fff032cd0aec3b1bc6b811e0 [file] [log] [blame]
#ifndef BOOST_THREAD_CONDITION_VARIABLE_WIN32_HPP
#define BOOST_THREAD_CONDITION_VARIABLE_WIN32_HPP
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007-8 Anthony Williams
// (C) Copyright 2011-2012 Vicente J. Botet Escriba
#include <boost/thread/win32/thread_primitives.hpp>
#include <boost/thread/win32/thread_data.hpp>
#include <boost/thread/win32/thread_data.hpp>
#include <boost/thread/win32/interlocked_read.hpp>
#include <boost/thread/cv_status.hpp>
#if defined BOOST_THREAD_USES_DATETIME
#include <boost/thread/xtime.hpp>
#endif
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/thread/lock_guard.hpp>
#include <boost/thread/lock_types.hpp>
#include <boost/assert.hpp>
#include <boost/intrusive_ptr.hpp>
#ifdef BOOST_THREAD_USES_CHRONO
#include <boost/chrono/system_clocks.hpp>
#include <boost/chrono/ceil.hpp>
#endif
#include <limits.h>
#include <algorithm>
#include <vector>
#include <boost/config/abi_prefix.hpp>
namespace boost
{
namespace detail
{
class basic_cv_list_entry;
void intrusive_ptr_add_ref(basic_cv_list_entry * p);
void intrusive_ptr_release(basic_cv_list_entry * p);
class basic_cv_list_entry
{
private:
detail::win32::handle_manager semaphore;
detail::win32::handle_manager wake_sem;
long waiters;
bool notified;
long references;
public:
BOOST_THREAD_NO_COPYABLE(basic_cv_list_entry)
explicit basic_cv_list_entry(detail::win32::handle_manager const& wake_sem_):
semaphore(detail::win32::create_anonymous_semaphore(0,LONG_MAX)),
wake_sem(wake_sem_.duplicate()),
waiters(1),notified(false),references(0)
{}
static bool no_waiters(boost::intrusive_ptr<basic_cv_list_entry> const& entry)
{
return !detail::interlocked_read_acquire(&entry->waiters);
}
void add_waiter()
{
BOOST_INTERLOCKED_INCREMENT(&waiters);
}
void remove_waiter()
{
BOOST_INTERLOCKED_DECREMENT(&waiters);
}
void release(unsigned count_to_release)
{
notified=true;
detail::win32::ReleaseSemaphore(semaphore,count_to_release,0);
}
void release_waiters()
{
release(detail::interlocked_read_acquire(&waiters));
}
bool is_notified() const
{
return notified;
}
bool wait(timeout abs_time)
{
return this_thread::interruptible_wait(semaphore,abs_time);
}
bool woken()
{
unsigned long const woken_result=detail::win32::WaitForSingleObjectEx(wake_sem,0,0);
BOOST_ASSERT((woken_result==detail::win32::timeout) || (woken_result==0));
return woken_result==0;
}
friend void intrusive_ptr_add_ref(basic_cv_list_entry * p);
friend void intrusive_ptr_release(basic_cv_list_entry * p);
};
inline void intrusive_ptr_add_ref(basic_cv_list_entry * p)
{
BOOST_INTERLOCKED_INCREMENT(&p->references);
}
inline void intrusive_ptr_release(basic_cv_list_entry * p)
{
if(!BOOST_INTERLOCKED_DECREMENT(&p->references))
{
delete p;
}
}
class basic_condition_variable
{
boost::mutex internal_mutex;
long total_count;
unsigned active_generation_count;
typedef basic_cv_list_entry list_entry;
typedef boost::intrusive_ptr<list_entry> entry_ptr;
typedef std::vector<entry_ptr> generation_list;
generation_list generations;
detail::win32::handle_manager wake_sem;
void wake_waiters(long count_to_wake)
{
detail::interlocked_write_release(&total_count,total_count-count_to_wake);
detail::win32::ReleaseSemaphore(wake_sem,count_to_wake,0);
}
template<typename lock_type>
struct relocker
{
BOOST_THREAD_NO_COPYABLE(relocker)
lock_type& lock;
bool unlocked;
relocker(lock_type& lock_):
lock(lock_),unlocked(false)
{}
void unlock()
{
lock.unlock();
unlocked=true;
}
~relocker()
{
if(unlocked)
{
lock.lock();
}
}
};
entry_ptr get_wait_entry()
{
boost::lock_guard<boost::mutex> internal_lock(internal_mutex);
if(!wake_sem)
{
wake_sem=detail::win32::create_anonymous_semaphore(0,LONG_MAX);
BOOST_ASSERT(wake_sem);
}
detail::interlocked_write_release(&total_count,total_count+1);
if(generations.empty() || generations.back()->is_notified())
{
entry_ptr new_entry(new list_entry(wake_sem));
generations.push_back(new_entry);
return new_entry;
}
else
{
