blob: 2085c078be3fadf0bdb9146e7598ee21aac4af75 [file] [log] [blame]
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2007-2013. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifdef _MSC_VER
#pragma warning (disable : 4512)
#pragma warning (disable : 4127)
#pragma warning (disable : 4244)
#pragma warning (disable : 4267)
#endif
#include <boost/container/adaptive_pool.hpp>
#include <boost/container/node_allocator.hpp>
#include <boost/container/allocator.hpp>
#include <boost/container/list.hpp>
#include <memory> //std::allocator
#include <iostream> //std::cout, std::endl
#include <vector> //std::vector
#include <cstddef> //std::size_t
#include <boost/timer/timer.hpp>
using boost::timer::cpu_timer;
using boost::timer::cpu_times;
using boost::timer::nanosecond_type;
namespace bc = boost::container;
typedef std::allocator<int> StdAllocator;
typedef bc::allocator<int, 2> AllocatorPlusV2;
typedef bc::allocator<int, 1> AllocatorPlusV1;
typedef bc::adaptive_pool
< int
, bc::ADP_nodes_per_block
, bc::ADP_max_free_blocks
, bc::ADP_only_alignment
, 1> AdPoolAlignOnlyV1;
typedef bc::adaptive_pool
< int
, bc::ADP_nodes_per_block
, bc::ADP_max_free_blocks
, bc::ADP_only_alignment
, 2> AdPoolAlignOnlyV2;
typedef bc::adaptive_pool
< int
, bc::ADP_nodes_per_block
, bc::ADP_max_free_blocks
, 2
, 1> AdPool2PercentV1;
typedef bc::adaptive_pool
< int
, bc::ADP_nodes_per_block
, bc::ADP_max_free_blocks
, 2
, 2> AdPool2PercentV2;
typedef bc::node_allocator
< int
, bc::NodeAlloc_nodes_per_block
, 1> SimpleSegregatedStorageV1;
typedef bc::node_allocator
< int
, bc::NodeAlloc_nodes_per_block
, 2> SimpleSegregatedStorageV2;
//Explicit instantiation
template class bc::adaptive_pool
< int
, bc::ADP_nodes_per_block
, bc::ADP_max_free_blocks
, bc::ADP_only_alignment
, 2>;
template class bc::node_allocator
< int
, bc::NodeAlloc_nodes_per_block
, 2>;
template<class Allocator> struct get_allocator_name;
template<> struct get_allocator_name<StdAllocator>
{ static const char *get() { return "StdAllocator"; } };
template<> struct get_allocator_name<AllocatorPlusV2>
{ static const char *get() { return "AllocatorPlusV2"; } };
template<> struct get_allocator_name<AllocatorPlusV1>
{ static const char *get() { return "AllocatorPlusV1"; } };
template<> struct get_allocator_name<AdPoolAlignOnlyV1>
{ static const char *get() { return "AdPoolAlignOnlyV1"; } };
template<> struct get_allocator_name<AdPoolAlignOnlyV2>
{ static const char *get() { return "AdPoolAlignOnlyV2"; } };
template<> struct get_allocator_name<AdPool2PercentV1>
{ static const char *get() { return "AdPool2PercentV1"; } };
template<> struct get_allocator_name<AdPool2PercentV2>
{ static const char *get() { return "AdPool2PercentV2"; } };
template<> struct get_allocator_name<SimpleSegregatedStorageV1>
{ static const char *get() { return "SimpleSegregatedStorageV1"; } };
template<> struct get_allocator_name<SimpleSegregatedStorageV2>
{ static const char *get() { return "SimpleSegregatedStorageV2"; } };
class MyInt
{
std::size_t int_;
public:
explicit MyInt(std::size_t i = 0) : int_(i){}
MyInt(const MyInt &other)
: int_(other.int_)
{}
MyInt & operator=(const MyInt &other)
{
int_ = other.int_;
return *this;
}
};
template<class Allocator>
void list_test_template(std::size_t num_iterations, std::size_t num_elements, bool csv_output)
{
typedef typename Allocator::template rebind<MyInt>::other IntAllocator;
nanosecond_type tinsert, terase;
boost_cont_malloc_stats_t insert_stats, erase_stats;
std::size_t insert_inuse, erase_inuse;
const size_t sizeof_node = 2*sizeof(void*)+sizeof(int);
typedef bc::list<MyInt, IntAllocator> list_t;
typedef typename list_t::iterator iterator_t;
{
cpu_timer timer;
timer.resume();
list_t l;
for(std::size_t r = 0; r != num_iterations; ++r){
l.insert(l.end(), num_elements, MyInt(r));
}
timer.stop();
tinsert = timer.elapsed().wall;
insert_inuse = boost_cont_in_use_memory();
insert_stats = boost_cont_malloc_stats();
/*
iterator_t it(l.begin());
iterator_t last(--l.end());
for(std::size_t n_elem = 0, n_max = l.size()/2-1; n_elem != n_max; ++n_elem)
{
l.splice(it++, l, last--);
}
*/
//l.reverse();
//Now preprocess erase ranges
std::vector<iterator_t> ranges_to_erase;
ranges_to_erase.push_back(l.begin());
for(std::size_t r = 0; r != num_iterations; ++r){
iterator_t next_pos(ranges_to_erase[r]);
std::size_t n = num_elements;
while(n--){ ++next_pos; }
ranges_to_erase.push_back(next_pos);
}
//Measure range erasure function
timer.start();
for(std::size_t r = 0; r != num_iterations; ++r){
assert((r+1) < ranges_to_erase.size());
l.erase(ranges_to_erase[r], ranges_to_erase[r+1]);
}
timer.stop();
terase = timer.elapsed().wall;
erase_inuse = boost_cont_in_use_memory();
erase_stats = boost_cont_malloc_stats();
}
if(csv_output){
std::cout << get_allocator_name<Allocator>::get()
<< ";"
<< num_iterations
<< ";"
<< num_elements
<< ";"
<< float(tinsert)/(num_iterations*num_elements)
<< ";"
<< (unsigned int)insert_stats.system_bytes
<< ";"
<< float(insert_stats.system_bytes)/(num_iterations*num_elements*sizeof_node)*100.0-100.0
<< ";"
<< (unsigned int)insert_inuse
<< ";"
<< (float(insert_inuse)/(num_iterations*num_elements*sizeof_node)*100.0)-100.0
<< ";";
std::cout << float(terase)/(num_iterations*num_elements)
<< ";"
<< (unsigned int)erase_stats.system_bytes
<< ";"
<< (unsigned int)erase_inuse
<< std::endl;
}
else{
std::cout << std::endl
<< "Allocator: " << get_allocator_name<Allocator>::get()
<< std::endl
<< " allocation/deallocation(ns): " << float(tinsert)/(num_iterations*num_elements) << '\t' << float(terase)/(num_iterations*num_elements)
<< std::endl
<< " Sys MB(overh.)/Inuse MB(overh.): " << (float)insert_stats.system_bytes/(1024*1024) << "(" << float(insert_stats.system_bytes)/(num_iterations*num_elements*sizeof_node)*100.0-100.0 << "%)"
<< " / "
<< (float)insert_inuse/(1024*1024) << "(" << (float(insert_inuse)/(num_iterations*num_elements*sizeof_node)*100.0)-100.0 << "%)"
<< std::endl
<< " system MB/inuse bytes after: " << (float)erase_stats.system_bytes/(1024*1024) << '\t' << boost_cont_in_use_memory()
<< std::endl << std::endl;
}
//Release node_allocator cache
typedef boost::container::container_detail::shared_node_pool
< (2*sizeof(void*)+sizeof(int))
, AdPoolAlignOnlyV2::nodes_per_block> shared_node_pool_t;
boost::container::container_detail::singleton_default
<shared_node_pool_t>::instance().purge_blocks();
//Release adaptive_pool cache
typedef boost::container::container_detail::shared_adaptive_node_pool
< (2*sizeof(void*)+sizeof(int))
, AdPool2PercentV2::nodes_per_block
, AdPool2PercentV2::max_free_blocks
, AdPool2PercentV2::overhead_percent> shared_adaptive_pool_plus_t;
boost::container::container_detail::singleton_default
<shared_adaptive_pool_plus_t>::instance().deallocate_free_blocks();