generations.back()->add_waiter();
return generations.back();
}
}
struct entry_manager
{
entry_ptr const entry;
boost::mutex& internal_mutex;
BOOST_THREAD_NO_COPYABLE(entry_manager)
entry_manager(entry_ptr const& entry_, boost::mutex& mutex_):
entry(entry_), internal_mutex(mutex_)
{}
~entry_manager()
{
boost::lock_guard<boost::mutex> internal_lock(internal_mutex);
entry->remove_waiter();
}
list_entry* operator->()
{
return entry.get();
}
};
protected:
template<typename lock_type>
bool do_wait(lock_type& lock,timeout abs_time)
{
relocker<lock_type> locker(lock);
entry_manager entry(get_wait_entry(), internal_mutex);
locker.unlock();
bool woken=false;
while(!woken)
{
if(!entry->wait(abs_time))
{
return false;
}
woken=entry->woken();
}
return woken;
}
template<typename lock_type,typename predicate_type>
bool do_wait(lock_type& m,timeout const& abs_time,predicate_type pred)
{
while (!pred())
{
if(!do_wait(m, abs_time))
return pred();
}
return true;
}
basic_condition_variable(const basic_condition_variable& other);
basic_condition_variable& operator=(const basic_condition_variable& other);
public:
basic_condition_variable():
total_count(0),active_generation_count(0),wake_sem(0)
{}
~basic_condition_variable()
{}
void notify_one() BOOST_NOEXCEPT
{
if(detail::interlocked_read_acquire(&total_count))
{
boost::lock_guard<boost::mutex> internal_lock(internal_mutex);
if(!total_count)
{
return;
}
wake_waiters(1);
for(generation_list::iterator it=generations.begin(),
end=generations.end();
it!=end;++it)
{
(*it)->release(1);
}
generations.erase(std::remove_if(generations.begin(),generations.end(),&basic_cv_list_entry::no_waiters),generations.end());
}
}
void notify_all() BOOST_NOEXCEPT
{
if(detail::interlocked_read_acquire(&total_count))
{
boost::lock_guard<boost::mutex> internal_lock(internal_mutex);
if(!total_count)
{
return;
}
wake_waiters(total_count);
for(generation_list::iterator it=generations.begin(),
end=generations.end();
it!=end;++it)
{
(*it)->release_waiters();
}
generations.clear();
wake_sem=detail::win32::handle(0);
}
}
};
}
class condition_variable:
private detail::basic_condition_variable
{
public:
BOOST_THREAD_NO_COPYABLE(condition_variable)
condition_variable()
{}
using detail::basic_condition_variable::notify_one;
using detail::basic_condition_variable::notify_all;
void wait(unique_lock<mutex>& m)
{
do_wait(m,detail::timeout::sentinel());
}
template<typename predicate_type>
void wait(unique_lock<mutex>& m,predicate_type pred)
{
while(!pred()) wait(m);
}
#if defined BOOST_THREAD_USES_DATETIME
bool timed_wait(unique_lock<mutex>& m,boost::system_time const& abs_time)
{
return do_wait(m,abs_time);
}
bool timed_wait(unique_lock<mutex>& m,boost::xtime const& abs_time)
{
return do_wait(m,system_time(abs_time));
}
template<typename duration_type>
bool timed_wait(unique_lock<mutex>& m,duration_type const& wait_duration)
{
if (wait_duration.is_pos_infinity())
{
wait(m); // or do_wait(m,detail::timeout::sentinel());
return true;
}
if (wait_duration.is_special())
{
return true;
}
return do_wait(m,wait_duration.total_milliseconds());
}
template<typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,boost::system_time const& abs_time,predicate_type pred)
{
return do_wait(m,abs_time,pred);
}
template<typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,boost::xtime const& abs_time,predicate_type pred)
{
return do_wait(m,system_time(abs_time),pred);
}
template<typename duration_type,typename predicate_type>
bool timed_wait(unique_lock<mutex>& m,duration_type const& wait_duration,predicate_type pred)
{
return do_wait(m,wait_duration.total_milliseconds(),pred);
}
#endif
#ifdef BOOST_THREAD_USES_CHRONO
template <class Clock, class Duration>
cv_status
wait_until(
unique_lock<mutex>& lock,
const chrono::time_point<Clock, Duration>& t)
{
using namespace chrono;
chrono::time_point<Clock, Duration> now = Clock::now();
if (t<=now) {
return cv_status::timeout;
}
do_wait(lock, ceil<milliseconds>(t-now).count());
return Clock::now() < t ? cv_status::no_timeout :
cv_status::timeout;
}
template <class Rep, class Period>
cv_status
wait_for(
unique_lock<mutex>& lock,
const chrono::duration<Rep, Period>& d)
{
using namespace chrono;
if (d<=chrono::duration<Rep, Period>::zero()) {
return cv_status::timeout;
}
steady_clock::time_point c_now = steady_clock::now();
do_wait(lock, ceil<milliseconds>(d).count());
return steady_clock::now() - c_now < d ? cv_status::no_timeout :
cv_status::timeout;
}
template <class Clock, class Duration, class Predicate>
bool
wait_until(
unique_lock<mutex>& lock,
const chrono::time_point<Clock, Duration>& t,
Predicate pred)
{
while (!pred())
{
if (wait_until(lock, t) == cv_status::timeout)
return pred();
}
return true;
}
template <class Rep, class Period, class Predicate>
bool
wait_for(
unique_lock<mutex>& lock,
const chrono::duration<Rep, Period>& d,
Predicate pred)
{
return wait_until(lock, chrono::steady_clock::now() + d, boost::move(pred));
}
#endif
};
class condition_variable_any:
private detail::basic_condition_variable
{
public:
BOOST_THREAD_NO_COPYABLE(condition_variable_any)
condition_variable_any()
{}
using detail::basic_condition_variable::notify_one;
using detail::basic_condition_variable::notify_all;
template<typename lock_type>
void wait(lock_type& m)
{
do_wait(m,detail::timeout::sentinel());
}
template<typename lock_type,typename predicate_type>
void wait(lock_type& m,predicate_type pred)
{
while(!pred()) wait(m);
}
#if defined BOOST_THREAD_USES_DATETIME
template<typename lock_type>
bool timed_wait(lock_type& m,boost::system_time const& abs_time)
{
return do_wait(m,abs_time);
}
template<typename lock_type>
bool timed_wait(lock_type& m,boost::xtime const& abs_time)
{
return do_wait(m,system_time(abs_time));
}
template<typename lock_type,typename duration_type>
bool timed_wait(lock_type& m,duration_type const& wait_duration)
{
return do_wait(m,wait_duration.total_milliseconds());
}
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& m,boost::system_time const& abs_time,predicate_type pred)
{
return do_wait(m,abs_time,pred);
}
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& m,boost::xtime const& abs_time,predicate_type pred)
{
return do_wait(m,system_time(abs_time),pred);
}
template<typename lock_type,typename duration_type,typename predicate_type>
bool timed_wait(lock_type& m,duration_type const& wait_duration,predicate_type pred)
{
return do_wait(m,wait_duration.total_milliseconds(),pred);
}
#endif
#ifdef BOOST_THREAD_USES_CHRONO
template <class lock_type, class Clock, class Duration>
cv_status
wait_until(
lock_type& lock,
const chrono::time_point<Clock, Duration>& t)
{
using namespace chrono;
chrono::time_point<Clock, Duration> now = Clock::now();
if (t<=now) {
return cv_status::timeout;
}
do_wait(lock, ceil<milliseconds>(t-now).count());
return Clock::now() < t ? cv_status::no_timeout :
cv_status::timeout;
}
template <class lock_type, class Rep, class Period>
cv_status
wait_for(
lock_type& lock,
const chrono::duration<Rep, Period>& d)
{
using namespace chrono;
if (d<=chrono::duration<Rep, Period>::zero()) {
return cv_status::timeout;
}
steady_clock::time_point c_now = steady_clock::now();
do_wait(lock, ceil<milliseconds>(d).count());
return steady_clock::now() - c_now < d ? cv_status::no_timeout :
cv_status::timeout;
}
template <class lock_type, class Clock, class Duration, class Predicate>
bool
wait_until(
lock_type& lock,
const chrono::time_point<Clock, Duration>& t,
Predicate pred)
{
while (!pred())
{
if (wait_until(lock, t) == cv_status::timeout)
return pred();
}
return true;
}
template <class lock_type, class Rep, class Period, class Predicate>
bool
wait_for(
lock_type& lock,
const chrono::duration<Rep, Period>& d,
Predicate pred)
{
return wait_until(lock, chrono::steady_clock::now() + d, boost::move(pred));
}
#endif
};
BOOST_THREAD_DECL void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk);
}
#include <boost/config/abi_suffix.hpp>
#endif