//Release adaptive_pool cache
typedef boost::container::container_detail::shared_adaptive_node_pool
< (2*sizeof(void*)+sizeof(int))
, AdPool2PercentV2::nodes_per_block
, AdPool2PercentV2::max_free_blocks
, 0u> shared_adaptive_pool_plus_align_only_t;
boost::container::container_detail::singleton_default
<shared_adaptive_pool_plus_align_only_t>::instance().deallocate_free_blocks();
//Release dlmalloc memory
boost_cont_trim(0);
}
void print_header()
{
std::cout << "Allocator" << ";" << "Iterations" << ";" << "Size" << ";"
<< "Insertion time(ns)" << ";"
<< "System bytes" << ";"
<< "System overhead(%)" << ";"
<< "In use bytes" << ";"
<< "In use overhead(%)" << ";"
<< "Erasure time (ns)" << ";"
<< "System bytes after" << ";"
<< "In use bytes after"
<< std::endl;
}
int main(int argc, const char *argv[])
{
#define SINGLE_TEST
#ifndef SINGLE_TEST
#ifdef NDEBUG
std::size_t numrep [] = { 3000, 30000, 300000, 3000000, 6000000, 15000000, 30000000 };
#else
std::size_t numrep [] = { 20, 200, 2000, 20000, 40000, 100000, 200000 };
#endif
std::size_t numele [] = { 10000, 1000, 100, 10, 5, 2, 1 };
#else
#ifdef NDEBUG
std::size_t numrep [] = { 1500000 };
#else
std::size_t numrep [] = { 10000 };
#endif
std::size_t numele [] = { 10 };
#endif
bool csv_output = argc == 2 && (strcmp(argv[1], "--csv-output") == 0);
if(csv_output){/*
print_header();
for(std::size_t i = 0; i < sizeof(numele)/sizeof(numele[0]); ++i){
list_test_template<AllocatorPlusV1>(numrep[i], numele[i], csv_output);
}
for(std::size_t i = 0; i < sizeof(numele)/sizeof(numele[0]); ++i){
list_test_template<AllocatorPlusV2>(numrep[i], numele[i], csv_output);
}
for(std::size_t i = 0; i < sizeof(numele)/sizeof(numele[0]); ++i){
list_test_template<AdPoolAlignOnlyV1>(numrep[i], numele[i], csv_output);
}
for(std::size_t i = 0; i < sizeof(numele)/sizeof(numele[0]); ++i){
list_test_template<AdPoolAlignOnlyV2>(numrep[i], numele[i], csv_output);
}
for(std::size_t i = 0; i < sizeof(numele)/sizeof(numele[0]); ++i){
list_test_template<AdPool2PercentV1>(numrep[i], numele[i], csv_output);
}
for(std::size_t i = 0; i < sizeof(numele)/sizeof(numele[0]); ++i){
list_test_template<AdPool2PercentV2>(numrep[i], numele[i], csv_output);
}
for(std::size_t i = 0; i < sizeof(numele)/sizeof(numele[0]); ++i){
list_test_template<SimpleSegregatedStorageV1>(numrep[i], numele[i], csv_output);
}
for(std::size_t i = 0; i < sizeof(numele)/sizeof(numele[0]); ++i){
list_test_template<SimpleSegregatedStorageV2>(numrep[i], numele[i], csv_output);
}*/
}
else{
for(std::size_t i = 0; i < sizeof(numele)/sizeof(numele[0]); ++i){
std::cout << "\n ----------------------------------- \n"
<< " Iterations/Elements: " << numrep[i] << "/" << numele[i]
<< "\n ----------------------------------- \n";
list_test_template<AllocatorPlusV1>(numrep[i], numele[i], csv_output);
list_test_template<AllocatorPlusV2>(numrep[i], numele[i], csv_output);
list_test_template<AdPoolAlignOnlyV1>(numrep[i], numele[i], csv_output);
list_test_template<AdPoolAlignOnlyV2>(numrep[i], numele[i], csv_output);
list_test_template<AdPool2PercentV1>(numrep[i], numele[i], csv_output);
list_test_template<AdPool2PercentV2>(numrep[i], numele[i], csv_output);
list_test_template<SimpleSegregatedStorageV1>(numrep[i], numele[i], csv_output);
list_test_template<SimpleSegregatedStorageV2>(numrep[i], numele[i], csv_output);
}
}
return 0;
}